data reports

CRYSTALLOGRAPHIC

OPEN access

Crystal structure of catena-poly[hemi-[1,3-bis(2,6-diisopropylphenyl)imidazolium] [[μ_3 -acetato- κ^3 O:O:O'-tri- μ_2 acetato- $\kappa^6 O: O'$ -dicopper(II)(Cu - Cu)]- μ chlorido] dichloromethane sesquisolvate]

Mohammad Iqbal,^{a,b}* James Raftery^a and Peter Quayle^a

^aSchool of Chemistry, University of Manchester, Manchester M13 9PL, UK, and ^bPakistan Institute of Nuclear Science and Technology, PO Box Nilore, Islamabad, Pakistan. *Correspondence e-mail: miqbal7862003@yahoo.com

Received 9 June 2015; accepted 18 July 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

The title copper(II) complex, $\{(C_{27}H_{37}N_2)|Cu_4(CH_3COO)_8-$ Cl]·3 CH_2Cl_2 _n, is a one-dimensional coordination polymer. The asymmetric unit is composed of a copper(II) tetraacetate paddle-wheel complex, a Cl⁻ anion situated on a twofold rotation axis, half a 1,3-bis(2,6-diisopropylphenyl)imidazolium cation (the whole molecule being generated by twofold rotation symmetry) and one and a half of a dichloromethane solvent molecule (one being located about a twofold rotation axis). The central metal-organic framework comprises of a tetranuclear copper(II) acetate 'paddle-wheel' complex which arises from the dimerization of the copper(II) tetraacetate core comprising of three μ_2 -bidentate acetate and one μ_3 tridentate acetate ligands per binuclear paddle-wheel complex. Both Cu^{II} atoms of the binuclear component adopt a distorted square-pyramidal coordination geometry (τ = 0.04), with a Cu···Cu separation of 2.6016 (2) Å. The apical coordination site of one Cu^{II} atom is occupied by an O atom of a neighbouring acetate bridge [Cu-O = 2.200 (2) Å], while that of the second Cu^{II} atom is occupied by a bridging chloride ligand $[Cu \cdot \cdot Cl = 2.4364 (4) Å]$. The chloride bridge is slightly bent with respect to the Cu. Cu internuclear axis [Cu-Cl- $Cu = 167.06 (6)^{\circ}$ and the tetranuclear units are located about a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]. Charge neutrality is maintained by the inclusion of the 1,3-bis(2,6-diisopropylphenyl)imidazolium cation within the crystal lattice. In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various $C-H \cdots O$ and C-H...Cl hydrogen bonds. There are no other significant intermolecular interactions present.

Keywords: crystal structure; coordination polymer; copper(II) tetraacetate; paddle-wheel; imidazolium; paramagnetism.

CCDC reference: 999046

1. Related literature

For the use of N-heterocyclic carbenes (NHCs) as ancillary ligands for the preparation of transition-metal-based catalysts, see: Hopkinson et al. (2014). For their use in organic transformations, see: Faulkner et al. (2005); Bull et al. (2008). For details of the magnetic properties of binuclear Cu^{II} carboxylate compounds, see: Kato et al. (1964); Zhang et al. (2005); Cotton et al. (2000), and for their electrochemical behaviour, see: Paschke et al. (2003). For examples of copper(II) paddle-wheel structures, see: de Meester et al. (1973); Ackermann et al. (2000). For chloride-bridged binuclear systems, see: Chen et al. (2015). For imidazolium-functionalized acetate ligands, see: Suresh et al. (2015). For the description of the fivefold coordination symmetry parameter, τ , see: Addison *et al.* (1984).

$(C_{27}H_{37}N_2)[Cu_4(C_2H_3O_2)_8Cl]$	a = 22.097 (2) A
3CH ₂ Cl ₂	b = 13.146(2) Å
$M_r = 1406.32$	c = 23.607 (3) Å
Monoclinic, $C2/c$	$\beta = 117.122 \ (4)^{\circ}$

(2) Å

(3) Å

 $V = 6103.5 (13) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

2.2. Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.700, T_{\max} = 0.918$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.098$ S = 0.987274 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C6-H6B\cdots O2^{i}$	0.98	2.43	3.368 (4)	161
$C21 - H21 \cdots O1^{ii}$	0.95	2.54	3.344 (4)	142
$C22-H22\cdots Cl4^{iii}$	0.95	2.78	3.626 (5)	149
$C22-H22\cdots Cl4^{iv}$	0.95	2.78	3.626 (5)	149
$C23-H23A\cdots O5^{v}$	0.99	2.42	3.316 (5)	151
$C23-H23B\cdots O7$	0.99	2.42	3.413 (5)	177
$C24 - H24B \cdots O5$	0.99	2.42	3.303 (4)	148
$C24 - H24B \cdots O7$	0.99	2.52	3.378 (4)	145
$C24 - H24A \cdots O5^{v}$	0.99	2.42	3.303 (4)	148
$C24 - H24A \cdots O7^{v}$	0.99	2.52	3.378 (4)	145

Symmetry codes: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x + \frac{1}{2}, y + \frac{1}{2}, z$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x, y, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics:

 $\mu = 1.74 \text{ mm}^{-1}$ T = 100 K $0.22 \times 0.13 \times 0.05 \text{ mm}$

26111 measured reflections 7274 independent reflections 5215 reflections with $I > 2\sigma(I)$ $R_{int} = 0.079$

348 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.70 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.46 \text{ e} \text{ Å}^{-3}$ *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* and *PLATON*.

Acknowledgements

Financial support from the Higher Education Commission of the Government of Pakistan is gratefully acknowledged. We also thank the University of Manchester for research facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5152).

References

- Ackermann, H., Neumüller, B. & Dehnicke, K. (2000). Z. Anorg. Allg. Chem. 626, 1712–1714.
- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bull, J. A., Hutchings, M. G., Luján, C. & Quayle, P. (2008). Tetrahedron Lett. 49, 1352–1356.

Chen, D.-M., Ma, J.-G. & Cheng, P. (2015). *Dalton Trans.* 44, 8926–8931. Cotton, F. A., Dikarev, E. V. & Petrukhina, M. A. (2000). *Inorg. Chem.* 39,

6072–6079.

- Faulkner, J., Edlin, C. D., Fengas, D., Preece, I., Quayle, P. & Richards, S. N. (2005). Tetrahedron Lett. 46, 2381–2385.
- Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.
- Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.
- Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575-2578.
- Paschke, R., Liebsch, S., Tschierske, C., Oakley, M. A. & Sinn, E. (2003). Inorg. Chem. 42, 8230–8240.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Suresh, P., Babu, C. N. & Prabusankar, G. (2015). Polyhedron, 89, 322-329.
- Zhang, J., Hubert-Pfalzgraf, L. G. & Luneau, D. (2005). Polyhedron, 24, 1185– 1195.

supporting information

Acta Cryst. (2015). E71, m148-m149 [doi:10.1107/S2056989015013675]

Crystal structure of *catena*-poly[hemi[1,3-bis(2,6-diisopropylphenyl)imidazolium] [[μ_3 -acetato- $\kappa^3 O$:O'-tri- μ_2 -acetato- $\kappa^6 O$:O'-dicopper(II)(Cu— Cu)]- μ -chlorido] dichloromethane sesquisolvate]

Mohammad Iqbal, James Raftery and Peter Quayle

S1. Synthesis and crystallization

To a solution of 1,3-bis(2,6-di-isopropylphenyl)imidazol-2-ylidine(0.22 g, 0.55 mmol) in dry toluene, at room temperature under nitrogen, was added anhydrous copper(II)acetate (0.09g, 0.5 mmol). The reaction mixture was stirred at room temperature for 12 h and the blue coloured precipitate, identified as 1,3-bis(2,6-di-isopropylphenyl)imidazolium copper(II) acetate, was removed by filtration. The filtrate was left to stand at 248 K in an enclosed vessel for 1 week and the precipitate was collected at the pump. Recrystallization of this solid (vapour diffusion from CH_2Cl_2 /petrol) afforded an admixture of two crystalline products; one colourless (which proved to be 1,3-bis(2,6-di-isopropylphenyl)imidazolium chloride) and the other, small blue block-like crystals of the title compound. Physical separation of these two crystalline compounds and further recrystallization of the blue-coloured crystals from CH_2Cl_2 /petrol afforded crystals suitable for X-ray diffraction analysis.

S2. Refinement

The H atoms were included in calculated positions and refined as riding atoms: C - H = 0.95 - 98 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms.

S3. Structural commentary

N-heterocyclic carbenes (NHCs) have been used as ancillary ligands for the preparation of transition metal based catalysts (Hopkinson *et al.*, 2014), which are very useful in organic transformations (Faulkner *et al.*, 2005; Bull *et al.*, 2008). Binuclear Cu^{II} carboxylate compounds are interesting because of their magnetic properties (Kato *et al.*, 1964, Zhang *et al.*, 2005; Cotton *et al.*, 2000) and electrochemical behaviour (Paschke *et al.*, 2003). Herein, we report on the synthesis and crystal structure of the title copper(II) acetate coordination polymer. Here, acetate acts as a bridging bidentate chelating ligand, giving a typical paddle-wheel structure.

The asymmetric unit of the title compound, Fig. 1, is composed of a copper(II) acetate paddle-wheel complex $[Cu1\cdots Cu2 = 2.6016 \text{ Å}]$, with atom Cu1 coordinated in the apical position by a Cl⁻ anion [Cu1-Cl1 = 2.4364 (6) Å] situated on a twofold rotation axis. Both copper(II) atoms have distorted square pyramidal co-ordination geometry with τ values of 0.04 (Addison *et al.*, 1984).

The copper(II) acetate paddle-wheel units are linked by inversion symmetry, with the apical position of the second Cu^{II} atom, Cu2, being occupied by an acetate O atom; Cu2…Cu2ⁱ = 3.1944 (8) Å and Cu2…O6ⁱ = 2.200 (2) Å [symmetry code: (i) - x + 1/2, - y + 1/2, - z + 1], as shown in Fig. 2. These tetranuclear units are bridged by the Cl atom, Cl1, coordinated to atom Cu1 and located on a twofold rotation axis, forming the one-dimensional polymer that propagates along [101]; see Fig. 2.

In the crystal, the cation and dichloromethane solvent molecules are linked to the coordination polymer by various C— H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3). There are no other significant intermolecular interactions present.

This structure is unique in that it possesses a halide bridge linking tetranuclear copper paddle-wheel units (for chloridebridged binuclear systems, see: Chen *et al.*, 2015) and imidazolium salts interspersed within the crystal lattice (for imidazolium-functionalised acetate ligands, see: Suresh *et al.*, 2015).

Figure 1

A view of the molecular structure of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the tetranuclear paddle-wheel unit of the title polymeric compound [symmetry codes: (a) -*x*, *y*, -*z* + 1/2; (b) -*x* + 1/2, -*y* + 1/2, -*z* + 1; (c) *x* + 1/2, -*y* + 1/2, *z* + 1/2; (d) -*x*, *y*, -*z* + 1/2; (e) -*x* + 1, *y*, -*z* + 1/2].

Figure 3

A view along the b axis of the crystal packing of title compound. Colour code: coordination polymer black, organic cation red; CH₂Cl₂ solvent molecules green and blue.

catena-Poly[hemi(1,3-bis(2,6-diisopropylphenyl)imidazolium) [[μ_3 -acetato- $\kappa^3 O:O:O'$ - tri- μ_2 -acetato- $\kappa^6 O:O'$ - dicopper(II)(Cu—Cu)]- μ -chlorido] dichloromethane sesquisolvate]

Crystal data	
$(C_{27}H_{37}N_2)[Cu_4(C_2H_3O_2)_8Cl]\cdot 3CH_2Cl_2$	F(000) = 2880
$M_r = 1406.32$	$D_{\rm x} = 1.530 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $C2/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 22.097 (2) Å	Cell parameters from 3370 reflections
b = 13.146 (2) Å	$\theta = 2.3 - 24.3^{\circ}$
c = 23.607 (3) Å	$\mu = 1.74 \; { m mm^{-1}}$
$\beta = 117.122 \ (4)^{\circ}$	T = 100 K
$V = 6103.5 (13) Å^3$	Block, blue
Z = 4	$0.22 \times 0.13 \times 0.05 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	26111 measured reflections
diffractometer	7274 independent reflections
Radiation source: fine-focus sealed tube	5215 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.079$
phi and ω scans	$\theta_{max} = 28.3^{\circ}, \theta_{min} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -29 \rightarrow 29$
(<i>SADABS</i> ; Bruker, 2001)	$k = -17 \rightarrow 17$
$T_{\min} = 0.700, T_{\max} = 0.918$	$l = -31 \rightarrow 31$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.098$	neighbouring sites
S = 0.98	H-atom parameters constrained
7274 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0252P)^2]$
348 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.70 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.46 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cul	0.11018 (2)	0.34481 (3)	0.34274 (2)	0.01543 (11)	
Cu2	0.22901 (2)	0.32446 (3)	0.44052 (2)	0.01720 (12)	
Cl1	0.0000	0.36569 (9)	0.2500	0.0197 (3)	
01	0.15907 (12)	0.45167 (19)	0.32111 (12)	0.0215 (6)	
O2	0.26294 (13)	0.4197 (2)	0.39901 (12)	0.0276 (7)	
O3	0.09345 (12)	0.4383 (2)	0.39834 (12)	0.0257 (6)	
O4	0.19967 (13)	0.43484 (19)	0.47704 (12)	0.0242 (6)	
05	0.08495 (12)	0.23045 (19)	0.38354 (12)	0.0244 (6)	
O6	0.18267 (11)	0.22502 (18)	0.47165 (11)	0.0170 (6)	
07	0.14402 (13)	0.24162 (19)	0.30413 (12)	0.0233 (6)	
08	0.24153 (12)	0.2136 (2)	0.39190 (12)	0.0243 (6)	
C1	0.2223 (2)	0.4655 (3)	0.34956 (18)	0.0206 (8)	
C2	0.2526 (2)	0.5414 (3)	0.32215 (19)	0.0287 (10)	
H2A	0.2161	0.5773	0.2866	0.043*	
H2B	0.2813	0.5059	0.3068	0.043*	
H2C	0.2802	0.5905	0.3551	0.043*	
C3	0.1390 (2)	0.4647 (3)	0.45198 (18)	0.0214 (9)	
C4	0.1181 (2)	0.5375 (3)	0.4893 (2)	0.0336 (11)	
H4A	0.0965	0.5974	0.4632	0.050*	
H4B	0.1583	0.5586	0.5280	0.050*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H4C	0.0859	0.5037	0.5011	0.050*
C5	0.12274 (18)	0.1946 (3)	0.43727 (17)	0.0182 (8)
C6	0.09553 (18)	0.1106 (3)	0.46205 (17)	0.0231 (9)
H6A	0.0557	0.1351	0.4660	0.035*
H6B	0.1307	0.0889	0.5039	0.035*
H6C	0.0823	0.0530	0.4325	0.035*
C7	0.19844 (19)	0.1934 (3)	0.33588 (18)	0.0204 (8)
C8	0.2120 (2)	0.1034 (3)	0.30460 (19)	0.0309 (10)
H8A	0.2608	0.0884	0.3254	0.046*
H8B	0.1971	0.1183	0.2595	0.046*
H8C	0.1869	0.0444	0.3084	0.046*
N1	0.45188(14)	0.2152(2)	0 25127 (13)	0.0154 (6)
C9	0.38905(18)	0.2132(2) 0.2530(3)	0.23127(13) 0.24934(18)	0.0191(0)
C10	0.33835(18)	0.2330(3)	0.19043(18)	0.0101(0) 0.0202(8)
C11	0.33033(10) 0.27799(19)	0.2039(3)	0.18894 (18)	0.0202(0)
UП H11	0.2417	0.3306	0.1707	0.0297 (7)
C12	0.2417 0.27022 (10)	0.3390 0.3217(3)	0.1497 0.24336 (10)	0.029
U12	0.27022 (19)	0.3217(3)	0.24330 (19)	0.0231(9)
П12 С12	0.2284	0.3447 0.2022 (2)	0.2412	0.030°
	0.32230 (19)	0.2922 (3)	0.30130 (19)	0.0253 (9)
H13	0.3162	0.2966	0.3385	0.030*
C14	0.38368 (18)	0.2560 (3)	0.30584 (18)	0.0204 (8)
C15	0.34523 (19)	0.2799 (3)	0.12880 (18)	0.0261 (9)
HI5	0.3923	0.2559	0.1400	0.031*
C16	0.3369 (2)	0.3836 (3)	0.09913 (19)	0.0349 (11)
H16A	0.2901	0.4073	0.0849	0.052*
H16B	0.3466	0.3798	0.0626	0.052*
H16C	0.3685	0.4313	0.1306	0.052*
C17	0.2957 (2)	0.2034 (3)	0.0823 (2)	0.0406 (12)
H17A	0.3010	0.2023	0.0433	0.061*
H17B	0.2491	0.2230	0.0720	0.061*
H17C	0.3052	0.1356	0.1017	0.061*
C18	0.44195 (19)	0.2267 (3)	0.36975 (18)	0.0252 (9)
H18	0.4691	0.1725	0.3621	0.030*
C19	0.4890 (2)	0.3180 (3)	0.4002 (2)	0.0407 (12)
H19A	0.4629	0.3737	0.4060	0.061*
H19B	0.5084	0.3406	0.3724	0.061*
H19C	0.5257	0.2980	0.4416	0.061*
C20	0.4180 (2)	0.1848 (3)	0.41638 (19)	0.0339 (10)
H20A	0.3866	0.1281	0.3965	0.051*
H20B	0.3947	0.2386	0.4277	0.051*
H20C	0.4573	0.1608	0.4549	0.051*
C21	0.46971 (17)	0.1151 (3)	0.25048 (16)	0.0163 (8)
H21	0.4442	0.0570	0.2506	0.020*
C22	0.5000	0.2738 (4)	0.2500	0.0167 (11)
H22	0 5000	0 3460	0.2500	0.020*
C12	0.08838(7)	0.23037(12)	0.10086 (7)	0.020
C12	0.09648 (6)	0.23037(12) 0.43818(10)	0.14520 (6)	0.0527(4)
C23	0.0688 (2)	0.3145(4)	0 1482 (2)	0.0320(4)
045	0.0000 (2)	(T) (T)	0.1702 (2)	0.0710(12)

supporting information

H23A	0.0190	0.3150	0.1332	0.049*	
H23B	0.0907	0.2903	0.1929	0.049*	
Cl4	0.03361 (6)	0.02638 (9)	0.20944 (6)	0.0455 (3)	
C24	0.0000	0.1022 (4)	0.2500	0.0365 (16)	
H24A	-0.0363	0.1465	0.2191	0.044*	0.5
H24B	0.0363	0.1465	0.2809	0.044*	0.5

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0147 (2)	0.0170 (2)	0.0125 (2)	0.00113 (18)	0.00437 (19)	0.00052 (18)
Cu2	0.0138 (2)	0.0222 (3)	0.0141 (2)	0.00123 (19)	0.00498 (19)	0.00456 (19)
Cl1	0.0180 (7)	0.0168 (6)	0.0156 (7)	0.000	0.0001 (5)	0.000
01	0.0182 (14)	0.0239 (15)	0.0205 (15)	-0.0014 (11)	0.0069 (12)	0.0041 (11)
O2	0.0180 (14)	0.0377 (17)	0.0235 (15)	-0.0006 (12)	0.0064 (12)	0.0130 (13)
O3	0.0171 (14)	0.0358 (17)	0.0235 (15)	0.0020 (12)	0.0085 (12)	-0.0096 (13)
O4	0.0223 (15)	0.0239 (15)	0.0197 (15)	0.0014 (12)	0.0038 (12)	-0.0010 (12)
O5	0.0165 (14)	0.0302 (16)	0.0201 (15)	-0.0023 (12)	0.0027 (12)	0.0105 (12)
O6	0.0098 (12)	0.0241 (14)	0.0154 (13)	0.0002 (10)	0.0041 (11)	0.0042 (11)
O7	0.0235 (15)	0.0236 (15)	0.0196 (15)	0.0048 (12)	0.0070 (12)	-0.0040 (11)
08	0.0207 (14)	0.0329 (16)	0.0187 (15)	0.0097 (12)	0.0085 (12)	0.0027 (12)
C1	0.026 (2)	0.019 (2)	0.024 (2)	0.0001 (17)	0.0176 (19)	-0.0020 (16)
C2	0.029 (2)	0.028 (2)	0.034 (3)	0.0015 (18)	0.019 (2)	0.0067 (19)
C3	0.030 (2)	0.020 (2)	0.021 (2)	-0.0035 (17)	0.0181 (19)	-0.0010 (16)
C4	0.038 (3)	0.037 (3)	0.033 (3)	-0.003(2)	0.022 (2)	-0.011 (2)
C5	0.0188 (19)	0.022 (2)	0.016 (2)	0.0017 (16)	0.0097 (17)	-0.0008 (16)
C6	0.021 (2)	0.026 (2)	0.019 (2)	-0.0046 (17)	0.0058 (17)	0.0037 (17)
C7	0.027 (2)	0.020 (2)	0.024 (2)	-0.0019 (17)	0.0195 (19)	0.0021 (17)
C8	0.034 (3)	0.029 (2)	0.037 (3)	0.0050 (19)	0.023 (2)	-0.0033 (19)
N1	0.0135 (15)	0.0192 (16)	0.0143 (16)	0.0014 (12)	0.0072 (13)	-0.0009 (13)
C9	0.0156 (19)	0.0173 (19)	0.024 (2)	-0.0016 (15)	0.0115 (17)	-0.0029 (16)
C10	0.020 (2)	0.0168 (19)	0.023 (2)	0.0001 (16)	0.0092 (17)	0.0008 (16)
C11	0.020 (2)	0.026 (2)	0.024 (2)	-0.0014 (17)	0.0077 (17)	0.0007 (17)
C12	0.017 (2)	0.026 (2)	0.035 (2)	0.0037 (17)	0.0142 (18)	0.0014 (19)
C13	0.025 (2)	0.029 (2)	0.031 (2)	-0.0007 (18)	0.0198 (19)	-0.0046 (18)
C14	0.021 (2)	0.0150 (19)	0.027 (2)	-0.0003 (15)	0.0134 (18)	0.0002 (16)
C15	0.020 (2)	0.038 (3)	0.019 (2)	0.0082 (18)	0.0080 (17)	0.0059 (18)
C16	0.044 (3)	0.039 (3)	0.026 (2)	-0.008(2)	0.020 (2)	0.001 (2)
C17	0.065 (3)	0.035 (3)	0.026 (2)	-0.005 (2)	0.024 (2)	-0.002 (2)
C18	0.022 (2)	0.039 (2)	0.020 (2)	0.0024 (18)	0.0133 (18)	-0.0001 (18)
C19	0.040 (3)	0.052 (3)	0.028 (3)	-0.008(2)	0.013 (2)	0.001 (2)
C20	0.037 (3)	0.038 (3)	0.027 (2)	0.001 (2)	0.015 (2)	0.004 (2)
C21	0.020 (2)	0.0148 (18)	0.0162 (19)	-0.0042 (15)	0.0096 (16)	-0.0017 (15)
C22	0.019 (3)	0.016 (3)	0.017 (3)	0.000	0.010 (2)	0.000
Cl2	0.0452 (8)	0.0907 (11)	0.0573 (9)	-0.0103 (7)	0.0279 (7)	-0.0248 (8)
C13	0.0508 (8)	0.0583 (9)	0.0599 (9)	0.0080 (6)	0.0344 (7)	0.0196 (7)
C23	0.030 (2)	0.065 (3)	0.030 (3)	-0.007 (2)	0.015 (2)	-0.004 (2)
Cl4	0.0564 (8)	0.0313 (6)	0.0472 (8)	-0.0066 (6)	0.0223 (6)	-0.0007 (5)

Geometric parameters (Å, °) $Cu1-03$ 1.952 (3) $C9-C14$ 1.393 (5) $Cu1-07$ 1.963 (2) $C10-C11$ 1.394 (5) $Cu1-01$ 1.976 (2) $C10-C15$ 1.531 (5) $Cu1-05$ 1.997 (2) $C11-C12$ 1.372 (5) $Cu1-C11$ 2.4365 (5) $C11-H11$ 0.9500 $Cu2-C12$ 2.6015 (6) $C12-C13$ 1.382 (5) $Cu2-O2$ 1.939 (3) $C12-H12$ 0.9500 $Cu2-O4$ 1.944 (3) $C13-C14$ 1.394 (5) $Cu2-O4$ 1.951 (3) $C13-H13$ 0.9500 $Cu2-O6$ 1.996 (2) $C14-C18$ 1.520 (5) $Cu2-O6^i$ 2.200 (2) $C15-C16$ 1.506 (5) $C12-C1^{ii}$ 2.4365 (5) $C15-C17$ 1.523 (5) $O1-C1$ 1.257 (4) $C15-H15$ 1.0000 $O2-C1$ 1.255 (4) $C16-H16A$ 0.9800 $O3-C3$ 1.255 (4) $C16-H16C$ 0.9800 $O4-C3$ 1.257 (4) $C16-H16C$ 0.9800	C24 0.041 (4)	0.018 (3) 0.034	6 (4) 0.000	0.006 (3)	0.000
Cu1-O3 $1.952 (3)$ C9-C14 $1.393 (5)$ Cu1-O7 $1.963 (2)$ C10-C11 $1.394 (5)$ Cu1-O1 $1.976 (2)$ C10-C15 $1.531 (5)$ Cu1-O5 $1.997 (2)$ C11-C12 $1.372 (5)$ Cu1-C11 $2.4365 (5)$ C11-H11 0.9500 Cu1-Cu2 $2.6015 (6)$ C12-C13 $1.382 (5)$ Cu2-O2 $1.939 (3)$ C12-H12 0.9500 Cu2-O4 $1.944 (3)$ C13-C14 $1.394 (5)$ Cu2-O6 $1.996 (2)$ C14-C18 $1.520 (5)$ Cu2-O6 $1.996 (2)$ C15-C16 $1.506 (5)$ C11-Cu1 ⁱⁱ $2.4365 (5)$ C15-C17 $1.523 (5)$ O1-C1 $1.257 (4)$ C15-H15 1.0000 O2-C1 $1.255 (4)$ C16-H16A 0.9800 O3-C3 $1.257 (4)$ C16-H16B 0.9800 O4-C3 $1.257 (4)$ C16-H16C 0.9800	Geometric parameters (Å	, °)			
Cu1-O7 1.963 (2) $C10-C11$ 1.394 (5)Cu1-O1 1.976 (2) $C10-C15$ 1.531 (5)Cu1-O5 1.997 (2) $C11-C12$ 1.372 (5)Cu1-Cl1 2.4365 (5) $C11-H11$ 0.9500 Cu1-Cu2 2.6015 (6) $C12-C13$ 1.382 (5)Cu2-O2 1.939 (3) $C12-H12$ 0.9500 Cu2-O4 1.944 (3) $C13-C14$ 1.394 (5)Cu2-O8 1.951 (3) $C13-H13$ 0.9500 Cu2-O6 1.996 (2) $C14-C18$ 1.520 (5)Cu2-O6 ⁱ 2.200 (2) $C15-C16$ 1.506 (5)Cl1-Cu1 ⁱⁱ 2.4365 (5) $C15-C17$ 1.523 (5)O1-C1 1.257 (4) $C15-H15$ 1.0000 O2-C1 1.255 (4) $C16-H16A$ 0.9800 O3-C3 1.255 (4) $C16-H16B$ 0.9800 O4-C3 1.257 (4) $C16-H16C$ 0.9800	Cu1—O3	1.952 (3)	C9—C14		1.393 (5)
Cu1-O1 1.976 (2) $C10-C15$ 1.531 (5)Cu1-O5 1.997 (2) $C11-C12$ 1.372 (5)Cu1-Cl1 2.4365 (5) $C11-H11$ 0.9500 Cu1-Cu2 2.6015 (6) $C12-C13$ 1.382 (5)Cu2-O2 1.939 (3) $C12-H12$ 0.9500 Cu2-O4 1.944 (3) $C13-C14$ 1.394 (5)Cu2-O8 1.951 (3) $C13-H13$ 0.9500 Cu2-O6 1.996 (2) $C14-C18$ 1.520 (5)Cu2-O6 ⁱ 2.200 (2) $C15-C16$ 1.506 (5)C11-Cu1 ⁱⁱ 2.4365 (5) $C15-H15$ 1.0000 O2-C1 1.257 (4) $C15-H15$ 1.0000 O3-C3 1.255 (4) $C16-H16B$ 0.9800 O4-C3 1.257 (4) $C16-H16C$ 0.9800	Cul—O7	1.963 (2)	C10-C11		1.394 (5)
Cu1-O5 $1.997 (2)$ $C11-C12$ $1.372 (5)$ Cu1-Cl1 $2.4365 (5)$ $C11-H11$ 0.9500 Cu1-Cu2 $2.6015 (6)$ $C12-C13$ $1.382 (5)$ Cu2-O2 $1.939 (3)$ $C12-H12$ 0.9500 Cu2-O4 $1.944 (3)$ $C13-C14$ $1.394 (5)$ Cu2-O8 $1.951 (3)$ $C13-H13$ 0.9500 Cu2-O6 $1.996 (2)$ $C14-C18$ $1.520 (5)$ Cu2-O6 ⁱ $2.200 (2)$ $C15-C16$ $1.506 (5)$ Cl1-Cu1 ⁱⁱ $2.4365 (5)$ $C15-C17$ $1.523 (5)$ O1-C1 $1.257 (4)$ $C15-H15$ 1.0000 O2-C1 $1.255 (4)$ $C16-H16A$ 0.9800 O3-C3 $1.257 (4)$ $C16-H16B$ 0.9800 O4-C3 $1.257 (4)$ $C16-H16C$ 0.9800	Cu1—O1	1.976 (2)	C10-C15		1.531 (5)
Cu1—Cl12.4365 (5)C11—H110.9500Cu1—Cu22.6015 (6)C12—C131.382 (5)Cu2—O21.939 (3)C12—H120.9500Cu2—O41.944 (3)C13—C141.394 (5)Cu2—O81.951 (3)C13—H130.9500Cu2—O61.996 (2)C14—C181.520 (5)Cu2—O6 ⁱ 2.200 (2)C15—C161.506 (5)Cl1—Cu1 ⁱⁱ 2.4365 (5)C15—C171.523 (5)O1—C11.257 (4)C15—H151.0000O2—C11.255 (4)C16—H16A0.9800O3—C31.255 (4)C16—H16B0.9800O4—C31.257 (4)C16—H16C0.9800	Cu1—O5	1.997 (2)	C11—C12		1.372 (5)
$Cu1-Cu2$ 2.6015 (6) $C12-C13$ 1.382 (5) $Cu2-O2$ 1.939 (3) $C12-H12$ 0.9500 $Cu2-O4$ 1.944 (3) $C13-C14$ 1.394 (5) $Cu2-O8$ 1.951 (3) $C13-H13$ 0.9500 $Cu2-O6$ 1.996 (2) $C14-C18$ 1.520 (5) $Cu2-O6^i$ 2.200 (2) $C15-C16$ 1.506 (5) $C11-Cu1^{ii}$ 2.4365 (5) $C15-C17$ 1.523 (5) $O1-C1$ 1.257 (4) $C15-H15$ 1.0000 $O2-C1$ 1.255 (4) $C16-H16A$ 0.9800 $O3-C3$ 1.257 (4) $C16-H16B$ 0.9800 $O4-C3$ 1.257 (4) $C16-H16C$ 0.9800	Cu1—Cl1	2.4365 (5)	C11—H11		0.9500
Cu2-O2 $1.939 (3)$ C12-H12 0.9500 Cu2-O4 $1.944 (3)$ C13-C14 $1.394 (5)$ Cu2-O8 $1.951 (3)$ C13-H13 0.9500 Cu2-O6 $1.996 (2)$ C14-C18 $1.520 (5)$ Cu2-O6 ⁱ $2.200 (2)$ C15-C16 $1.506 (5)$ Cl1-Cu1 ⁱⁱ $2.4365 (5)$ C15-C17 $1.523 (5)$ O1-C1 $1.257 (4)$ C15-H15 1.0000 O2-C1 $1.255 (4)$ C16-H16A 0.9800 O3-C3 $1.255 (4)$ C16-H16B 0.9800 O4-C3 $1.257 (4)$ C17-W171 0.2020	Cu1—Cu2	2.6015 (6)	C12—C13		1.382 (5)
Cu2—O4 1.944 (3)C13—C14 1.394 (5)Cu2—O8 1.951 (3)C13—H13 0.9500 Cu2—O6 1.996 (2)C14—C18 1.520 (5)Cu2—O6 ⁱ 2.200 (2)C15—C16 1.506 (5)Cl1—Cu1 ⁱⁱ 2.4365 (5)C15—C17 1.523 (5)O1—C1 1.257 (4)C15—H15 1.0000 O2—C1 1.255 (4)C16—H16A 0.9800 O3—C3 1.255 (4)C16—H16B 0.9800 O4—C3 1.257 (4)C16—H16C 0.9800	Cu2—O2	1.939 (3)	C12—H12		0.9500
Cu2-O8 $1.951 (3)$ C13-H13 0.9500 Cu2-O6 $1.996 (2)$ C14-C18 $1.520 (5)$ Cu2-O6 ⁱ $2.200 (2)$ C15-C16 $1.506 (5)$ Cl1-Cu1 ⁱⁱ $2.4365 (5)$ C15-C17 $1.523 (5)$ O1-C1 $1.257 (4)$ C15-H15 1.0000 O2-C1 $1.255 (4)$ C16-H16A 0.9800 O3-C3 $1.255 (4)$ C16-H16B 0.9800 O4-C3 $1.257 (4)$ C16-H16C 0.9800	Cu2—O4	1.944 (3)	C13—C14		1.394 (5)
Cu2-O6 $1.996(2)$ C14-C18 $1.520(5)$ Cu2-O6i $2.200(2)$ C15-C16 $1.506(5)$ Cl1-Cu1ii $2.4365(5)$ C15-C17 $1.523(5)$ O1-C1 $1.257(4)$ C15-H15 1.0000 O2-C1 $1.255(4)$ C16-H16A 0.9800 O3-C3 $1.255(4)$ C16-H16B 0.9800 O4-C3 $1.257(4)$ C16-H16C 0.9800	Cu2—O8	1.951 (3)	C13—H13		0.9500
$Cu2-O6^i$ $2.200(2)$ $C15-C16$ $1.506(5)$ $Cl1-Cu1^{ii}$ $2.4365(5)$ $C15-C17$ $1.523(5)$ $O1-C1$ $1.257(4)$ $C15-H15$ 1.0000 $O2-C1$ $1.255(4)$ $C16-H16A$ 0.9800 $O3-C3$ $1.255(4)$ $C16-H16B$ 0.9800 $O4-C3$ $1.257(4)$ $C16-H16C$ 0.9800	Cu2—O6	1.996 (2)	C14—C18		1.520 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu2—O6 ⁱ	2.200 (2)	C15—C16		1.506 (5)
O1C1 1.257 (4) C15H15 1.0000 O2C1 1.255 (4) C16H16A 0.9800 O3C3 1.255 (4) C16H16B 0.9800 O4C3 1.257 (4) C16H16C 0.9800	Cl1—Cu1 ⁱⁱ	2.4365 (5)	C15—C17		1.523 (5)
O2—C1 1.255 (4) C16—H16A 0.9800 O3—C3 1.255 (4) C16—H16B 0.9800 O4—C3 1.257 (4) C16—H16C 0.9800 O5—C5 1.250 (4) C17—H174 0.0000	01—C1	1.257 (4)	C15—H15		1.0000
O3—C3 1.255 (4) C16—H16B 0.9800 O4—C3 1.257 (4) C16—H16C 0.9800 O5—C5 1.250 (4) C17—H174 0.0000	O2—C1	1.255 (4)	C16—H16A		0.9800
O4—C3 1.257 (4) C16—H16C 0.9800	O3—C3	1.255 (4)	C16—H16B		0.9800
	O4—C3	1.257 (4)	C16—H16C		0.9800
U3-U3 1.250 (4) U1/H1/A 0.9800	O5—C5	1.250 (4)	C17—H17A		0.9800
O6—C5 1.262 (4) C17—H17B 0.9800	O6—C5	1.262 (4)	C17—H17B		0.9800
O6—Cu2 ⁱ 2.200 (2) C17—H17C 0.9800	O6—Cu2 ⁱ	2.200 (2)	C17—H17C		0.9800
O7—C7 1.260 (4) C18—C20 1.525 (5)	O7—C7	1.260 (4)	C18—C20		1.525 (5)
O8—C7 1.256 (4) C18—C19 1.535 (5)	O8—C7	1.256 (4)	C18—C19		1.535 (5)
C1—C2 1.503 (5) C18—H18 1.0000	C1—C2	1.503 (5)	C18—H18		1.0000
C2—H2A 0.9800 C19—H19A 0.9800	C2—H2A	0.9800	C19—H19A		0.9800
C2—H2B 0.9800 C19—H19B 0.9800	C2—H2B	0.9800	C19—H19B		0.9800
C2—H2C 0.9800 C19—H19C 0.9800	C2—H2C	0.9800	C19—H19C		0.9800
C3—C4 1.509 (5) C20—H20A 0.9800	C3—C4	1.509 (5)	C20—H20A		0.9800
C4—H4A 0.9800 C20—H20B 0.9800	C4—H4A	0.9800	C20—H20B		0.9800
C4—H4B 0.9800 C20—H20C 0.9800	C4—H4B	0.9800	C20—H20C		0.9800
C4—H4C 0.9800 C21—C21 ⁱⁱⁱ 1.349 (6)	C4—H4C	0.9800	C21—C21 ⁱⁱⁱ		1.349 (6)
C5—C6 1.497 (5) C21—H21 0.9500	С5—С6	1.497 (5)	C21—H21		0.9500
C6—H6A 0.9800 C22—N1 ⁱⁱⁱ 1.324 (4)	С6—Н6А	0.9800	C22—N1 ⁱⁱⁱ		1.324 (4)
C6—H6B 0.9800 C22—H22 0.9500	С6—Н6В	0.9800	С22—Н22		0.9500
C6—H6C 0.9800 Cl2—C23 1.762 (4)	С6—Н6С	0.9800	Cl2—C23		1.762 (4)
C7—C8 1.496 (5) Cl3—C23 1.750 (5)	С7—С8	1.496 (5)	Cl3—C23		1.750 (5)
C8—H8A 0.9800 C23—H23A 0.9900	C8—H8A	0.9800	C23—H23A		0.9900
C8—H8B 0.9800 C23—H23B 0.9900	C8—H8B	0.9800	C23—H23B		0.9900
C8—H8C 0.9800 Cl4—C24 1.764 (3)	C8—H8C	0.9800	Cl4—C24		1.764 (3)
N1—C22 1.324 (4) C24—Cl4 ⁱⁱ 1.764 (3)	N1-C22	1.324 (4)	C24—Cl4 ⁱⁱ		1.764 (3)
N1—C21 1.376 (4) C24—H24A 0.9900	N1-C21	1.376 (4)	C24—H24A		0.9900
N1—C9 1.455 (4) C24—H24B 0.9900	N1—C9	1.455 (4)	C24—H24B		0.9900
C9—C10 1.390 (5)	C9—C10	1.390 (5)			
O3—Cu1—O7 167.50 (11) H8B—C8—H8C 109.5	O3—Cu1—O7	167.50 (11)	H8B—C8—H8C		109.5
O3—Cu1—O1 91.12 (11) C22—N1—C21 108.5 (3)	O3—Cu1—O1	91.12 (11)	C22—N1—C21		108.5 (3)

supporting information

O7—Cu1—O1	90.14 (11)	C22—N1—C9	124.4 (3)
O3—Cu1—O5	88.26 (11)	C21—N1—C9	126.9 (3)
O7—Cu1—O5	87.30 (11)	C10—C9—C14	124.6 (3)
01—Cu1—O5	164.93 (10)	C10—C9—N1	116.9 (3)
O3—Cu1—Cl1	96.62 (8)	C14—C9—N1	118.5 (3)
O7—Cu1—Cl1	95.55 (8)	C9—C10—C11	116.5 (3)
O1—Cu1—Cl1	97.34 (8)	C9—C10—C15	123.8 (3)
O5—Cu1—Cl1	97.69 (7)	C11—C10—C15	119.7 (3)
O3—Cu1—Cu2	83.81 (8)	C12—C11—C10	120.9 (4)
O7—Cu1—Cu2	84.08 (7)	C12—C11—H11	119.5
O1—Cu1—Cu2	81.54 (7)	C10—C11—H11	119.5
O5—Cu1—Cu2	83.42 (7)	C11—C12—C13	120.9 (4)
Cl1—Cu1—Cu2	178.81 (3)	C11—C12—H12	119.5
O2—Cu2—O4	91.50 (11)	C13—C12—H12	119.5
O2—Cu2—O8	89.64 (11)	C12—C13—C14	120.9 (4)
O4—Cu2—O8	169.67 (11)	C12—C13—H13	119.5
O2—Cu2—O6	172.08 (10)	C14—C13—H13	119.5
04—Cu2—O6	89.70 (10)	C9-C14-C13	116.2 (4)
08—Cu2—O6	87.79 (10)	C9-C14-C18	122.7(3)
$02-Cu^2-O6^i$	106.62 (10)	C13—C14—C18	121.1(3)
$04-Cu^2-06^i$	97.74 (10)	C_{16} C_{15} C_{17}	111.6(3)
$08-Cu^2-06^i$	91.76 (10)	C16 - C15 - C10	111.5(3)
$06-Cu^2-06^i$	80.96 (10)	C17 - C15 - C10	111.0(3)
02—Cu2—Cu1	87.23 (8)	C16—C15—H15	107.5
04—Cu2—Cu1	84.89 (7)	C17—C15—H15	107.5
O8-Cu2-Cu1	84.91 (7)	C10—C15—H15	107.5
06—Cu2—Cu1	85.09 (7)	C15—C16—H16A	109.5
$O6^{i}$ —Cu2—Cu1	165.77 (6)	C15—C16—H16B	109.5
$Cu1$ — $Cl1$ — $Cu1^{ii}$	167.06 (6)	H16A—C16—H16B	109.5
C1 - O1 - Cu1	124 7 (2)	C15—C16—H16C	109.5
$C1 - O2 - Cu^2$	1201(2)	H16A—C16—H16C	109.5
$C_3 = C_3 = C_{11}$	122.8 (2)	H16B—C16—H16C	109.5
$C_3 - O_4 - C_{11}^2$	121.6(2)	C15—C17—H17A	109.5
$C_{5} - C_{5} - C_{11}$	124.0(2) 124.7(2)	C15—C17—H17B	109.5
$C_{5} - C_{12}$	121.7(2) 1223(2)	H17A—C17—H17B	109.5
C_{5} C_{6} C_{12}^{i}	1371(2)	C15-C17-H17C	109.5
$Cu^2 - Cb^2 - Cu^2^i$	99 04 (9)	H17A—C17—H17C	109.5
C7-07-Cu1	1223(2)	H17B $C17$ $H17C$	109.5
$C7-08-Cu^{2}$	122.3(2) 122.3(2)	C14 - C18 - C20	109.0 113.1(3)
$0^{2}-C^{1}-0^{1}$	122.3(2) 125.3(3)	C14 - C18 - C19	110.7(3)
02 - C1 - C2	116.6 (3)	C_{20} C_{18} C_{19}	109.7(3)
01 - C1 - C2	118.1(3)	C_{14} C_{18} H_{18}	107.9
C1 - C2 - H2A	109 5	C20-C18-H18	107.9
C1 - C2 - H2B	109.5	C19—C18—H18	107.9
$H^2A - C^2 - H^2B$	109.5	C18—C19—H19A	109.5
C1 - C2 - H2C	109.5	C18— $C19$ — $H19R$	109.5
$H^2A - C^2 - H^2C$	109.5	H19A - C19 - H19R	109.5
H2B - C2 - H2C	109.5	C18—C19—H19C	109.5

O3—C3—O4	125.5 (4)	H19A—C19—H19C	109.5
O3—C3—C4	116.6 (3)	H19B—C19—H19C	109.5
O4—C3—C4	117.9 (3)	C18—C20—H20A	109.5
C3—C4—H4A	109.5	C18—C20—H20B	109.5
C3—C4—H4B	109.5	H20A—C20—H20B	109.5
H4A—C4—H4B	109.5	C18—C20—H20C	109.5
C3—C4—H4C	109.5	H20A—C20—H20C	109.5
H4A—C4—H4C	109.5	H20B—C20—H20C	109.5
H4B—C4—H4C	109.5	C21 ⁱⁱⁱ —C21—N1	107.02 (18)
05	123.5 (3)	C21 ⁱⁱⁱ —C21—H21	126.5
05-05-06	118.2 (3)	N1—C21—H21	126.5
06	118.2(3)	$N1^{iii}$ - C22 - N1	108.9(4)
C5-C6-H6A	109 5	N1 ⁱⁱⁱ —C22—H22	125.6
C5-C6-H6B	109.5	N1-C22-H22	125.6
нба <u>С</u> б <u>Н</u> 6В	109.5	C_{13} C_{23} C_{12}	123.0 111.4(2)
C5_C6_H6C	109.5	$C_{13} - C_{23} - H_{23} \Delta$	109.3
	109.5	$C_{12} C_{23} H_{23} \Lambda$	109.3
	109.5	$C_{12} = C_{23} = H_{23} R$	109.3
nob-co-noc	109.5	$C_{13} - C_{23} - H_{23}B$	109.3
$0^{\circ} - 0^{\circ} - 0^{\circ}$	123.3(3)	$C_{12} - C_{23} - H_{23}B$	109.5
08 - 07 - 08	117.4 (3)	H23A - C23 - H23B	108.0
0/-0/-08	117.1 (3)	$C_{14} = C_{24} = C_{14}$	111.2 (3)
C/-C8-H8A	109.5	C14 - C24 - H24A	109.4
C/—C8—H8B	109.5	Cl4"-C24-H24A	109.4
H8A—C8—H8B	109.5	C14—C24—H24B	109.4
С7—С8—Н8С	109.5	$Cl4^{n}$ — $C24$ — $H24B$	109.4
Н8А—С8—Н8С	109.5	H24A—C24—H24B	108.0
Cu2	-38(5)	C14—C9—C10—C15	-180.0(4)
$C_{11} = 02 = 01 = 01$	1773(2)	N1 - C9 - C10 - C15	0.2(5)
$Cu_{1} = 01 = 01 = 02$	-65(5)	C9-C10-C11-C12	0.2(5)
Cu1 = 01 = C1 = C2	1724(2)	C_{15} C_{10} C_{11} C_{12}	1794(4)
Cu1 = 03 = 03 = 04	-0.9(5)	C10-C11-C12-C13	0.7(6)
Cu1 = 03 = C3 = C4	-180.0(3)	C_{11} C_{12} C_{13} C_{14}	-14(6)
$Cu^2 - 04 - C^3 - 03$	-9.7(5)	C10-C9-C14-C13	1.4(0)
$Cu^2 = 04 - C3 - C4$	169.4(3)	N1 - C9 - C14 - C13	-179.6(3)
Cu1 = 05 = C5 = 06	-20(5)	$C_{10} = C_{10} = C_{14} = C_{15}$	-176.6(3)
Cu1 = 05 = C5 = C6	2.0(5) 178 2 (2)	N1 = C9 = C14 = C18	170.0(3)
$Cu^2 = 06 = C5 = 05$	-71(5)	C_{12} C_{13} C_{14} C_{0}	0.8(5)
$Cu^{2i} = 06 = C5 = 05$	-1696(2)	$C_{12} = C_{13} = C_{14} = C_{14}$	1780(3)
Cu2 = 00 = 05 = 05	109.0(2)	$C_{12} - C_{13} - C_{14} - C_{16}$	-120.0(3)
Cu2 = 00 = C3 = C0	1/2.7(2)	C_{9} C_{10} C_{15} C_{10}	-120.9(4)
Cu2 - 00 - C3 - C0	10.2(3)	C10 - C10 - C15 - C10	00.3(3)
$Cu_2 = 08 = C_7 = 07$	1.0(3)	C_{9} C_{10} C_{15} C_{17}	114.0(4)
$Cu_2 - U_8 - C_7 - C_8$	-1/.0(2)	$C_{11} = C_{10} = C_{12} = C_{14}$	-64./(5)
$C_{U1} = 0/-0.08$	-10.2(5)	C_{2} C_{14} C_{18} C_{20} C_{12} C_{14} C_{10} C_{20}	-151.1(4)
Cu1 - O/ - C/ - C8	168.4 (2)	C13 - C14 - C18 - C20	31.8 (5)
C22—N1—C9—C10	//.5 (4)	C9—C14—C18—C19	86.0 (4)
C21—N1—C9—C10	-98.0 (4)	C13—C14—C18—C19	-91.0 (4)
C22—N1—C9—C14	-102.4 (4)	C22—N1—C21—C21 ⁱⁱⁱ	0.8 (5)

C21—N1—C9—C14	82.2 (5)	C9—N1—C21—C21 ⁱⁱⁱ	176.8 (4)
C14—C9—C10—C11	-1.2 (6)	C21—N1—C22—N1 ⁱⁱⁱ	-0.29 (17)
N1-C9-C10-C11	178.9 (3)	C9—N1—C22—N1 ⁱⁱⁱ	-176.4 (4)

Symmetry codes: (i) -*x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*, *y*, -*z*+1/2; (iii) -*x*+1, *y*, -*z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
C6—H6 <i>B</i> ····O2 ⁱ	0.98	2.43	3.368 (4)	161
C21—H21…O1 ^{iv}	0.95	2.54	3.344 (4)	142
C22—H22····Cl4 ^v	0.95	2.78	3.626 (5)	149
C22—H22····Cl4 ^{vi}	0.95	2.78	3.626 (5)	149
C23—H23A····O5 ⁱⁱ	0.99	2.42	3.316 (5)	151
C23—H23 <i>B</i> …O7	0.99	2.42	3.413 (5)	177
C24—H24 <i>B</i> …O5	0.99	2.42	3.303 (4)	148
C24—H24 <i>B</i> …O7	0.99	2.52	3.378 (4)	145
C24—H24 <i>A</i> ···O5 ⁱⁱ	0.99	2.42	3.303 (4)	148
C24—H24 <i>A</i> ····O7 ⁱⁱ	0.99	2.52	3.378 (4)	145

Symmetry codes: (i) -x+1/2, -y+1/2, -z+1; (ii) -x, y, -z+1/2; (iv) -x+1/2, y-1/2, -z+1/2; (v) x+1/2, y+1/2, z; (vi) -x+1/2, y+1/2, -z+1/2.