APPLICATIONS NOTE

Vol. 26 no. 18 2010, pages 2357-2358
doi:10.1093/bioinformatics/btq416

Databases and ontologies

Advance Access publication on July 13, 2010

OWL2Perl: creating Perl modules from OWL class definitions

Edward Kawas™* and Mark D. Wilkinson*

Heart + Lung Institute at St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada

Associate Editor: John Quankenbush

ABSTRACT

Summary: Support for utilizing OWL ontologies in Perl is extremely
limited, despite the growing importance of the Semantic Web in
Healthcare and Life Sciences. Here, we present a Perl framework
that generates Perl modules based on OWL Class definitions. These
modules can then be used by other software applications to create
resource description framework (RDF) data compliant with these
OWL models.

Availability: OWL2Perl is available for download from CPAN, under
the module name OWL2Perl. It is released under the new BSD
license.

Contact: edward.kawas@gmail.com; markw@illuminae.com

Received on April 28, 2010; revised on June 9, 2010; accepted on
July 9, 2010

1 INTRODUCTION

The Semantic Web can be envisioned as two layers—linked data
and explicit knowledge—encoded in two technologies, Resource
Description Framework (RDF; http://www.w3c.org/RDF) and Web
Ontology Language (OWL; http://www.w3.org/TR/owl-features/)
respectively. In RDF, data points or data entities are named by
Universal Resource Indicators (URIs), and pairs of URIs are linked
together with meaningful predicates that describe the relationship
between the two URIs. The resulting network or ‘graph’ is then
interpreted by knowledge encoded in OWL ontologies; the URI’s
become explicitly ‘typed’ as instances of ontologically defined
classes based on the network of predicates and values surrounding
them. Thus, a URI with the predicates ‘color’, ‘texture’, ‘taste’,
‘weight’ with values ‘red’, ‘crunchy’, ‘sweet’, ‘300g’ might be
classified as type ‘Apple’ by a fruit ontology, or as ‘basketable-item’
by a gift-basket ontology.

Though the above is a scenario in which ontologies are used to
interpret and classify existing data, ontologies can also be used to
guide the creation of structured data, in a manner akin to how an
XML schema is used to constrain the structure of a valid XML
document. This is useful as it allows one to generate and publish
data compliant with some defined knowledge structure in order to
facilitate other’s integration and interpretation of that data.

The bioinformatics community is rapidly adopting Semantic Web
technologies, though there is a wide variation in the extent to which
formal logics have been adopted by the various projects. At one
end of the spectrum, perhaps the most recognized community is

*To whom correspondence should be addressed.

the Open Biological Ontologies project (OBO; Smith ez al., 2007).
OBO ontologies are primarily declarative class hierarchies, where
the conditions for class membership are not part of the ‘computable’
definition of the class. At the other end of the spectrum, are
ontologies such as PhosphaBase (Wolstencroft et al., 2005) and the
Lipid Ontology (Baker et al., 2008) where each class is axiomatically
defined by the properties and property values that are required by
members of that class. It is these logically rich ontologies that we
aim to support with OWL2Perl.

Support for both RDF and OWL s strong in the Java programming
language. In the Perl programming language, there are several
projects that provide support for RDF, including RDF::Core
(http://search.cpan.org/~dpokorny/RDF-Core/); however Perl
support for OWL is extremely limited. ONTO-Perl (Antezana et al.,
2008) and go-perl (http://search.cpan.org/~cmungall/go-perl/) both
handle OBO-style ontologies, but cannot consume the full breadth of
OWL logical constructs. Moreover, these two projects are primarily
aimed at manipulating the ontology itself, rather than creating
instance data. Class-OWL (http://search.cpan.org/dist/Class-OWL/)
intends to create Perl classes from OWL ontologies; however, the
code appears to be non-functional, is not documented, and has not
been updated for more than a year, so we assume the project has
been abandoned.

Here, we present OWL2Perl—a Perl application that consumes
OWL-DL ontologies and creates Perl packages representing each
class in that ontology, in a manner similar to Jastor in Java
(Kalyanpur et al., 2004). Each Perl object includes ‘stub’ methods
allowing you to get and set the properties that define that class.
Importantly, instances of that Perl object can serialize themselves as
ontologically valid instance data in RDF format.

2 DESCRIPTION

OWL2Perl is based on code from the open-source ODO project
(Ontologies, Databases and Optimizations; Evanchik, 2006), a Perl
framework for RDF manipulation. We have ‘forked’ and debugged
the ODO codebase, as it does not appear to be actively maintained,
and have renamed it PLUTO (available via CPAN under the Eclipse
license). We have extended PLUTO to manage OWL ontologies
as described below. OWL2Perl, then, is a set of modules and
helper scripts that utilize the RDF/OWL parsing and model-building
capabilities of PLUTO in order to generate object-oriented Perl
modules from OWL classes.

Upon installing OWL2Perl, a Perl script ‘owl2perl-generate-
modules.pl’ is placed in the distributions ‘auto’ path and can then
be easily accessed by name. The script is run with a command-line

© The Author(s) 2010. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.w3c.org/RDF
http://www.w3.org/TR/owl-features/
http://search.cpan.org/~dpokorny/RDF-Core/
http://search.cpan.org/~cmungall/go-perl/
http://search.cpan.org/dist/Class-OWL/
http://creativecommons.org/licenses/

E.Kawas and M.D.Wilkinson

argument indicating the URL of the OWL ontology you wish to
represent as Perl modules. This ontology is retrieved and parsed,
including imports of any ontology referred-to in that ontology.
OWL2Perl then examines the property restrictions on each OWL
Class, and creates a Perl module where each of those property
restrictions becomes a gettable/settable facet of the module. That
property is accessed by an object method named according to the
predicate of that property restriction. The name of the module itself
is derived from the URI of the class, thus ensuring there are no
collisions when running OWL2Perl multiple times over different
ontologies.

For example, assume we wish to create instances of the
(simplistic) AnnotatedPDB OWL Class defined at:

http://sadiframework.org/ontologies/records.owl#AnnotatedPDB

The salient part of that ontology is the definition of the
AnnotatedPDB class, which has the following OWL constraints:

<owl:Class rdf:about="http://sadiframework.org/ontologies/records.owl#AnnotatedPDB" >
<owl:equivalentClass>
<owl:Class>
<owl:intersectionOf rdf:parseType=""Collection' >
<owl:Description rdf:about=""http://purl.oclc.org/SADI/LSRN/PDB_Thing"/>
<owl:Restriction>
<owl:onProperty
rdf:resource="http:// logy.d ierlab.cq
<owl:someValuesFrom
rdf:resource="http://purl.oclc.org/SADI/LSRN/PMID_Thing"/>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

/hasReference''/>

</owl:equivalentClass>

</owl:Class>

As shown, the class is defined as a PDB_Thing with a single
property ‘hasReference’ that must have a PMID_Thing as its value.
To generate the Perl module(s) representing this OWL class, we
would execute the following command:

owl2perl-generate-modules.pl -i —u http://sadiframework.org/ontologies/records.owl ‘

The ‘-i’ flag indicates that the script should follow owl-imports,
and the ‘-u’ flag indicates that the OWL is to be retrieved from
a URL, rather than a local file. Upon processing this ontology, a
module is created with the following name:

sadiframework::org::ontologies::records:: AnnotatedPDB

In addition, by following the import statement in the records.owl
ontology, OWL2Perl generated another module called:

purl::oclc::org::SADI::LSRN::PMID_Thing

These modules are accessed and used in your Perl code as in the
following example code snippet:

use lib “./Perl-OWL2Perl/generated’;
use sadiframework::org::ontologies::records:: AnnotatedPDB;
use purl::oclc::org::SADI::LSRN::PMID_Thing;

create the subject node
my $someURI="http://pdb.org/12345™;
my $subject =
sadiframework::org::ontologies::records:: AnnotatedPDB->new($someURI);

create the object node
my $object =
purl::ocle::org::SADI::LSRN::PMID_Thing->new("http://Isrn.org/PMID:163483");

link subject to object with the a predicate using a method created from
the AnnotatedPDB’s OWL class definition
ssubject->add_hasReference($object);

serializing the OWL class
use OWL::Utils;
print STDOUT OWL::Utils::serialize($subject);

3 DISCUSSION

OWL2Perl was developed specifically to enhance Perl code support
for the SADI (Semantic Automated Discovery and Integration)
Semantic Web Service project; however, any project that must
programmatically generate RDF data compliant with OWL-DL
definitions could benefit from OWL2Perl. We believe the audience
for OWL2Perl will expand as richer Description Logic OWL
ontologies become increasingly pervasive in Bioinformatics.

ACKNOWLEDGEMENTS

We would like to acknowledge Stephen Evanchik for his work with
the ODO project. We would also like to thank Martin Senger for his
contribution to earlier versions of these code generation modules
within the BioMoby project.

Funding: Genome Canada through the Genome Canada
Bioinformatics Platform; CANARIE through funding of the
C-BRASS Project of the NEP-2 competition. Core laboratory
funding is derived from an NSERC Discovery grant.

Conflict of Interest: none declared.

REFERENCES

Antezana,E. ef al. (2008) ONTO-PERL: an API for supporting the development and
analysis of bio-ontologies. Bioinformatics, 24, 885-887.

Baker,C.J.O. et al. (2008) Towards ontology-driven navigation of the lipid bibliosphere.
BMC Bioinformatics, 9 (Suppl. 1), S5.

Evanchik, S. (2006) ODO — Ontologies, Databaes, and Optimizations a randon act of
software.Available at http://stephen.evanchik.com/node/54 (last accessed date April
12, 2010).

Kalyanpur,A. et al. (2004) Automatic mapping of OWL ontologies into Java.
In Proceedings of the International Conference of Software Engineering and
Knowledge Engineering (SEKE), June 20-24, 2004, Banff, Canada.

Smith,B. et al. (2007) The OBO foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat. Biotechnol., 25, 1251-1255.

Wolstencroft,K. er al. (2005) PhosphaBase: an ontology-driven database resource for
protein phosphatases. Proteins, 58, 290-294.

2358

http://sadiframework.org/ontologies/records.owl#AnnotatedPDB
http://sadiframework.org/ontologies/records.owl#AnnotatedPDB
http://purl.oclc.org/SADI/LSRN/PDB_Thing"/
http://ontology.dumontierlab.com/hasReference"/
http://purl.oclc.org/SADI/LSRN/PMID_Thing"/
http://sadiframework.org/ontologies/records.owl
http://pdb.org/12345%E2%80%9D%00
http://lsrn.org/PMID:163483%E2%80%9D%00%00
http://stephen.evanchik.com/node/54

