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Abstract

Background: Estimates of effect heterogeneity (i.e. the extent to which the causal effect

of one exposure varies across strata of a second exposure) can be biased if the expo-

sure–outcome relationship is subject to uncontrolled confounding whose severity differs

across strata of the second exposure.

Methods: We propose methods, analogous to the E-value for total effects, that help to as-

sess the sensitivity of effect heterogeneity estimates to possible uncontrolled confound-

ing. These E-value analogues characterize the severity of uncontrolled confounding

strengths that would be required, hypothetically, to ‘explain away’ an estimate of multi-

plicative or additive effect heterogeneity in the sense that appropriately controlling for

those confounder(s) would have shifted the effect heterogeneity estimate to the null, or

alternatively would have shifted its confidence interval to include the null. One can also

consider shifting the estimate or confidence interval to an arbitrary non-null value. All of

these E-values can be obtained using the R package EValue.

Results: We illustrate applying the proposed E-value analogues to studies on: (i) effect

heterogeneity by sex of the effect of educational attainment on dementia incidence and

(ii) effect heterogeneity by age on the effect of obesity on all-cause mortality.

Conclusion: Reporting these proposed E-values could help characterize the robustness

of effect heterogeneity estimates to potential uncontrolled confounding.
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Background

Estimates of effect heterogeneity (i.e. the extent to which

the causal effect of an exposure, X, varies across strata of

another variable, Z) can be biased if the exposure–outcome

relationship is subject to uncontrolled confounding whose

severity differs across strata of Z.1,2 For example, suppose

that in the Z¼1 stratum, the exposure–outcome relation-

ship is biased upward due to uncontrolled confounding,

but that in the Z¼ 0 stratum, the relationship is not biased.

The uncontrolled confounding in the Z¼ 1 stratum could,

for example, spuriously increase the magnitude of the ob-

served ratio or difference between the two strata’s esti-

mated exposure–outcome effects, thus increasing the

observed estimate of effect heterogeneity. Such bias in ef-

fect heterogeneity estimates can be consequential in prac-

tice. For example, effect heterogeneity estimates on the

additive scale can inform decisions of which individuals

(i.e. which stratum of Z) to treat in order to most reduce

the disease caseload if treatment resources are limited.1 In

this context, a biased estimate of effect heterogeneity could

potentially suggest a treatment allocation scheme that fails

to minimize, or even increases, the overall caseload.

Although sensitivity analyses exist for causal interac-

tions (i.e. effects of jointly manipulating X and Z vs each

independently),3 we are not aware of comparable methods

for effect heterogeneity. We propose sensitivity analyses

that characterize the severity of uncontrolled confounding

strengths that would be required, hypothetically, to ‘ex-

plain away’ an estimate of multiplicative or additive effect

heterogeneity in the sense that controlling for those con-

founder(s) would have shifted the effect heterogeneity esti-

mate to the null, or alternatively would have shifted its

confidence interval to include the null. We recommend

reporting E-values for both the point estimate and the con-

fidence interval; the latter is especially important for effect

heterogeneity estimates, for which statistical precision is

often considerably lower than for total effects. We also dis-

cuss ‘non-null’ E-values required to shift the estimate or its

confidence interval to any arbitrary value. These metrics

are straightforward extensions of the standard E-value for

total effects, which represents the minimum strength of

association, on the risk ratio (RR) scale, that uncontrolled

confounder(s) would need to have with the exposure, the

outcome, or both, conditional on any measured and con-

trolled confounders, to explain away the total effect.4,5 As

we describe below, it is equivalent to interpret the E-value

as the minimum strengths of association that uncontrolled

confounder(s) would need to have with both the exposure

and the outcome if these two strengths of association are

taken to be of equal magnitude.

Like the standard E-value, our proposed E-values for ef-

fect heterogeneity do not require assumptions on the na-

ture of the uncontrolled confounder(s).4–6 That is, these

metrics represent bounds under hypothetical worst-case

confounding: they consider the maximum bias that could

be generated by a given strength of confounder strengths,

but actual uncontrolled confounders might not generate

that much bias.4,5 We also give alternative E-values that

can be applied under the assumption that uncontrolled

confounding operates in the same direction in each stratum

of Z (‘unidirectional confounding’). We provide software

to calculate all of these E-values, discussed below.

Details and reporting guidelines for the standard E-value

are discussed elsewhere.4–7 The E-value has limitations, which

have been discussed and debated elsewhere.8–11 For example,

to avoid making assumptions about the prevalence or distri-

bution of uncontrolled confounder(s), the E-value does not

make use of potential known information about these and

hence may understate the amount of confounding required to

explain away an effect. Additionally, the E-value does not ac-

count for biases or threats to inferential validity other than

uncontrolled confounding, such as measurement error, selec-

tive reporting or uncontrolled multiple testing; we provide

methods and recommendations regarding these issues else-

where.6,12–14 The same considerations and limitations

apply for the analogues we propose.

Setting and notation

All proofs, with formalized assumptions and definitions, ap-

pear in the Supplementary material (available as

Supplementary data at IJE online). Let Z 2 f0;1g define the

strata between which the causal effect of X 2 f0; 1g might

Key Messages

• Effect heterogeneity estimates can be biased if the exposure–outcome relationship is subject to uncontrolled

confounding whose severity differs across strata of the second exposure.

• We propose sensitivity analyses, analogous to the E-value, that characterize the severity of uncontrolled confounding

strengths that would be required to ‘explain away’ an estimate of effect heterogeneity.

• We provide an R package, EValue, to conduct all proposed sensitivity analyses.
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vary, and let Yx 2 f0; 1g be a potential outcome when inter-

vening to set X¼ x. (If Z is categorical rather than binary,

the same results can be applied to contrasts between two

specified levels of Z.) We assume that the confounded esti-

mate of effect heterogeneity is greater than the null (e.g. >1

for multiplicative measures or>0 for additive measures); oth-

erwise, one can simply reverse the coding of Z before apply-

ing the results below. We also assume that, other than the

omission of uncontrolled confounder(s), the estimator used

to obtain the confounded estimate of effect heterogeneity is

correctly specified; i.e. the estimate would have been unbi-

ased for the causal estimand if the uncontrolled confounder(s)

had in fact been controlled. For example, if the statistical in-

teraction coefficient for X�Z in a regression model is taken

to be the effect heterogeneity estimate, this requires assuming

that X does not affect Z, even if there were no uncontrolled

confounding.

We define two sensitivity parameters for each stra-

tum, called the ‘within-stratum confounding strengths’.

These are the same parameters as used for the standard

E-value, but applied separately to each stratum of Z.5

Within stratum Z¼ z, let Uz denote the uncontrolled

confounder(s), defined as a set of one or more variables

that would suffice to control for confounding of the ex-

posure–outcome relationship in this stratum.

Within stratum Z¼ z and for each stratum x of X, de-

fine an RR of Uz on Y, maximized across all possible

contrasts of Uz:

RRUY jZ¼z;X¼x ¼
maxuE½Y jZ ¼ z;X ¼ x;Uz ¼ u�
minuE½Y jZ ¼ z;X ¼ x;Uz ¼ u� ; x 2 0; 1f g

The sensitivity parameters RRUY jZ¼1 and RRUY jZ¼0 are

then:

RRUY jZ¼z ¼maxfRRUY jZ¼z;X¼0;RRUY jZ¼z;X¼1g;
z 2 f0;1g

Any confounders that are measured and controlled

could also be conditioned throughout. These sensitivity

parameters represent, within stratum Z¼ z and consider-

ing both strata of X, the largest of the maximal RRs of that

stratum’s uncontrolled confounders, Uz, on Y conditional

on X. The sensitivity parameters RRXU jZ¼1 and RRXU jZ¼0

are defined as:

RRXU jZ¼z ¼ maxu
PðUz ¼ u jZ ¼ z;X ¼ 1Þ
PðUz ¼ u jZ ¼ z;X ¼ 0Þ

� �
; z 2 0;1f g

Each parameter RRXU jZ¼z represents, within stratum

Z¼ z, the maximal RR of Uz ¼ u for X¼ 1 vs X¼ 0 across

strata of Uz. As for the standard E-value, the same

sensitivity parameters and results accommodate the pos-

sibility that Uz includes one or more confounders of any

type (e.g. binary, categorical or continuous) and distribu-

tion. For example, if Uz is binary, RRUY jZ¼z;X¼x is simply

the RR relating Uz to Y within stratum Z¼ z. Precise

interpretations of the sensitivity parameters when Uz

contains multiple confounders or is continuous are given

elsewhere.6

We define the E-value for an effect heterogeneity

point estimate as the minimum magnitude that at least

one of the four within-stratum confounding strengths

must have, on the RR scale, such that fully controlling

for confounding would have shifted the estimate to the

null. Like the standard E-value, this E-value essentially

sets the four confounding strengths equal to one another

to obtain the required joint minimum for all of them.

For the special case in which confounding is assumed to

be unidirectional, we define E-values as the minimum

value that at least one of the two confounding strengths

in at least one stratum must have in order to explain

away the effect heterogeneity.

To dispel a common misconception, we note that math-

ematically setting the confounding strengths equal to one

another in this manner does not require assuming that, in

reality, the confounding strengths actually are equal. The

E-value is derived by considering all possible combinations

of confounding strengths that could produce enough bias

to explain away the effect heterogeneity, and then solving

for the combination that minimizes the maximum of these

confounding strengths (Supplementary material, Section

2.1, available as Supplementary data at IJE online). This

unique combination, it turns out, is the one in which the

confounding strengths are equal. If, in reality, there are

uncontrolled confounders whose confounding strengths

are not equal, the E-value still applies; it states that at least

one of the confounding strengths must exceed the E-value

in order to explain away the effect. Again, this interpreta-

tion is mathematically equivalent to considering confound-

ing strengths of equal magnitude. Additionally, we note

that setting the confounding strengths equal to one another

does not require assuming that these associations arise

from the same confounders in the two strata.

Multiplicative effect heterogeneity

We consider the causal estimand:

RRt
EH ¼ RRt

XY jZ¼1=RRt
XY jZ¼0

where RRt
XY jZ¼z ¼ E½Y1 jZ ¼ z�=E½Y0 jZ ¼ z�. Its con-

founded counterpart is:
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RRc
EH ¼ RRc

XY jZ¼1=RRc
XY jZ¼0

where RRc
XYjZ¼z¼E½YjZ¼z;X¼1�=E½Y jZ¼z;X¼0�. Again,

any confounders that are measured and controlled can also

be conditioned. (If multiplicative effect heterogeneity is mea-

sured on a different scale, such as the odds ratio or hazard

ratio scale, then the estimate could be approximately con-

verted to an RR before applying the results below, as for the

standard E-value.4) Without making assumptions on the di-

rection of confounding bias, the E-value required to shift

RRc
EH to the null is:

E-value ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RRc

EH

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RRc

EH �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RRc

EH

pq
(1)

This E-value represents the minimum magnitude that at

least one of the four within-stratum confounding strengths

must have in order to explain away the effect heterogeneity

(i.e. to have RRt
EH ¼ 1). Equivalently, this E-value repre-

sents the minimum magnitude of all four within-stratum

confounding strengths that would be required to explain

away the effect heterogeneity if all four confounding

strengths are taken to be of equal magnitude. We use ‘mag-

nitude’ to indicate that the confounding strengths on the

RR scale are taken to be � 1 regardless of the direction of

association, as for the standard E-value.4 In fact, this

bound is attained when the effects within each stratum

have bias of the same magnitude, but in opposite direc-

tions. It might be quite unlikely in practice that any given

uncontrolled confounder has all four confounding

strengths of equal magnitude, or that confounding bias

operates in different directions in each stratum. We return

to these points in the section “Interpreting E-values in light

of their mathematical conservatism”. In the Supplementary

material Section 2.3 (available as Supplementary data at

IJE online), we establish connections between this bound

and classical bounds on bias in total effects due to uncon-

trolled confounding.15,16

The E-value required to shift RRc
EH to a non-null

value, RRt
EH , rather than to the null can be obtained by

replacing RRc
EH in Equation (1) with RRc

EH=RRt
EH. The

E-value required to shift the confidence interval to include

the null or another specified value can be obtained by

replacing RRc
EH above with the lower confidence interval

limit. All of these E-values can be obtained using existing

software that calculates E-values for total effects17,18 by

simply performing the calculation using
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RRc

EH

p
rather

than RRc
EH itself, and likewise for the confidence interval

limit or RRc
EH=RRt

EH, because doing so is equivalent to

applying Equation (1).

If we instead assume unidirectional confounding, the E-

value required to shift RRc
EH to the null is:

E-value ¼ RRc
EH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RRc

EHðRRc
EH � 1Þ

q
(2)

This represents the minimum magnitude that at least of

one of the within-stratum confounding strengths must

have in at least one stratum of Z in order to explain away

the effect heterogeneity. Equivalently, this E-value repre-

sents the minimum magnitude that both within-stratum

confounding strengths must have in at least one stratum of

Z if both confounding strengths in that stratum are taken

to be equal. This bound is attained when the effect within

the other stratum is unbiased. The expression is in fact

equivalent to the standard E-value for RRc
EH.

Additive effect heterogeneity

Define the causal risk difference in stratum Z¼ z and its

confounded counterpart as:

RDt
XY jZ¼z ¼ E½Y1 jZ ¼ z� � E½Y0 jZ ¼ z�

RDc
XY jZ¼z ¼ E½Y jZ ¼ z;X ¼ 1� � E½Y jZ ¼ z;X ¼ 0�

We consider the additive interaction contrast ICt ¼
RDt

XY jZ¼1 � RDt
XY jZ¼0 and its confounded counterpart

ICc ¼ RDc
XY jZ¼1 � RDc

XY jZ¼0.19 Let fz ¼ E½X jZ ¼ z� be

the prevalence of X in stratum z, and let pzx ¼ E½Y jZ ¼
z;X ¼ x� be the outcome probability within the joint stra-

tum ðZ ¼ z;X ¼ xÞ. Then, without assumptions on the di-

rection of confounding bias, the E-value required to shift

ICc to the null is:

E-value ¼ g

 
1

2ðf1p10 þ f0p01Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4ðp10f1 þ p01f0Þðp11½1� f1� þ p00½1� f0�Þ

q
� c

� �!

(3)

where

gðwÞ ¼ wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw� 1Þ

p
and

c ¼ p10ð1� f1Þ � p11f1 þ p01ð1� f0Þ � p00f0

This bound is attained when the within-stratum effects

are biased in opposite directions, but with potentially dif-

ferent amounts of absolute bias (jRDc
XY jZ¼z � RDt

XY jZ¼zj)
in each stratum. (This asymmetry arises because, in the ad-

ditive case, the amount of absolute bias produced by a

given fixed set of sensitivity parameters depends on nui-

sance parameters, such as exposure prevalences and out-

come probabilities, that can differ between strata of Z. In

contrast, for the multiplicative case, the amount of multi-

plicative bias is independent of any such nuisance
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parameters.) The Supplementary material (available as

Supplementary data at IJE online) provides an E-value for

the confidence interval, a generalization for shifting ICc to

a non-null value, and E-values that apply if the direction of

the confounding bias is assumed to be unidirectional and

positive, unidirectional and negative, or unidirectional

with the direction unknown. All of these E-values for inter-

action contrasts can be obtained in R via EValue ::

evalues.IC.17

Applied examples

Education and dementia

Letenneur et al.20 investigated the effect of low vs high educa-

tion (�7 years of schooling vs �12 years) on dementia inci-

dence, additionally estimating effect heterogeneity by sex.

They pooled data from population-based longitudinal studies

of aged women (n¼ 3,352) and men (n¼2,395). In analyses

that adjusted for baseline confounders (age, smoking, myo-

cardial infarction, stroke and study centre), the authors esti-

mated a strong association between low education and

dementia incidence in women [RR¼3.78 (95% CI: 1.64,

8.72)], but an apparently much weaker association in men

[RR¼ 1.09 (0.61, 1.94)]. The authors suggested that uncon-

trolled confounding might have produced this apparent effect

heterogeneity. For example, they speculated that socio-eco-

nomic status, an uncontrolled confounder, might produce dif-

ferent biases for each sex.

On the multiplicative scale, we estimated RRc
EH ¼ 3.47

(1.26, 9.57); P¼ 0.02. Without making assumptions on

the direction of uncontrolled confounding bias for each

sex, the E-values for this estimate and its lower confidence

interval limit were thus 3.13 and 1.49, respectively [from

Equation (1)]. Thus, at least one of the four confounding

strengths would need to be at least 3.13 on the RR scale in

order to explain away the effect heterogeneity and would

need to be at least 1.49 to shift the confidence interval to

include the null. If we assume that uncontrolled confound-

ing operated in the same direction for each sex, then the

E-values for the point estimate and its lower confidence in-

terval limit increase to 6.39 and 1.82, respectively [from

Equation (2)]. Given these studies’ control of several

known confounders, it may be somewhat implausible that

uncontrolled confounders, such as socio-economic status,

were strong enough to attain these confounding strengths,

although such judgments would need to be informed by

domain expertise.

On the additive scale, we estimated risk differences of

0.04 (0.02, 0.05) for women and 0.01 (–0.01, 0.02) for men,

such that ICc ¼ 0.03 (0.01, 0.05); P¼0.01. This analysis

does not adjust for confounders because Letenneur et al.20

reported only unadjusted prevalences. Without assumptions

on the direction of confounding bias, the E-values for the in-

teraction contrast and its lower confidence interval limit were

thus 2.54 and 1.44, respectively [from Equation (3)]. If we as-

sume that uncontrolled confounding operated in the same

unspecified direction for both sexes, then these E-values re-

spectively become 3.30 and 1.63 (Supplementary material,

Section 3.2, available as Supplementary data at IJE online).

Obesity and all-cause mortality

Winter et al.21 meta-analysed eight longitudinal studies to

investigate the extent to which the effects of body mass in-

dex (BMI) on mortality differed by age (<65 vs �65 years).

The authors estimated that being obese (BMI � 30) vs nor-

mal weight (20 � BMI < 25) was associated with increased

mortality among participants aged <65 years [HR¼ 1.42

(95% CI: 1.22, 1.65)], but not among participants aged

�65 years [HR¼ 1.04 (95% CI: 0.91, 1.19)]. Confounding

control in the eight studies was quite limited: e.g. five studies

did not control for comorbid health conditions, two studies

did not control for smoking, five did not control for physical

activity, and none controlled for diet or caloric intake.

On the multiplicative scale, we estimated HRc
EH ¼ 1.37

(1.12, 1.67); P¼ 0.002. E-values can be applied to meta-

analysis point estimates, in which case they represent

average confounding strengths across studies.13,22 Without

making assumptions on the direction of uncontrolled con-

founding bias for each age group, the E-values for this esti-

mate and its lower confidence interval limit were thus 1.61

and 1.30, respectively. If we assume that uncontrolled con-

founding operated in the same direction for each age group,

then the E-values for the point estimate and its lower confi-

dence interval limit increase to 2.07 and 1.48, respectively.

Given these studies’ limited control of confounders whose

associations with both obesity and mortality may be quite

strong, it may be plausible that uncontrolled confounders

could have the strengths of association indicated by the E-

values. Furthermore, it may be plausible that the strength of

confounding bias could differ by age group. For example,

older individuals might be less physically resilient to comor-

bid conditions than younger individuals, such that having

comorbid conditions might be more strongly associated

with BMI or with mortality among older individuals. We

could not conduct analyses on the additive scale given the

statistics reported in the meta-analysis.21

Practical interpretation and reporting of
E-values

Elsewhere, we have provided recommendations on report-

ing E-values for total effects4,7 and provided caveats about
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potential misinterpretations.11,23,24 These considerations

apply to the present analogues as well; we comment here

on only a subset of these considerations that are particu-

larly pertinent to the setting of effect heterogeneity.

Assessing the plausibility that confounding

strengths attain the E-value

As we have emphasized in the context of total effects, E-values

must be interpreted in light of the quality of a study’s

existing control for confounding: it will be more plausible

that there exists uncontrolled confounding as strong as is

indicated by the E-value in a poorly controlled study than

a well-controlled study.4,7 As a limitation of sensitivity

analyses in general, it can be challenging to assess plausi-

ble strengths of association of uncontrolled confound-

er(s). This may be particularly so in the context of effect

heterogeneity, for which the relevant confounding

strengths are defined within the strata of Z rather than

marginally.

In the context of total effects, we have suggested listing

specific variables that are thought to be uncontrolled con-

founders and, to help benchmark intuitions, reporting mea-

sured confounders’ strengths of association with X and with

Y. Because E-values consider joint associations produced by

potentially multiple uncontrolled confounder(s), above and

beyond controlled confounder(s), it may be particularly in-

formative to report confounding strengths for each mea-

sured confounder as well as for all measured confounders

jointly.6 However, these empirical benchmarks must be

interpreted carefully to avoid common misconceptions.7,24

When applying E-values for effect heterogeneity, one

could similarly report measured confounding strengths

within strata of Z; e.g. one could report the associations of

each measured confounder, and of all measured confound-

ers jointly, with X, and with Y for each stratum of Z. We

acknowledge, though, that comparing the E-value to such

benchmarks may be difficult because confounders, whether

measured or not, can differ substantially in their associa-

tions with the exposure and outcome as well as in the

strengths of these associations in each stratum. When addi-

tional information about uncontrolled confounders is

available, the E-value could be supplemented or replaced

by more precise sensitivity analyses; we return to this point

in the next section.

Interpreting E-values in light of their mathematical

conservatism

As noted above, like the standard E-value for total effects,4

our proposed analogues avoid making assumptions about the

prevalence or distribution of uncontrolled confounder(s) by

not incorporating any sensitivity parameters regarding these

properties. Therefore, E-values might understate the amount

of confounding required to explain away the effect or effect

heterogeneity. For example, if Uz is a binary variable, then

given its confounding strengths, the bias it produces in stra-

tum Z¼ z would be maximized if E½Uz jZ ¼ z;X ¼ 1� ¼ 1

and E½Uz jZ ¼ z;X ¼ 0� ¼ 0 (or vice versa). The E-value is

conservative in that it allows for this extreme, and sometimes

implausible, possibility.

In some settings, one might wish to conduct a sensitivity

analysis for specific uncontrolled confounder(s) whose

prevalence conditional on X or conditional on Z is known.

One could then obtain a more precise sensitivity analysis

by applying methods that do incorporate information

about prevalences. For effect heterogeneity, one could ap-

ply existing sensitivity analyses for uncontrolled confound-

ing that incorporate prevalences or other external

information (reviewed in 25) to bound the bias in each stra-

tum of Z separately. Analogous bounds incorporating

prevalences exist for causal interaction.3

Of course, the disadvantage of incorporating prevalen-

ces is that, if the specified prevalences are incorrect or if

there exist other uncontrolled confounder(s) with prevalen-

ces other than those specified, bounds obtained by incorpo-

rating prevalences may give a false impression of

robustness to uncontrolled confounding. Additionally,

methods that involve specifying numerous sensitivity

parameters could introduce additional ‘researcher degrees

of freedom’, such that researchers could potentially search

for combinations of parameters that produce attractive

results of sensitivity analyses.4

For these reasons, in the context of total effects, we sug-

gested that when external information is available regard-

ing uncontrolled confounder(s), one might first report the

E-value, because despite its conservatism, the E-value

might nevertheless be large enough to suggest robustness

to uncontrolled confounding, even without making use of

external information.25 One could then supplement this

mathematically conservative analysis with additional sensi-

tivity analyses that do incorporate external information.25

The same considerations also apply when considering ef-

fect heterogeneity.

A second form of conservatism arises specifically in the

context of E-values for effect heterogeneity. Namely, as

noted above, the general bound in Equation (1) is attained

when the effects in each stratum of Z have bias of the same

magnitude, but in opposite directions. In some scientific

contexts, it might not be plausible that uncontrolled con-

founder(s) could in fact produce bias in opposite directions,
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and in these settings, the general bound in Equation (1)

might again understate the amount of confounding required

to explain away the effect heterogeneity. However, in other

contexts, it might be quite plausible that confounding bias

could operate in different directions, because either the

uncontrolled confounder(s) themselves, or alternatively the

direction of their effects on X or on Y, could differ between

strata. Consider a hypothetical study examining effect het-

erogeneity between men and women (Z) in the effects of

smoking (X) on all-cause mortality (Y). Suppose the study

excluded heavy drinkers but did not control for moderate vs

low alcohol consumption (Uz)—a variable that is associated

with increased smoking for both sexes. Moderate alcohol

consumption is thought to reduce the risk of cardiovascular

disease and diabetes, especially among individuals with pre-

disposing risk factors, but is thought to increase the risk of

cancer and other chronic diseases.26 In some populations,

then, moderate consumption could plausibly have a pro-

tective net effect on all-cause mortality for men (with their

relatively higher burden of cardiovascular and metabolic

diseases and related risk factors), yet could have a detri-

mental net effect for women.27 If this is the case, alcohol

consumption could produce confounding bias in different

directions for men vs women.

Conclusion

Reporting these proposed E-values could help characterize

the robustness of effect heterogeneity estimates to potential

uncontrolled confounding. These results apply to effect het-

erogeneity rather than causal interaction; the Supplementary

material Section 4 (available as Supplementary data at IJE

online) provides E-values for causal interaction that are ap-

proximate, ‘weak’ bounds in a sense detailed there. The

above E-values for effect heterogeneity could also be applied

for causal interaction if one exposure is assumed to be

unconfounded (e.g. because it was randomized).
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