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Abstract: As one of the most widely used nanomaterials, the safety of nano-TiO2 for human beings
has raised concern in recent years. Sialylation is an important glycosylation modification that plays
a critical role in signal transduction, apoptosis, and tumor metastasis. The aim of this work was
to investigate the cytotoxicity and phototoxicity of nano-TiO2 with different crystalline phases for
human skin keratinocytes (HaCaT cells) under ultraviolet (UV) irradiation and detect sialic acid
alterations. The results showed that the mixture of crystalline P25 had the highest cytotoxicity and
phototoxicity, followed by pure anatase A25, whereas pure rutile R25 had the lowest cytotoxicity and
phototoxicity. A25 and R25 had no effects on the expression of sialic acids on HaCaT cells. However,
HaCaT cells treated with P25 and UV showed an increased level of alterations in α2,6-linked sialic
acids, which was related to the level of reactive oxygen species (ROS) generated by nano-TiO2 and
UV. The abundance of α2,6-linked sialic acids increased as ROS production increased, and vice versa.
Antioxidant vitamin C (VC) reversed the abnormal expression of α2,6-linked sialic acids caused by
nano-TiO2 and protected cells by eliminating ROS. These findings indicate that nano-TiO2 can alter
the sialylation status of HaCaT cells under UV irradiation in a process mediated by ROS.
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1. Introduction

Nanoparticles and nanotechnology are being developed rapidly and are increasingly
encountered during the course of daily life. Due to the unique properties of titanium dioxide
nanoparticles (nano-TiO2), including absorbing and scattering ultraviolet (UV) and photocatalysis,
these nanoparticles have a variety of uses in many fields, such as additives in the cosmetics industry and
whiteness enhancers in the paper industry [1,2]. However, nano-TiO2 have a high surface-to-volume
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ratio because of their nanoscale size, which may result in high surface energy and biological
reactivity [3]. Studies of the potential health risk of nano-TiO2 for humans have revealed that the
toxicity of nano-TiO2 is dependent on the size, shape, and crystalline phase of the particles, as well as
their distribution in the body [4–6].

Due to the use of nano-TiO2 in paints, wastewater treatment, food products, and cosmetics,
nano-TiO2 may come into contact with human skin and mucous membranes and thus enter the human
body [7]. However, under UV irradiation, electrons in the nano-TiO2 valence band absorb photon
energy and jump to the conduction band, leaving valence band holes that extract electrons from water
or hydroxyl ions and generate reactive oxygen species (ROS), which are cytotoxic and genotoxic [8,9].
The phototoxicity and degree of damage associated with nano-TiO2 are dependent on the crystalline
phase, size and concentration of the nanoparticles [4,10]. Nano-TiO2 can inhibit the growth of
HaCaT cells via ROS generation and decrease the activity levels of enzymes, including superoxide
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), under UV light [11]. ROS damage
cells, tissues, and organisms by causing lipid peroxidation, altering the abundance of proteins,
producing DNA mutations, and triggering apoptosis [12–15].

As previously reported, extensive studies have focused on how nano-TiO2 and UV disrupt and
interfere with the processes of mRNA transcription and protein translation, but few studies have
examined the effects of nano-TiO2 on post-translational modifications of proteins under UV light [16,17].
Glycosylation is an important post-translational modification. Advanced glycation end-products exist
in the extracellular matrix of the dermis and the cell surface, where they influence healing of the skin,
aging, elasticity and several skin disorders [18]. Keratinocytes, the main epidermal cells in the skin,
were used in this study to investigate the effects of TiO2 nanoparticles on glycosylation.

The process of apoptosis is associated with alterations in glycans, including sialic acids, mannose,
and fucose [19]. In cell lines of different histological origin (colon, breast, pancreas, and bladder
cancer), as well as in normal human and mouse neutrophils, apoptosis is accompanied by the
exposure of sugar chains recognized by the lectin from Sambucus nigra agglutinin (SNA), which is
specific for siaα2,6Gal/GalNAc structures [20]. After induction of lymphocyte apoptosis, changes in
2,6-terminal sialic acids on the surface of apoptotic membrane blebs can either directly mediate cellular
engulfment or enhance phagocytosis by cooperation with further engulfment signals [21]. Sialic acids
are particularly abundant in mucins and at the epithelial cell surface, and they are usually the outermost
monosaccharide of the glycocalyx.

Sialic acids are nine-carbon monosaccharides at the terminal position of oligosaccharides on
the cell surface that are involved in cell metabolism [22], signal transduction [23,24], and tumor
proliferation, invasion, and angiogenesis [25,26]. For example, influenza A viruses infect birds by
recognizing α2,3-linked sialic acids on glycan chains, but they cannot recognize α2,6-linked sialic
acids [27]. Nevertheless, the relationship between nano-TiO2 toxicity and alterations in sialylated
glycans on the cell surface has not been studied.

In this study, the cytotoxicity and phototoxicity of different concentrations and crystalline phases
of nano-TiO2 were investigated, and changes in sialylation on the surface of HaCaT cells caused
by nano-TiO2 and UV were explored. Cells treated with UV and nano-TiO2 showed enhanced
reactivity with Sambucus nigra agglutinin (SNA) and increased binding with α2,6-linked sialic acid.
These changes were related to ROS generated by nano-TiO2 and UV, which led to changes in sialic
acids. These findings suggest that sialic acid expression plays an important role in the toxic effects of
nano-TiO2 on the skin. The results of this analysis offer insight into the toxicity of nano-TiO2 to guide
the development of safety guidelines and future research into nanoparticle toxicity.
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2. Materials and Methods

2.1. Materials

Nano-TiO2, an anatase-rutile mixture of nano-TiO2 P25 (Degussa Company, Essen, Germany),
anatase nano-TiO2 (Sigma Company, St. Louis, MO, USA) and rutile nano-TiO2 (Macklin, Shanghai,
China) were obtained from commercial sources. UV light was generated by an ultraviolet lamp (ZF-5,
365 nm, 8 W, 0.6 mW/cm2, Shanghai Huxi Instrument, Shanghai, China).

Fetal bovine serum (FBS), Dulbecco’s modified Eagle medium (DMEM), phosphate-buffered
saline (PBS, pH 7.4), penicillin, streptomycin, and trypsin-EDTA were purchased from Gibco
(Invitrogen, Carlsbad, CA, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
and 2′,7′-dichlorofluorescin diacetate (DCFH-DA) were purchased from Sigma (St. Louis, MO, USA).
Sambucus nigra lectin (SNA) labeled with fluoresceinIsothiocyanate (FITC) FITC and Maackia amurensis
lectin I (MAL-I) were purchased from Vector labs (Burlingame, CA, USA).

Anhydrous dimethyl sulfoxide (DMSO) and vitamin C (VC) were purchased from Sigma Aldrich
(St. Louis, MO, USA). ROSup was purchased from Beyotime (Shanghai, China).

2.2. Cell Culture

HaCaT cells, a spontaneously immortalized human keratinocyte cell line (ATCC), were cultured
in 95% air and 5% CO2 at 37 ◦C in c supplemented with 10% FBS and 1% penicillin/streptomycin.

2.3. Preparation and Characterization of Nano-TiO2

The size and morphology of nano-TiO2 were visualized using transmission electron microscopy
(TEM) (HT7700, Hitachi, Tokyo, Japan). The crystalline phase of nano-TiO2 P25 was detected by a
Philips XPert PRO MPD X-ray diffractometer (Philips, Eindhoven, The Netherlands). Nano-TiO2

powder was sterilized by an autoclave, suspended in DMEM, and sonicated for 20 min in an ultrasonic
bath. Before application to cells, the suspension was freshly prepared and immediately applied.

2.4. Cell Viability

Cells were seeded in 96-well-plates (Corning, Corning, NY, USA) at a density of 1 × 105 cells per
well and cultured for 24 h at 37 ◦C to reach 90% confluency. Cells were treated with 0, 10, 50, 100, 500,
1000 µg/mL of various crystalline phases of nano-TiO2 for 24, 48 and 72 h. After incubation, each well
was washed with PBS three times and filled with DMEM containing 0.5 mg/mL MTT. The cells were
incubated for 4 h at 37 ◦C, the supernatant was removed, DMSO was added to each well, and the
cells were allowed to sit for 15 min. The plates were assessed at 492 nm using a microplate reader
(Spectrafluor Plus, Tecan US, RTP, Durham, NC, USA).

2.5. Phototoxicity

Phototoxicity was assessed using MTT. Cells were seeded in 96-well plates and cultured for 24 h.
The supernatant was replaced with different concentrations of nano-TiO2 P25 and cells were cultured
for 21 h. The medium was replaced by PBS before UV radiation at 365 nm to avoid the effect of
phenol red. After 1 h irradiation, fresh medium was added, and the cells were incubated for 2 h [7,28],
after which cell viability was detected with the procedure described above.

2.6. Lectin Staining

HaCaT cells were cultivated in 6-well plates with sterilized coverslips to reach a density of
5 × 105 cells per well. The cells were treated with 0 or 50 µg/mL nano-TiO2 P25 for 21 h, followed by
UV irradiation for one hour. The cells were washed with cold PBS three times and fixed with
4% paraformaldehyde solution for 15 min. The fixed cells were incubated with 15 µg/mL FITC
fluorescein-labeled lectins (SNA, MAL-I) for one hour in the dark at room temperature (RT) [29].
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The cells were then observed under a laser confocal scanning microscope (Olympus, FV1000, Tokyo,
Japan) to evaluate changes in sialylation. In order to compare sialic acid expression after various
treatments, the fluorescence intensity of each pixel was quantified using NIH ImageJ software (National
Institutes of Health, Bethesda, MD, USA).

2.7. Intracellular ROS Detection

DCFH-DA, a non-fluorescent, membrane-permeable compound, was used to detect intracellular
ROS. After entering cells, DCFH-DA is rapidly de-acetylated to 2′,7′-dichlorodihydrofluorescein
diacetate (DCFH), which can be converted by a broad range of ROS into 2,7-dichlorofluorescein (DCF),
which is highly fluorescent and readily detected [30]. The fluorescence intensity was detected by flow
cytometry and a fluorescence spectrophotometer at excitation and emission wavelengths of 485 and
530 nm, respectively. HaCaT cells were seeded in 12-well plates and cultured for 24 h. The cells were
exposed to 0 or 50 µg/mL nano-TiO2 P25 for 3 h and washed twice with PBS, followed by exposure
to pre-warmed PBS containing 20 µM DCFH-DA. The plates were treated with UV irradiation or
left in the dark for one hour [28]. The cells were washed with cold PBS, trypsinized, centrifuged,
and resuspended in 0.5 mL of cold PBS prior to measurement and flow cytometry analysis.

2.8. Statistical Analysis

All results are shown as the mean and standard deviation from at least three independent
experiments. Statistical analyses were performed with Student’s two-tailed paired t-test. Values of
p < 0.05 were considered statistically significant.

3. Results

3.1. Characterization of TiO2 Nanoparticles

The morphology of nano-TiO2 was visualized under a transmission electron microscope (TEM)
(Figure 1). The particle size was approximately 25 nm. Aggregation and large clusters were easily
observed in all samples. The three tested crystalline phases of nano-TiO2 were A25, R25 and P25.
X-ray diffraction (XRD) analysis showed that the crystalline composition of P25 was approximately
14% rutile and 86% anatase. R25 was pure rutile, whereas A25 was pure anatase (Table 1). The specific
surface areas of the particles were similar among the nano-TiO2 samples.
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Figure 1. Morphological characterization of nano-TiO2 A25, R25, and P25 via TEM.

Table 1. Physicochemical properties of the nano-TiO2 used in this study.

Product Crystalline Phase Purity Particle Size Particle Specific Surface Area

Degussa P25 25% rutile/75% anatase 99.5% 21 nm 50 m2/g
Rutile 25 Rutile 99% 25 nm 51.02 m2/g

Anatase 25 Anatase 99% 25 nm 49.5 m2/g
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3.2. Cytotoxicity and Phototoxicity of Nano-TiO2

The viability of HaCaT cells was tested following treatment with nano-TiO2 for 24 h (Figure 2).
The low concentration of nano-TiO2 P25 (<50 µg/mL) was non-toxic. High concentrations (100 µg/mL)
of pure anatase (A25) and rutile (R25) nano-TiO2 showed no significant cytotoxicity. However,
exposure to 100 µg/mL P25 reduced cell viability by approximately 20% (Figure 2C). Exposure to
1000 µg/mL A25 reduced cell viability by approximately 30%, whereas exposure to 1000 µg/mL R25
reduced cell viability by approximately 20%. Exposure to 1000 µg/mL P25 reduced cell viability
by approximately 45% (p < 0.001). The viability of HaCaT cells was decreased by nano-TiO2 in a
concentration-dependent manner. The toxic effects of nano-TiO2 were related to its crystalline phase.
P25, the mixture of crystalline nano-TiO2 phases, showed more severe cytotoxicity in comparison with
the pure anatase and pure rutile samples.
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Figure 2. The effects of 24 h of exposure of human skin keratinocytes (HaCaT) cells to nano-TiO2

(A) R25, (B) A25, and (C) P25 with or without ultraviolet (UV) irradiation. Cell viability was quantified
by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Significant differences
are indicated where (n = 5) ± SEM, *** p < 0.001, ## p < 0.01, compared with the 0 µg/mL group.
### p < 0.001, compared with the same concentration of nano-TiO2 in the presence of UV.

To investigate the phototoxicity of nano-TiO2, cells were subjected to UV irradiation for one hour
after treatment with nano-TiO2, after which cell viability was tested. There was no decrease in viability
when HaCaT cells were exposed to UV irradiation alone. R25 showed no significant phototoxicity,
and cell viability was similar with or without UV irradiation. However, UV light increased the
damage caused by nano-TiO2 P25 and A25. As shown in Figure 2, P25 was more phototoxic than
A25. Exposure to 50 µg/mL P25 and UV light decreased cell viability by 50% (p < 0.001). Exposure to
500 µg/mL A25 and UV light reduced cell viability by approximately 10% (p < 0.01). The mixture of
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crystalline phases had the highest photo-cytotoxicity. Therefore, P25, which had severe phototoxicity
and lacked cytotoxic effects, was used in subsequent experiments at a concentration of 50 µg/mL.

3.3. The Effects of UV and Nano-TiO2 on α2,3- and α2,6-Linked Sialic Acids

To study whether UV and nano-TiO2 influence sialic acids on HaCaT cells, fluorescence-labeled
lectins were detected (Figure 3). The fluorescent signal intensity of SNA (sia2-6Galβ1-4GlcNAc) on
the cells treated with UV and nano-TiO2 P25 was significantly higher than that of the untreated cells,
which indicated high expression of α2,6-linked sialic acids. In the presence of UV and nano-TiO2 P25
at a concentration of 50 µg/mL, the abundance of α2,6-linked sialic acids was increased by 5.9-fold in
comparison with that of the control group and significantly elevated in comparison with that of the
group exposed to UV treatment only and that of the group exposed to nano-TiO2 P25 only (p < 0.001).
The UV group exhibited a significant increase of 2.4-fold in fluorescence intensity in comparison with
that of the control group, indicating that the abundance of α2,6-linked sialic acids was increased in the
UV group (p < 0.001). MAL-I staining for α2,3-linked sialic acids did not change significantly after
any of the treatments. The fluorescent intensity analysis suggests that the groups had no significant
differences in the abundance of α2,3-linked sialic acids.
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Figure 3. Assessment of changes in sialic acids by lectin staining. HaCaT cells were treated with
50 µg/mL nano-TiO2 P25, UV or the combination of nano-TiO2 P25 and UV. Staining was performed
with fluoresceinIsothiocyanate (FITC)-labeled (A) SNA for α-2,6 sialic acid residues (green), (B) Maackia
amurensis lectin (MAL) for α-2,3 sialic acid residues (green), and 4′,6-diamidino-2-phenylindole
(DAPI) for nuclei (blue). The bar graphs show the fluorescent intensity analysis for (C) A and
(D) B (*** p < 0.001, error bars are standard error of the mean).
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As shown in Figures 4 and 5, A25 and R25 did not alter staining for SNA or MAL-I with or
without UV irradiation, which indicated that A25 and R25 did not change the abundance of sialic acids
at a concentration of 50 µg/mL. These findings indicate that UV light and nano-TiO2 P25 can affect
expression of α2,6-linked sialic acids and have no effect on expression of α2,3-linked sialic acids.
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the mean).
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3.4. Intracellular ROS Detection

Although the mechanism of nano-TiO2 P25 toxicity was not fully deciphered, ROS was regarded
as playing a critical role in the toxicity of nano-TiO2 P25. Therefore, ROS generation was examined
using a DCFH-DA probe during treatment with UV light and nano-TiO2 P25. Images collected using a
fluorescence microscope showed that the intracellular ROS generated in HaCaT cells was dependent on
the treatment (Figure 6A). The cells exposed to nano-TiO2 P25 for 3 h exhibited improved intracellular
ROS. The presence of UV increased ROS production compared to the absence of UV. Moreover, the cells
exposed to nano-TiO2 P25 and UV irradiation showed the most ROS generation. Intracellular ROS were
quantified by quantitative flow cytometry (Figure 6B,C). Intracellular ROS abundance was increased
significantly in HaCaT cells treated with 50 µg/mL nano-TiO2 P25 and UV light. Intracellular ROS
abundance was increased approximately 2.5-fold in cells treated with UV light alone in comparison
with that of control cells and those treated with nano-TiO2 P25 only. A significant increase in ROS
generation in HaCaT cells was detected after UV irradiation and nano-TiO2 P25 treatment (10-fold that
of the control group, p < 0.001).
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Figure 6. Reactive oxygen species (ROS) generation in HaCaT cells. Cells were treated
with 0 or 50 µg/mL nano-TiO2 P25 with or without UV irradiation. After the treatment,
2′,7′-dichlorofluorescin diacetate (DCFH-DA) was imaged by fluorescence microscopy and detected
by flow cytometry. (A) A fluorescence microscopy image, (B) histograms from the flow cytometry
analysis, (C) quantification of the fluorescence intensity of 2,7-dichlorofluorescein (DCF) (mean ± SD,
n = 3, *** p < 0.001, compared with the 0 µg/mL group; ### p < 0.001, compared with the UV group).

3.5. The Effect of ROS on Sialic Acid Expression

The results of the analysis of ROS generation were in accordance with the results of the analysis
of α2,6-linked sialic acids. HaCaT cells treated with nano-TiO2 P25 and UV showed enhanced ROS
production and increased abundance of α2,6-linked sialic acids. These findings suggested ROS altered
α2,6-linked sialic acids on the HaCaT cell surface. Vitamin C (VC), a natural antioxidant, can eliminate
ROS and protect cells from oxidative damage [31]. Moreover, VC can significantly reduce intercellular
ROS abundance [32]. HaCaT cells incubated with VC and nano-TiO2 P25 under UV irradiation showed
significantly decreased binding with SNA. ROSup was used as a reagent to generate a positive control
group with relatively high ROS abundance. After treatment with 50 µg/mL ROSup, a dramatic
increase in SNA binding was observed. VC decreased SNA binding by approximately 5-fold in
comparison with that of the group treated with UV and nano-TiO2 P25 (p < 0.001). The fluorescent
intensity of the group treated with VC was similar to that of the control group. The fluorescent intensity
of the ROSup group was increased by approximately 6.5-fold in comparison with that of the control
group (Figure 7A,C). However, VC treatment and ROSup treatment did not alter the abundance
of α2,3-linked sialic acids (Figure 7B,D). These findings indicate that P25 could lead to abnormal
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expression of α2,6-linked sialic acids via ROS generation. In addition, an abnormally high abundance
of α2,6-linked sialic acids can be reversed by treatment with antioxidants.
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Figure 7. Detection of changes in sialic acids by lectin staining. HaCaT cells were treated with
50 µg/mL nano-TiO2 P25 and UV, the combination of 1 mM VC, nano-TiO2 P25 and UV, or 50 µg/mL
ROSup. Staining was performed with FITC-labeled (A) SNA for α-2,6 sialic acid residues (green),
(B) MAL for α-2,3 sialic acid residues (green), and DAPI for nuclei (blue). The bar graphs show
the fluorescence intensity analysis for (C) A and (D) B (error bars are standard error of the mean).
(E) The effects of vitamin C (VC) on cell viability under treatment with nano-TiO2 P25 and UV
irradiation. Significant differences are indicated where (n = 5) ± SEM, *** p < 0.001, ### p < 0.001,
compared with the same concentration of nano-TiO2 in the presence of UV without VC treatment.

HaCaT cells exposed to VC in the presence of nano-TiO2 P25 and UV irradiation showed increased
cell viability in comparison with that of the group treated with UV and P25 (Figure 7E). In addition,
VC-treated cells showed no discernible difference in viability in comparison with that of the control
group. Therefore, these results demonstrate that ROS affect the level of α2,6-sialylation on the cell
surface; greater ROS abundance is associated with enhanced α2,6-sialylation. Finally, exposure to VC
can protect cells from nano-TiO2 and UV irradiation via ROS clearance.
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4. Discussion

Nano-TiO2 is one of the most used nanomaterials and has thus been the subject of significant
research regarding toxicity and safety. Humans can be exposed to nano-TiO2 during manufacturing [33].
Nano-TiO2 can be found in the forms of aerosols, suspensions or emulsions, which can cause toxic
effects via inhalation and dermal exposure [34]. The small size and high surface-to-volume ratio
of nano-TiO2 increase the surface energy of the particles and enhance biological reactivity [35].
ROS generated by nanoparticles can lead to cytotoxicity and genotoxicity. The skin is regularly
exposed to irradiation from sunlight simultaneously with nano-TiO2 contained in sunscreen. Therefore,
the toxicity of nano-TiO2 in the context of the skin is of great significance.

In this work, the cytotoxicity of nano-TiO2 was related to its crystalline phase, concentration,
and exposure time (Figure 2). There were no significant differences in nano-TiO2 cytotoxicity at low
concentrations of 10 µg/mL or 50 µg/mL, while nano-TiO2 showed cytotoxicity at concentrations
of 100–1000 µg/mL. The toxic effects of nano-TiO2 increased in a dose-dependent manner. P25 at a
low concentration of 50 µg/mL with UV light caused a 50% decrease in cell viability in comparison
with that of cells exposed to nano-TiO2 P25 only. The cytotoxicity and phototoxicity of nano-TiO2

were related to its crystalline phase; P25 had greater photo-cytotoxicity in comparison with that of
A25 or R25. These results are in accordance with those of previous studies, which also showed that
phototoxicity was mediated by ROS generation during UVA irradiation [1,9,36]. The low concentration
(less than 50 µg/mL) used for all nano-TiO2 treatments did not affect proliferation after 24 h of
treatment, but P25 caused severe phototoxicity in the presence of UV light. Therefore, 50 µg/mL
nano-TiO2 P25 was used for subsequent experiments.

Although the principle of nano-TiO2 phototoxicity is still debated, ROS are considered to be
a potential mechanism for nano-TiO2 phototoxicity. In this study, DCFH-DA was used to estimate
ROS generation. Significantly increased ROS abundance was observed in HaCaT cells after treatment
with nano-TiO2 P25 under UV irradiation (Figure 6). Treatment with UV and nano-TiO2 together
enhanced the level of ROS production in HaCaT cells by approximately 10-fold in comparison with
that of the control group. Excessive ROS and reactive nitrogen species (RNS) have been reported as
fundamental mechanisms underlying nanomaterial toxicity; they induced apoptotic signaling and
various pathologies by disrupting intracellular redox homeostasis and inducing irreversible oxidative
modifications of lipids, proteins or DNA [12]. However, during apoptosis, glycosylation changes
occur with cell shrinkage, nuclear condensation and DNA disruption. Cells from different histological
origins undergoing apoptosis and primary necrosis induced by TPEN and heat treatment had an
α2,6-sialylated lactosaminic structure [20]. However, few studies have paid attention to the toxic effects
of nanomaterials on glycans. Glycans perform functional and regulatory roles in various physiological
processes. Glycan structure is defined by the expression of nucleotides in the corresponding gene
and environmental factors [37]. Sialylation is an important glycosylation modification that plays an
important role in cell signaling [38], cell adhesion [39], cell recognition [21], ageing, and senescence [40].
Considering the importance of sialylation, we investigated changes in sialylation on HaCaT cells treated
with nano-TiO2 and UV irradiation. Cells treated with UV or nano-TiO2 P25 showed altered sialylation
levels, while the groups treated with A25 or R25 showed no significant alterations in sialylation.
However, only the abundance of α2,6-linked sialic acids was changed; no differences in α2,3-linked
sialic acids were observed in the groups treated with P25 and UV (Figure 3). The group treated with
UV and nano-TiO2 P25 showed a higher level of sialylation in comparison with those of the other
groups, whereas the UV group and nano-TiO2 P25 group each showed a slight increase. The changes
in sialic acid abundance on HaCaT cells followed a pattern similar to that of the changes in ROS
generated by UV and nano-TiO2 P25, which indicated that the changes in sialic acids may be related to
ROS generation.

To confirm the hypothesis that ROS are involved in changes in sialylation induced by UV and
nano-TiO2 P25, we used vitamin C and ROSup to treat HaCaT cells, followed by detection of changes
in α2,6-linked sialic acids and α2,3-linked sialic acids. The positive control ROSup group showed
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a significant 6-fold increase in sialylation in comparison with the control group. Vitamin C, as an
antioxidant and free radical scavenger, is widely used to protect bio-membranes from peroxidative
damage [31]. VC can decrease ROS abundance to inhibit cellular damage [32,41]. As shown in Figure 7,
VC protected cells by reducing the abundance of intracellular ROS and decreasing the abundance of
α2,6-linked sialic acids by approximately 4-fold in comparison with that of the group that was not
treated with VC. However, VC did not produce a similar effect on α2,3-linked sialic acids. VC inhibited
apoptosis caused by nano-TiO2 phototoxicity and increased cell viability by 25%. These results
demonstrate that ROS generation affected the expression of α2,6-linked sialic acids, but had no effect
on the expression of α2,3-linked sialic acids. In addition, VC reversed the abnormal expression of
α2,6-linked sialic acids caused by nano-TiO2 and inhibited apoptosis. Changes in sialylation may
be mediated by sialyltransferase in a manner regulated by ROS production. Overexpression of
sialylated antigens has been reported to cause cancer, and our results suggest that clearing ROS with
an antioxidant like VC can reduce sialic acid expression and thus reduced the risk of cancer. This study
demonstrated that the effects of ROS generated by nanomaterials and UV irradiation on sialic acids
may be a new mechanism of nanomaterial toxicity and provide insight into methods of enhancing
the safety of nanomaterials by utilizing antioxidant agents to reduce ROS abundance. Moreover,
change in sialic acids could be a marker of nanomaterial toxicity. Our study is the first to assess the
influence of nano-TiO2 P25 on oligosaccharides and provides a foundation for research into the impact
of nanomaterials and the development of new strategies for mitigating their toxicity.
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