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Background. Oxidative stress produced a large amount of reactive oxygen species (ROS), which played a pivotal role in balanced
ability and determining cell fate. The activated Nrf2 signaling pathway that responds to the excessive ROS regulated the
expressions of antiapoptotic proteins, antioxidative enzymes, drug transporters, and detoxifying factors. Methods. The Nrf2
signaling pathway-related genes that had a direct relationship with Nrf2, including ATF4, BACH1, CREBBP, CUL3, EIF2AK3,
EP300, FOS, FOSL1, GSK3B, JUN, KEAP1, MAF, MAFF, MAFG, MAFK, MAPK1, MAPK3, MAPK7, MAPK8, MAPK9,
PIK3CA, PRRT2, and RIT1, were selected to do a systematic pan-cancer analysis. The relationship of Nrf2 signaling pathway-
related gene expressions with tumor mutation burden, microsatellite status, clinical characteristics, immune system, cancer
stemness index, and drug sensitivity was calculated by the Spearson correlation analysis across 11,057 subjects representing 33
cancer types. The prognosis models in lung squamous carcinoma, breast cancer, and stomach cancer were constructed with the
Cox multivariate regression analysis and least absolute shrinkage and selection operator (Lasso) regression. Results. Many Nrf2
signaling pathway-related genes were differently expressed between tumor and normal tissues. PIK3CA showed high mutation
rate in pan-cancer. The expressions of Nrf2 signaling pathway-related genes were significantly related to tumor mutation
burden, copy number variant, microsatellite instability score, survival rate, pathological stage, immune phenotype, immune
score, immune cell, cancer stemness index, and drug sensitivity. The prognosis models were significantly associated with
survival rate in lung squamous carcinoma, breast cancer, and stomach cancer; and the prognosis model-based riskscore was
significantly associated with clinicopathological characteristics of each cancer. Conclusions. The study provided a
comprehensive pan-cancer landscape of Nrf2 pathway-related genes. Based on the same Nrf2 pathway-related genes, the
different prognosis models were constructed for different types of cancers.

1. Introduction

In response to oxidative stress and oxidative damage, the
accumulation of reactive oxygen species (ROS) can result
in initiating tumorigenesis, supporting transformation, and
inducing proliferation and apoptosis of cancer cells [1].
Endogenous ROS could be produced by peroxisomes, mito-
chondria, and inflammatory cell activation. Exogenous ROS

could be produced from ionizing radiation and xenobiotics
[2]. While ROS formation was necessary to signal transduc-
tion in normal cell, excess ROS could directly affect modifi-
cation of cellular macromolecules, specially causing genomic
DNA mutations [3]. For example, 8-hydroxy deoxyguano-
sine can be formed with ROS increasing, which can help
transform GC base pairs (guanine and cytosine) to TA base
pairs (thymine and adenine) and directly link to
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mutagenesis [4]. Considerable studies focused on nongeno-
toxic and epigenetic effects of ROS in carcinogenesis. The
effects of ROS on modulation of cell growth depended on
an important factor concentration of ROS. At higher doses
or exposure to ROS, the cells trend to necrosis or apoptosis.
At lower doses or exposure to ROS, the cells trend to prolif-
eration [5]. The targeted molecules that responded to excess
ROS signaling messenger played critical roles in gene tran-
scription pathways [6]. Nrf2 was one of the activated tran-
scription factors at the high concentration of ROS and
regulated downstream targeted genes to encode detoxifying
factors, antiapoptotic proteins, antioxidative enzymes, and
drug efflux transporters [7]. The Nrf2-keap1 complex acted
as a cellular defense mechanism in cytoplasm. When cellular
stress from endogenous and exogenous agents induced the
increase of ROS and activation of Nrf2, keap1 could release
from the Nrf2-keap1 complex. Thus, the free Nrf2 was
transported from cytoplasm to nucleus to bind with antiox-
idant response element (ARE), which results in the transla-
tion of multiple antioxidant response genes [8]. In the
process of Nrf2 responding to the increased ROS, various
pathways and genes participated in activation of tyrosine
kinases to dissociate Nrf2-keap1 complex, such as MAPK
signaling pathway, PKC signaling pathway, and PI3K signal-
ing pathway [9]. Some genes in those signaling pathways
directly affected Nrf2 status, including ERK1/2, ERK5,
JNK1/2, p38 MAPK, PKC, PERK, and GSK3β [10–12]. After
Nrf2 was transported into the nucleus, multiple genes were
involved in regulating Nrf2 to recognize the AREs, including
small MAF, ATF4, JUN, CBP/P300, ERK1/2, c-FOS, FRA1,
c-MAF, and BACH1 [13, 14]. After Nrf2 recognized the cor-
responding AREs, the downstream genes were initiated to
produce some significant biological functions, including
reducing oxidative damage, promoting tumorigenesis, regu-
lating cell survival, transporting xenobiotics and metabolites,
repairing the damaged proteins, and removing the damaged
proteins [15].

The implication of NRF2 signaling in various cancers
was emerging as research hotpot. NRF2 had the multifaceted
roles and multistage processes in cancer progression, which
indicated both tumor-suppressing and tumor-promoting
effects [16]. NRF2 has direct and indirect association with
the hallmarks of cancer. For example, NRF2 regulated the
sustained proliferation signaling, and the proliferation rates
of cell lines were significantly associated with NRF2 status.
When NRF2 gene was knocked out with CRISPR/Cas9, neu-
rosphere cells showed more differentiated cells, less self-
renewal, and less proliferation capacity after irradiation
[17]. The expression of NRF2 was associated with ferroptosis
and resistance to apoptosis. For example, quiescin sulfhydryl
oxidase 1 induced ferroptosis by suppressing NRF2 activity
in EGFR-dependent tumor types [18]. Angiogenesis
involved various hot molecules, such as HIF-1α, cytokines,
VEGF, and extracellular matrix (ECM) remodelers [19].
The expression of NRF2 was associated with sustained
angiogenesis. For example, NRF2 deficiency reduced protein
levels of PDGF, HIF-1α, VEGF, angiogenin, and angiopoie-
tin, which could result in significantly impaired survival and
angiogenic capacity of endothelial cells [20]. However, NRF2

also has direct and indirect roles in suppressing cancers.
Many studies demonstrated that Nrf2−/− mice had persis-
tent inflammation and were able to avoid immune destruc-
tion [21].

NK cell recruitment was regulated by IL-17D in response
to anticancer immune. NRF2 was reported to promote
tumor rejection by initiating ARE at the promoter of IL-
17D [22]. Inflammatory microenvironment in cancer con-
tained immune suppression, such as Tregs and myeloid-
derived suppressor cells (MDSCs), which promoted tumor
inflammation and metastasis. MDSCs were higher in Nrf2
−/− mice compared to their wild-type counterparts [23].
Since NRF2 can regulate lots of downstream genes to pro-
mote or inhibit cancers, NRF2 might be an oncogene or a
tumor suppressor gene [16]. Beyond redox-regulating capac-
ities of NRF2, more new functions were identified for NRF2,
including proliferation, autophagy, energetic metabolism,
cell stemness, amino acid metabolism, immune microenvi-
ronment, DNA repair, iron metabolism, proteasomal degra-
dation, mitochondrial physiology, and drug
metabolism [24].

In terms of prognostic biomarker or therapeutic target,
NRF2 showed optimistic scenario into the cancer clinic. This
study aimed to systematically characterize the molecular
alterations, clinical relevance, and biological processes of
NRF2 pathway-related genes across 33 cancer types. The
widespread genetic alterations of NRF2 pathway-related
genes, including expressions, mutations, and copy number
variations (CNVs), demonstrated the complex mechanisms
regulating tumorigenesis and development. The significant
correlations between the expression levels of NRF2
pathway-related genes and tumor mutation burden (TMB),
microsatellite instability score (MSI), immune phenotype,
immune score, immune cell, cancer stemness index
(RNAss), and drug sensitivity demonstrated that NRF2 had
crosstalk with other molecules. The clinical relevance analy-
sis showed that the NRF2 pathway-related genes could be
potential biomarkers of cancers. Furthermore, the prognosis
models were constructed for representative cancers, includ-
ing lung squamous carcinoma (LUSC), breast cancer
(BRAC), and stomach cancer (STAD).

2. Materials and Methods

The methods used in this section were mainly referred to our
previous publication [25].

2.1. Collection of NRF2 Pathway-Related Genes. A total of 24
NRF2 pathway-related genes were collected with Ingenuity
Pathway Analysis (IPA) (https://digitalinsights.qiagen.com/
products-overview/discovery-insights-portfolio/analysis-
and-visualization/qiagen-ipa/), including ATF4, BACH1,
CREBBP, CUL3, EIF2AK3, EP300, FOS, FOSL1, GSK3B,
JUN, KEAP1, MAF, MAFF, MAFG, MAFK, MAPK1,
MAPK3, MAPK7, MAPK8, MAPK9, NRF2, PIK3CA,
PRRT2, and RIT1 (Supplementary Table 1).

2.2. Genome-Wide Omics Data across 33 Cancer Types.
Genome-wide omics data were based on UCSC Xena
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datasets (https://xenabrowser.net/datapages/). A total of 33
different cancer types were analyzed, including adrenocorti-
cal carcinoma (ACC), bladder urothelial carcinoma (BLCA),
breast cancer (BRCA), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), lymphoid neo-
plasm diffuse large B cell lymphoma (DLBC), esophageal
carcinoma (ESCA), glioblastoma multiforme (GBM), head
and neck squamous carcinoma (HNSC), kidney chromo-
phobe (KICH), kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP), acute myeloid
leukemia (LAML), brain lower grade glioma (LGG), liver
hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), mesotheli-
oma (MESO), ovarian serous cystadenocarcinoma (OV),
pancreatic adenocarcinoma (PAAD), pheochromocytoma
and paraganglioma (PCPG), prostate adenocarcinoma
(PRAD), rectum adenocarcinoma (READ), sarcoma
(SARC), skin cutaneous melanoma (SKCM), stomach ade-
nocarcinoma (STAD), testicular germ cell tumors (TGCT),
thyroid carcinoma (THCA), thymoma (THYM), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosar-
coma (UCS), and uveal melanoma (UVM). Genome-wide
omics data of NRF2 pathway-related genes included gene
expression RNAseq (HTSeq-FPKM GDC Hub), somatic
mutation (VarScan2 Variant Aggregation and Masking,
Supplementary Table 2), copy number variant (CNV)
(GISTIC focal score by gene GDC Hub), clinical
characteristics (curated clinical data by Pan-Cancer Atlas
Hub), immune phenotype (immune subtype by Pan-
Cancer Atlas Hub), and cancer stemness index (stemness
score-RNA based on Pan-Cancer Atlas Hub). The Maftools
R package (https://www.bioconductor.org/packages/release/
bioc/html/maftools.html) was used to calculate the
distribution of tumor mutation burden (TMB) according
to somatic mutation data (Supplementary Table 3), which
also generated waterfall plots of mutation genes.
Microsatellite instability (MIS) scores were obtained from
published data (PMID: 30211344 and Supplementary
Table 4) based on TCGA Research Network (http://
cancergenome.nih.gov/).

2.3. Differential Expression Analysis of Nrf2 Pathway-Related
Genes between Tumor and Normal Tissues across 33 Cancer
Types. The ggpubr R package (https://rpkgs.datanovia.com/
ggpubr/) was used to determine differentially expressed
genes (DEGs) of NRF2 pathway-related genes between
tumor and normal tissues across 33 cancer types, with statis-
tical significance (adjusted p value < 0.05) (Supplementary
Table 5 and Supplementary Figure 1). The Wilcoxon test
was used to estimate the significance of gene expression
alterations. The p value was adjusted with the Benjamini-
Hochberg multiple testing correction. The heatmap of
DEGs was plotted by pheatmap R packages (https://www
.rdocumentation.org/packages/pheatmap/versions/1.0.12/
topics/pheatmap).

2.4. The Correlations between Expression of NRF2 Pathway-
Related Genes and TBM or MIS or CNV. The Corrplot R

package (https://cran.r-project.org/web/packages/corrplot/
vignettes/corrplot-intro.html) was used to perform the cor-
relation analysis between the NRF2 pathway-related gene
expression and TBM or MIS with method of spearman
(p < 0:05). The fmsb R package (https://cran.rproject.org/
web/packages/fmsb/index.html) was used to plot the corre-
lation between the NRF2 pathway-related gene expression
and TBM or MIS by radar chart. The correlation between
the NRF2 pathway-related gene expression and CNV was
calculated by the Kruskal test (p < 0:05), and boxplots were
plotted by the barplot R package (https://www
.rdocumentation.org/packages/graphics/versions/3.6.2/
topics/barplot).

2.5. The Associations between the NRF2 Pathway-Related
Gene Expressions and Clinical Features. The samples were
divided into high- and low-expression groups of NRF2
pathway-related genes by median value of each gene across
33 cancer types. The Kaplan-Meier method based on the
survminer R package (https://cran.r-project.org/web/
packages/survminer/index.html) was used for overall sur-
vival analysis, which was compared to the log-rank test, with
statistical significance of p < 0:05. The Cox regression analy-
sis was also performed with the survival R package (https://
www.rdocumentation.org/packages/survival/versions/3.2-3)
to select survival-associated NRF2 pathway-related genes
(Supplementary Table 6). The hazard ratio was calculated
for the Cox proportional hazard regression models.
Further, the associations between clinical characteristics
(pathologic stage, including stages I, II, III, and IV) and
NRF2 pathway-related gene expressions were analyzed
across 33 cancer types.

2.6. The Expressions of NRF2 Pathway-Related Genes among
Different Immune Phenotypes across 33 Cancer Types. Sam-
ples of TCGA Pan-Cancer data were divided into six clus-
ters, including wound healing (Immune C1), IFN-gamma
dominant (Immune C2), inflammatory (Immune C3), lym-
phocyte depleted (Immune C4), immunologically quiet
(Immune C5), and TGF-beta dominant (Immune C6) based
on immune model subtypes. The different expressions of
NRF2 pathway-related genes among different immune
model subtypes were analyzed with the Kruskal test
(p < 0:05) and plotted with the ggplot2 R package (https://
cran.r-project.org/web/packages/ggplot2/index.html).

2.7. Estimation of Immune-Related Scores and Infiltrating
Cells across 33 Cancer Types. The presence of infiltrating
stromal and immune cells in tumor tissues was predicted
with ESTIMATE R package (https://bioinformatics
.mdanderson.org/estimate/rpackage.html) that estimated
stromal and immune cells in malignant tumor tissues with
gene expression data. The ESTIMATE algorithm was based
on ssGSEA analysis, which generated ImmuneScore repre-
senting the infiltration of immune cells in tumor tissue, Stro-
malScore capturing the presence of stroma in tumor tissue,
and ESTIMATEScore (Supplementary Table 7). These
three scores were positively correlated with the
corresponding ratio of immune cells, stromal cells, and the
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sum of both, respectively, which further mean that the
higher score reflects the larger ratio of the corresponding
component in tumor microenvironment. The Corrplot R
package (https://cran.r-project.org/web/packages/corrplot/
vignettes/corrplot-intro.html) was used to perform the
correlation analysis between the NRF2 pathway-related
gene expressions and ImmuneScore, StromalScore, or
ESTIMATEScore with method of Spearman (p < 0:05)
(Supplementary Figure 2).

2.8. The Proportion of Immune Cells across 33 Cancer Types
Based on CIBERSORT Method. To quantify the proportion
of immune cells across 33 cancer types, the CIBERSORT
algorithm and the LM22 gene signature were used, which
allows for highly sensitive and specific discrimination of 22
human immune cell phenotypes. Gene expression profiles
were prepared with standard annotation files, and data were
uploaded to the CIBERSORT web portal (http://cibersort
.stanford.edu/), with the algorithm based on the LM22 sig-
nature and 1,000 permutations (Supplementary Table 8).
The Corrplot R package (https://cran.r-project.org/web/
packages/corrplot/vignettes/corrplot-intro.html) was used
to perform the correlation analysis between the NRF2
pathway-related gene expressions and different immune
cells with the Spearman method (p < 0:05) (Supplementary
Figure 2), including naïve B cells, memory B cells, plasma
cells, CD8+ T cells, naïve CD4+ T cells, resting memory
CD4+ T cells, activated memory CD4+ T cells, follicular
helper T cells, regulatory T cells (Tregs), gamma delta T
cells, resting NK cells, activated NK cells, monocytes,
macrophages M0, macrophages M1, macrophages M2,
resting dendritic cells, activated dendritic cells, resting mast
cells, activated mast cells, eosinophils, and neutrophils.

2.9. The Associations between the NRF2 Pathway-Related
Gene Expressions and Cancer Stemness or Drug Sensitivity.
RNA expression-based (all set of available genes) stemness
scores (RNAss) were derived from the stemness group based
on epigenetically regulated RNA expressions of 103
stemness-related genes. The Corrplot R package (https://
cran.r-project.org/web/packages/corrplot/vignettes/corrplot-
intro.html) was used to perform the correlation analysis
between the NRF2 pathway-related gene expressions and
RNAss with the Spearman method (p < 0:05). The NCI-60
cell line panel was developed as an anticancer drug efficacy
screen by the developmental therapeutics program (DTP)
of the US National Cancer Institute (NCI). Many thousands
of compounds have been applied to the NCI-60. CellMiner
(https://discover.nci.nih.gov/cellminer/) was a web-based
suite of genomic and pharmacologic tools to explore tran-
script and drug patterns in the NCI-60 cell line set. The asso-
ciations between the NRF2 pathway-related gene
expressions and drug sensitivity were performed by the
Corrplot R package with the Spearman method (p < 0:05)
based on the corresponding data from CellMiner (Supple-
mentary Table 9).

2.10. Construction of Prognostic Models and Their
Associations with Clinical Characteristics. To compare simi-

larities and differences of prognostic models among different
tumors, the cancers of the respiratory system (LUSC), the
gynecological system (BRAC), and the digestive system
(STAD) were selected to construct prognostic models as rep-
resentative examples (Supplementary Table 10). The total
dataset of each cancer was randomly divided into training
and testing sets using R package of caret (classification and
regression training) with proportionate-stratified random
sampling (https://cran.r-project.org/web/packages/caret/
index.html). The samples in the training set were analyzed
with the multivariate Cox regression analysis (steps
forward) to calculate riskscores and construct prognostic
models. The equation of riskscore was Riskscore = ∑

n
k−lEx

pk ∗ eHR
k, where n was the number of prognostic genes, Ex

pk was the expression value of the prognostic genes, and
eHR

k was the estimated regression coefficient of genes in
the multivariate Cox regression analysis [26]. The samples
of testing dataset were divided into high- and low-risk
groups according to the formula of riskscores derived from
the training set. After removing patients whose survival
time was NA, the Kaplan-Meier (KM) survival analysis was
used to plot survival curves, and compared with the log-
rank test, respectively. In additional, receiver operating
characteristic (ROC) curve was used to test classification
measurement based on riskscore in the total dataset
(including training and testing sets). The corresponding
clinical characteristics of LUCS, BRAC, and STAD were
obtained from TCGA (https://portal.gdc.cancer.gov/). The
multivariate Cox regression model was used to analyze
whether riskscore could be independent risk factor in
cancer. Clinic correlation between high- and low-risk score
groups was performed with pheatmap R package (https://
www.rdocumentation.org/packages/pheatmap/versions/1.0
.12).

3. Results

3.1. Widespread Genetic Alterations of NRF2 Pathway-
Related Genes between Tumor and Normal Groups across
Different Cancer Types. The heatmap of differently expressed
NRF2 pathway-related genes showed that widespread
genetic alterations generated between tumor and normal
groups across 18 cancer types, including BLCA, BRCA,
CHOL, COAD, ESCA, GBM, HNSC, KICH, KIRC, KIRP,
LIHC, LUAD, LUSC, PRAD, READ, STAD, THCA, and
UCEC (Figure 1(a), Supplementary Figure 1, and
Supplementary Table 5). The heatmap showed that most of
the NRF2 pathway-related genes were significantly
upregulated between tumor and normal groups across
different cancer types. For example, KEAP1 was
significantly upregulated in cancers BLCA, BRCA, CHOL,
COAD, ESCA, GBM, HNSC, KIRC, LIHC, LUAD, LUSC,
PRAD, READ, and THCA (Supplementary Figure 1).
However, FOS and JUN were significantly downregulated
in most of cancer compared to corresponding normal
tissues. For example, FOS was significantly downregulated
in cancers BLCA, BRCA, CHOL, COAD, HNSC, KICH,
KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, READ, STAD,
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THCA, and UCEC. JUN was significantly downregulated in
cancers BLCA, BRCA, KICH, KIRP, LIHC, LUAD, LUSC,
PRAD, STAD, THCA, and UCEC (Supplementary
Figure 1). Here, the NRF2 expression was taken as an
example to show the differential expressions between
tumor and normal groups across 18 cancer types
(Figure 1(b)). NRF2 was significantly upregulated in
cancers GBM and LUSC and downregulated in cancers

BLCA, BRCA, CHOL, COAD, HNSC, KICH, KIRC, KIRP,
LIHC, LUAD, PRAD, STAD, THCA, and UCEC.

3.2. The Overall Average Mutation Frequency of NRF2
Pathway-Related Genes across 33 Cancer Types. The overall
average mutation frequencies of NRF2 pathway-related
genes ranged from 0.01 to 50%. The types of mutations

included 3′ prime UTR variant, 5′ prime UTR variant,
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Figure 1: Pan-cancer analysis of expression and mutation alterations of NRF2 pathway-related genes. (a) The NRF2 pathway-related gene
expression alterations across 18 cancer types. (b) The expression of NRF2 between tumor and normal tissues across 18 cancer types. (c) The
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coding sequence variant, downstream gene variant, frame
shift variant, inframe deletion, inframe insertion, intron var-
iant, missense variant, splice acceptor variant, splice donor
variant, splice region variant, start lost, stop gained, stop lost,

stop retained variant, synonymous variant, and upstream
gene variant. The waterfall map of mutation distribution
showed the detailed mutation status of NRF2 pathway-
related genes from high to low percentage, PIK3CA,
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Figure 2: Pan-cancer analysis of associations of the NRF2 pathway-related genes with TMB and MSI. (a) The associations of the NRF2
pathway-related gene expressions with TMB across 33 cancer types. (b) The association of the NRF2 expression with TMB across 33
cancer types. (c) The associations of the NRF2 pathway-related gene expressions with MSI across 33 cancer types. (d) The association of
the NRF2 expression with MSI across 33 cancer types. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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CREBBP, EP300, NRF2, KEAP1, CUL3, EIF2AK3, MAF,
BACH1, MAPK1, MAPK7, PRRT2, MAPK9, GSK3B,
MAPK8, JUN, ATF4, FOS, MAPK3, MAFF, RIT1, FOSL1,
MAFK, and MAFG (Figure 1(c) and Supplementary
Table 2).

3.3. The Significant Associations between the NRF2 Pathway-
Related Gene Expressions and TMB or MSI or CNV. TMB as

a new biomarker in cancers has received increasing attention
in recent years. The correlations between the NRF2
pathway-related gene expressions and TMB score (Supple-
mentary Table 3) were evaluated across 33 cancer types
(Figure 2(a)). Multiple genes were significantly correlated
with TMB score in different cancer types, such as ATF4,
FOSL1, GSK3B, JUN, KEAP1, MAF, MAFF, MAPK7,
MAPK8, and RIT1. Here, NRF2 was taken as an example
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Figure 3: Pan-cancer analysis of associations of the NRF2 pathway-related gene expression with CNV. (a) The association of the NRF2
pathway-related gene expressions with CNV across 33 cancer types. (b) The correlation analysis between the NRF2 expression and CNV
in LUSC. (c) The correlation analysis between the NRF2 expression and CNV in STAD. (d) The correlation analysis between the NRF2
expression and CNV in BRCA.
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Figure 4: Continued.
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Figure 4: Continued.
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to show the radar plot of NRF2 expression and TMB score
across different cancers. The expression of NRF2 showed
negative correlation in BRCA, ESCA, THCA, and PRAD
and positive correlation in HNSC, LGG, and THYM
(Figure 2(c)).

MSI as a new biomarker in cancers has also received
increasing attention in recent years. The correlations
between the NRF2 pathway-related gene expressions and
MSI score (Supplementary Table 4) were evaluated across
33 cancer types (Figure 2(b)). Multiple genes were
significantly correlated with MSI score in different cancer
types, such as ATF4, BACH1, CREBBP, CUL3, EP300,
GSK3B, MAPK9, NRF2, PIK3CA, and PRRT2. Here, NRF2
was taken as an example to show the radar plot of NRF2
expression and MSI score across different cancers. The
expression of NRF2 showed negative correlation in DLBC,
BLCA, LGG, PAAD, SARC, SKCM, BRCA, and PRAD and
positive correlation in READ (Figure 2(d)).

The associations between the NRF2 pathway-related
gene expressions and CNV status (including single deletion,
normal, and single gain) showed that multiple genes were
significantly correlated with CNVs in many cancer types,
such as BLCA, BRCA, CESC, HNSC, LGG, LUAD, LUSC,
OV, PRAD, SARC, SKCM, and UCEC (Figure 3(a)). Here,
NRF2 was taken as an example to show the boxplots of
NRF2 expression and its CNV status in LUSC, STAD, and
BRCA (Figures 3(b)–3(d)).

3.4. Clinical Relevance of NRF2 Pathway-Related Genes
across Different Cancer Types. The overall survival of the
NRF2 pathway-related genes across 33 cancer types was ana-
lyzed, and many of them were significantly related to patient
survival rates (Figure 4(a)). ACC, KIRC, and LGG showed a
lot of significant results; for example, the high expressions of
ATF4, FOSL1, EAP1, AFF, APK1, APK7, APK8, and RIT1
were significantly related to poor survival rate in ACC, but
the high expressions of MAPK9 were significantly related
to better survival rate in ACC. The high expressions of
ATF4, FOSL1, AFK, and PRRT2 were significantly related
to poor survival rate in KIRC, but the high expressions of
CREBBP, CUL3, EP300, GSK3B, MAF, MAFG, MAPK1,
MAPK3, MAPK8, MAPK9, NRF2, PIK3CA, and RIT1 were
significantly related to better survival rate in KIRC. The high
expressions of BACH1, EIF2AK3, FOSL1, JUN, MAF,
MAFF, MAFK, NRF2, and RIT1 were significantly related
to poor survival rate in LGG, but the high expressions of
EP300, MAPK1, MAPK8, MAPK9, and PRRT2 were signif-
icantly related to better survival rate in LGG. Here, the
Kaplan-Meier survival analysis curves of NRF2 were pro-
vided in KIRC (Figure 4(b)), SARC (Figure 4(c)), MESO
(Figure 4(d)), and LGG (Figure 4(e)) as an example. The
function of the same genes in different kinds of cancers
might be different.

Furtherly, the expressions of the NRF2 pathway-related
genes were acted as continuous variables to perform the
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Figure 4: Overall survival of the NRF2 pathway-related genes across 33 cancer types. (a) Summary of the correlation between NRF2
pathway-related gene expressions and patient survival. Red represents a higher expression of the NRF2 pathway-related genes associated
with worse survival, and green represents an association with better survival. Only p value < 0.05 was shown. (b) Kaplan-Meier survival
curve of the NRF2 expression in KIRC. (c) Kaplan-Meier survival curve of the NRF2 expression in SARC. (d) Kaplan-Meier survival
curve of the NRF2 expression in MESO. (e) Kaplan-Meier survival curve of the NRF2 expression in LGG. The patients grouped by
global expression pattern of the NRF2 pathway-related genes based on median value.
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Cox regression analysis for obtaining hazard ratio (HR)
across 33 cancer types (Figure 5 and Supplementary
Table 6). The results furtherly verified OS analysis, which
indicated that the same gene in different cancer types
would be risky factor (HR > 1) or protective factor (HR < 1
). Meanwhile, a series of genes with similar function would
also be identified as risky factor or protective factor in the
same cancer. For example, NRF2 acted as risky factor in
PAAD (HR = 1:710, p = 0:019) and LGG (HR = 3:510, p =
5:20E − 07) but acted as protective factor in SARC
(HR = 0:586, p = 0:0001), MESO (HR = 0:558, p = 0:002),
KIRC (HR = 0:663, p = 0:002), and SKCM (HR = 0:739, p
= 0:004). For another example, FOSL1 (HR = 1:326, p =
6:81E − 06), GSK3B (HR = 1:326, p = 6:81E − 06), PRRT2
(HR = 1:520, p = 5:25E − 05), MAPK7 (HR = 1:722, p =
0:003), and ATF4 (HR = 1:458, p = 0:011) acted as risky
factor in KIRC, but MAPK8 (HR = 0:663, p = 9:23E − 05),
CUL3 (HR = 0:690, p = 2:64E − 05), EIF2AK3 (HR = 0:765,
p = 2:64E − 05), MAPK9 (HR = 0:732, p = 0:001), CREBBP

(HR = 0:729, p = 9:30E − 05), PIK3CA (HR = 0:728, p =
0:004), MAPK1 (HR = 0:873, p = 0:0001), MAPK3
(HR = 0:812, p = 0:0001), EP300 (HR = 0:834, p = 0:044),
RIT1 (HR = 0:991, p = 0:012), and MAF (HR = 1:458, p =
0:012) acted as protective factor in KIRC (Supplementary
Table 6).

Moreover, the associations between pathologic stage
(stages I, II, III, and IV) and NRF2 pathway-related genes
were analyzed across 33 cancer types. The main associations
are shown in KIRC and THCA (Figure 6(a)). For example,
the expressions of MAPK8, MAPK3, CREBBP, MAFG,
EP300, CUL3, GSK3B, PIK3CA, MAPK1, MAF, RIT1,
KEAP1, FOS, and MAPK7 were significantly different
among different stages in KIRC. The expressions of MAPK8,
MAF, NRF2, MAFF, EIF2AK3, MAFK, BACH1, CUL3,
FOSL1, and EP300 were significantly different among differ-
ent stages in THCA. The expression of MAPK8 was signifi-
cantly different among different stages in cancers KIRC,
THCA, COAD, OV, CESC, and ACC. The expression of
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Figure 5: The distribution of hazard ratios of NRF2 pathway-related genes across different cancer types with the Cox regression survival
analysis.
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PIK3CA was significantly different among different stages in
cancers UCEC, KIRC, OV, LIHC, SKCM, MESO, and UCS.
Here, an example was taken to present the association
between pathologic stages and expression of NRF2
pathway-related genes in LUSC, which showed the signifi-
cant difference of MAPK1, MAPK3, JUN, CREBBP, and
MAPK7 among different pathological stages (Figure 6(b)).

3.5. Association of NRF2 Pathway-Related Gene Expressions
with Immune Microenvironment. Immune microenviron-
ment was an important part in the field of cancer evolution.
To explore association of NRF2 pathway-related gene
expressions with immune microenvironment, we analyzed
the immune subtypes (C1, C2, C3, C4, and C5), immune-
related scores (ImmuneScore, StromalScore, and ESTIMA-
TEScore that are listed in Supplementary Table 7), and
immune cells (naive B cells, memory B cells, plasma cells,
CD8+ T cells, naive CD4+ T cells, resting memory CD4+ T
cells, activated memory CD4+ T cells, follicular helper T
cells, Tregs cells, gamma delta T cells, resting NK cells,
activated NK cells, monocytes, macrophages M0,

macrophages M1, macrophages M2, resting dendritic cells,
activated dendritic cells, resting mast cells, activated mast
cells, eosinophils, and neutrophils that are listed in
Supplementary Table 8). The expressions of NRF2
pathway-related genes were significantly different among
immune subtypes (Figure 7), which indicated that the
NRF2 pathway might have crosstalk with immune system.
Further studies showed that the same NRF2 pathway-
related gene was significantly associated with immune-
related scores in various cancers; especially, FOS, FOSL1
and MAF were positively associated with immune-related
scores in various cancers, and CUL3, GSK3B, KEAP1, and
MAPK8 were negatively associated with immune-related
scores in various cancers. It was also clear that a series of
NRF2 pathway-related genes were significantly related to
immune-related scores in the same cancer; for example,
BACH1, GSK3B, JUN, MAF, MAFF, MAFG, MAPK7,
NRF2, PRRT2, and RIT1 were positively associated with
immune-related scores in DLBC. BACH1, CREBBP, CUL3,
EP300, MAPK1, NRF2, and PIK3CA were negatively
associated with immune-related scores in THYM
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Figure 6: The clinical stage relevance of the NRF2 pathway-related genes across 33 cancer types. (a) Summary of the correlation between the
NRF2 pathway-related gene expressions and clinical stages. Only p value < 0.05 was shown in blue. (b) Box plots showed the expression
distribution of the NRF2 pathway-related genes among different clinical stages in LUSC. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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(Figure 8(a) and Supplementary Figure 2). The relationship
between the NRF2 pathway-related gene expressions and
CD8+ T cells generally showed negative relationship; for
example, CUL3, EP300, GSK3B, MAPK1, MAPK9, and
PIK3CA were significantly related to CD8+ T cell
percentage in the multiple cancers (Figure 8(b)). The data
of other immune cells are shown in Supplementary
Figure 2, and the percentage of naive B cells were
significantly related to many NRF2 pathway-related genes,
such as ATF4, BACH1, CUL3, EP300, FOS, FOSL1, JUN,
KEAP1, MAF, MAFG, MAFK, MAPF1, MAPK3, and
MAPK9 in TGCT. In terms of the activated NK cells, they

were generally negatively related to the NRF2 pathway-
related gene expressions in multiple cancers, except for
KEAP1 gene and THYM cancer, while the resting memory
CD4+ T cells were generally positively related to the NRF2
pathway-related gene expressions in multiple cancers,
except for ATF4, KEAP1, and MAPK3.

3.6. Association of NRF2 Pathway-Related Gene Expressions
with RNAss and Drug Sensibility. Therapy-induced stemness
and nongenetic cancer cell plasticity in tumor strengthened
cancer cells, and RNAss reflected stemness index. Most of
the NRF2 pathway-related genes showed extensively
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Figure 7: The expression difference of the NRF2 pathway-related genes among different immune subtypes across 33 cancer types.
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Figure 8: The relevance of the NRF2 pathway-related gene expressions and immune cells across 33 cancer types. (a) The correlation
between NRF2 pathway-related gene expressions and ImmuneScore across 33 cancer types. (b) The correlation between the NRF2
pathway-related gene expressions and CD8+ T cells across 33 cancer types. Red dots represent positive correlation, and blue dots
represent negative correlation. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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negative relationships with RNAss; for example, the expres-
sions of FOS, JUN, MAF, MAFK, and PRRT2 in various
cancers were negatively related to RNAss. However, the
expressions of CUL3, GSK3B, KEAP1, and MAPK9 showed
positive relationship with RNAss in various cancers
(Figure 9(a)). Moreover, the associations of NRF2
pathway-related genes with drug sensibility were explored.
The drugs included tamoxifen, bafetinib, AFP464, raloxi-
fene, SR16157, hypothemycin, dexrazoxane, fulvestrant,
vemurafenib, vorinostat, dabrafenib, CUDC-305, cobimeti-
nib (isomer 1), XK-469, dasatinib, selumetinib, dromostano-
lone propionate, oxaliplatin, LDK-378, denileukin diftitox
ontak, triciribine phosphate, isotretinoin, amonafide, simva-

statin, chelerythrine, XL-147, nelfinavir, mitomycin, lenvati-
nib, staurosporine, pyrazoloacridine, estramustine, 5-
fluorodeoxyuridine 10mer, and alectinib (Figure 9(b) and
Supplementary Table 9). Some NRF2 pathway-related
genes showed negative association between drug sensibility,
such as FOSL1 and tamoxifen, JUN and bafetinib, MAFF
and AFP464, FOSL1 and raloxifene, FOSL1 and SR16157,
JUN and hypothemycin, MAFF and dexrazoxane, and
FOSL1 and fulvestrant (correlation coefficient < −0:45).
Some NRF2 pathway-related genes showed positive
association between drug sensibility, such as JUN and
staurosporine, MAPK8 and pyrazoloacridine, FOSL1 and
dasatinib, MAF and denileukin diftitox ontak, MAF and
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Figure 9: Pan-cancer analysis of associations of the NRF2 pathway-related genes with RNAss and drug sensitivity. (a) The correlation
between the NRF2 pathway-related gene expressions and RNAss across 33 cancer types. Red dots represent positive correlation, and blue
dots represent negative correlation. (b) The relevance of the NRF2 pathway-related gene expressions and drug sensitivity.
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estramustine, MAPK3 and 5-fluoro deoxy uridine 10mer,
MAF and alectinib, and FOSL1 and staurosporine
(correlation coefficient > 0:45).

3.7. The Construction of NRF2 Pathway-Related Gene
Signatures in Heterogeneous Tumors. To construct the
NRF2 pathway-related gene signatures, TCGA LUSC dataset
(n = 501), BRCA dataset (n = 1098), and STAD dataset
(n = 375) were included in the multivariate Cox regression
analysis. Finally, a prognostic model containing five genes
(CUL3, EIF2AK3, JUN, MAFF, and MAPK3) was estab-
lished to assess the prognosis of each patient in LUSC. A
prognostic model containing seven genes (CREBBP,
EP300, FOS, GSK3B, MAFF, MAFK, and PIK3CA) was
established to assess the prognosis of each patient in BRCA.
A prognostic model containing five genes (BACH1, KEAP1,
MAFG, MAPK3, and PIK3CA) was established to assess the
prognosis of each patient in LUSC. The detailed information
of the multivariate Cox regressions in LUSD, BRCA, and
STAD was shown (Table 1). The construction of NRF2-
related gene signatures was different in heterogeneous
tumors. The optimized signatures in LUSC, BRCA, and
STAD contained different NRF2 pathway-related genes.
Somehow, they share some same genes, and the weight was
different (Figure 9(c)). For example, the correlation coeffi-
cient of MAFF was 0.35 in LUSC, while it was -0.30 in
BRCA. The correlation coefficient of PIK3CA was 0.60 in
BRCA, while it was 0.99 in STAD.

The total datasets were divided into training sets and val-
idation sets in LUSC, BRCA, and STAD, respectively (Sup-
plementary Table 10). The KM plots were used to evaluate
the performance of NRF2 pathway-related gene signatures
in predicting the outcome of cancer patients. For both

training sets and validation sets, the OS between low- and
high-risk groups classified by risk score of the constructed
prognostic model was significantly different in LUSC
(Figures 10(a) and 10(b)), BRCA (Figures 11(a) and 11(b)),
and STAD (Figures 12(a) and 12(b)). Then, the
performances of prognostic models were further assessed
with other common prognostic factors by the multivariate
Cox regression analysis. Five-gene signature cannot be
used as independent prognostic factor in LUCS (p = 0:476,
Figure 10(c)). Seven-gene signature can be used as
independent prognostic factor in BRCA (p < 0:001,
Figure 11(c)). Five-gene signature can be used as
independent prognostic factor in STAD (p = 0:005,
Figure 12(c)). ROC curves were used to evaluate the
performance of gene signatures, and the value of AUC was
more than 0.50 in the training set in LUSC (Figure 10(d)),
BRCA (Figure 11(d)), and STAD (Figure 12(d)),
respectively. The value of AUC in the validation set was
also more than 0.50 in LUSC (Figure 10(e)), BRCA
(Figure 11(e)), and STAD (Figure 12(e)). Additionally, all
LUSC samples can be well divided into two groups (high
risk and low risk) according to risk score based on
verification of PCA (Figure 10(f)). These results indicated
that the constructed prognostic models were robust in
predicting the outcome of patients.

The heatmap showed that the risk groups had a signifi-
cant association with clinical features in LUSC, including
anatomic subdivision, age at initial diagnosis, pathologic N
stage, targeted molecular therapy, and pathologic stage
(Figure 10(g) and Supplementary Table 11). The heatmap
showed that the risk groups had a significant association
with clinical features in BRCA, including age at initial
diagnosis, pathologic stage, ER status, HER2 status,

Table 1: The correlation coefficients of the Cox regression in LUSC, BRCA, and STAD. ∗p < 0:05 and ∗∗p < 0:01.

Cancer type Id Coef HR HR.95 L HR.95H p value

LUSC

CUL3 0.64 1.90 1.04 3.46 0.036∗

EIF2AK3 -0.37 0.69 0.44 0.97 0.049∗

JUN 0.29 1.34 1.06 1.70 0.015∗

MAFF 0.35 1.42 1.05 1.92 0.021∗

MAPK3 0.40 1.49 1.04 2.31 0.049∗

BRCA

CREBBP -0.54 0.58 0.35 0.96 0.035∗

EP300 -0.55 0.58 0.34 0.99 0.047∗

FOS -0.19 0.83 0.71 0.97 0.016∗

GSK3B 0.51 1.66 1.04 2.99 0.043∗

MAFF -0.30 0.74 0.30 0.99 0.042∗

MAFK 0.55 1.73 1.16 2.60 0.008∗∗

PIK3CA 0.60 1.83 1.03 3.23 0.038∗

STAD

BACH1 -0.58 0.56 0.32 0.98 0.042∗

KEAP1 -0.59 0.55 0.32 0.96 0.036∗

MAFG -0.98 0.37 0.21 0.64 0.001∗∗

MAPK3 0.36 1.43 0.11 2.15 0.044∗

PIK3CA 0.99 2.74 1.33 5.64 0.006∗∗
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Figure 10: Continued.
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luminal type, and pathologic T stage (Figure 11(f) and
Supplementary Table 11). The heatmap showed that the
risk groups had a significant association with clinical
features in STAD, including pathologic N stage
(Figure 12(f) and Supplementary Table 11).

4. Discussion

Oxidative stress and the multifaceted results of oxidative
damage were important contributors to the initiation, pro-
motion, and progression in various cancers. The impacts of
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Figure 10: The Cox regression identified the prognostic model in LUSC. (a) Survival curve between high- and low-risk score groups in
training set in LUSC. (b) Survival curve between high- and low-risk score groups in testing set in LUSC. (c) The multivariate Cox
regression analysis of risk factors in LUSC. (d) ROC curve in training set based on risk score in LUSC. (e) ROC curve in the validation
set based on risk score in LUSC. (f) PCA plot based on risk score in LUSC. (g) The heatmap of clinical correlation between high- and
low-risk score groups in LUSC. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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oxidative stress on the body were widespread, including
DNA, RNA, protein, and lipid. Oxidative DNA might be
more vulnerable to be modified (methylation) or developed
mutation (point mutations, insertions, deletions, or chromo-
somal translocations), which may lead to the activation of
tumor suppressor gene or oncogene [27]. Oxidative RNAs,
including protein-coding RNAs and noncoding RNAs, also
induced modifications of bases and ribose, strand break,
and base excision. Oxidative RNA adducts (8-hydroxyade-
nine, 5-hydroxycitosine, and 8-oxoguanosine) could poten-
tially result in incorrect modification of gene expression,
inhibition of DNA repair enzymes, polymorphisms of anti-
oxidant enzymes, and errors in protein synthesis [28]. Oxi-
dative proteins mainly showed damaged amino acids,
changed enzyme activities, errors in protein structure, and
aberrant spectra of posttranslational modifications. The
development and application of new techniques have been
used to identify and quantify protein oxidation [29]. In addi-
tion, ROS can also react with lipids (polyunsaturated fatty
acids) resulting in lipid peroxidation. The product of lipid
peroxidation, such as malondialdehyde, was higher in a vari-
ety of cancers, including cervical, ovarian, brain, breast,
prostate, lung, chronic lymphocytic leukemia, bladder, renal,
and thyroid cancer [30]. Nrf2 as the heart of oxidative stress
response could quickly be translocated from cytoplasm into
the nucleus in response to oxidative stress. The accumulated
evidence reported that the Nrf2 signaling pathway involved
in multiple hallmarks of cancer, including tissue invasion
and metastasis, insensitivity to antigrowth signals, altered
redox homeostasis, limitless replicative potential, avoiding
immune destruction, sustained proliferative signaling,

genome instability, sustained angiogenesis, proteotoxic
stress, resistance to apoptosis, metabolite programming,
and tumor-promoting inflammation [16].

This study selected Nrf2 and Nrf2 pathway-related genes
to do a systematic analysis in pan-cancer, including ATF4,
BACH1, CREBBP, CUL3, EIF2AK3, EP300, FOS, FOSL1,
GSK3B, JUN, KEAP1, MAF, MAFF, MAFG, MAFK, MAPK1,
MAPK3,MAPK7,MAPK8,MAPK9, NRF2, PIK3CA, PRRT2,
and RIT1. These genes directly interacted with Nrf2 in Nrf2
signaling pathway, which is involved in oxidative stress with
Nrf2 based on some clinical and basic research applications
[31]. KEAP1 interacted withNrf2 in a redox-sensitive manner,
whose dissociation could activate Nrf2 to transfer from cyto-
plasm to the nucleus, contributing to cancer progression.
Using a mutant K-ras/p53 mouse model to study the function
of Keap1 deletion, the formation of invasive cholangiocarci-
noma occurred and genetic sequencing identified a number
of upregulated Nrf2 target genes [32]. Cul3 gene, as the core
component of an E3 ubiquitin ligase complex, played a critical
role in the ubiquitylation-mediated protein degradation.
Under normal conditions, Nrf2 was maintained at very low
concentrations by interacting with Keap1 and the Cul3 E3
ligase. Using siRNA to silence Cul3 in breast cancer cells,
microarray analysis revealed that the expressions of oxidative
stress downstream genes (AKR1C1, UGDH, TXN, GCL, and
NQO1) were overexpressed at least 2-fold. The upregulation
of Cul3 could deplete Nrf2 in breast cancer and was associated
with sensitivity to oxidative stress, carcinogens, and chemo-
therapy [33]. MAF was a DNA-binding protein that acts as a
homodimer or a heterodimer, containing leucine zipper
domain. Nrf2 was one of the binding partners of small MAF

(f)

Figure 11: The Cox regression identified the prognostic model in BRCA. (a) Survival curve between high- and low-risk score groups in
training set in BRCA. (b) Survival curve between high- and low-risk score groups in testing set in BRCA. (c) The multivariate Cox
regression analysis of risk factors in BRCA. (d) ROC curve based on risk score in BRCA. (e) ROC curve in the validation set based on
risk score in BRCA. (f) The heatmap of clinical correlation between high- and low-risk score groups in BRCA. ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001.
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proteins, and the Nrf2/small Maf DNA-binding complexes
help to recognize stress response element sites in response to
oxidative stress [34]. PIK3CA protein represented the catalytic
subunit, which used ATP to phosphorylate phos-
phatidylinositol, phosphatidylinositol 4-phosphate and
phosphatidylinositol 4,5-bisphosphate. PIK3CA and AKT
(PI3K/Akt) pathway was one of the most frequently dysregu-
lated pathways in metabolic rewiring and ROS metabolism.
The hyperactive PI3K/Akt signaling generated metabolic
byproducts to stimulate ROS production, and further research
focusing on the association of PIK3CA-mutant tumors and
redox homeostasis could contribute suppress tumor growth
and overcome drug resistance [35]. The MAP kinase family
acted as an integration point for multiple cellular processes
and targeted many specific transcription factors in response
to various cellular stressors (oxidative stress, DNA damage,
and endoplasmic reticulum stress) [36]. Studies demonstrated
that the MAP kinases, such as ERK1/2, JNK, and p38, were
activated in response to oxidative stress. The process often
involved in reaction networks, not just one MAP kinase but
a series of interlinked enzymes that initiated a cascade of
signals. Furthermore, the redox-activated MAP kinase family
also had crosstalk with other effector pathways, for example,
PI3K interaction [37]. The heatmap of the Nrf2 pathway-
related genes across 18 cancer types showed the significant
overexpressions of some genes, including FOSL1 in COAD,
ESCA, and READ, MAFG in CHOL, MAPK3 in BRCA, and

RIT1 in CHOL (Log2foldchange > 1:5) and the significant down-
regulations of some genes, including FOS in BLCA, BRCA,
HNSC, KIRC, KIRP, LIHC, LUAD, LUSC, THCA, and
UCEC, MAF in UCEC, MAPK9 in GBM, PRRT2 in GBM,
and JUN in BLCA, BRCA, KICH, THCA, and UCEC
(Log2foldchange < −1:5). Furthermore, to investigate clinical
characteristics that were associated with the NRF2 pathway-
related genes, many dysregulated genes were significantly
related to OS and pathological stages. Some highly consistent
results might be important; for example, the overexpressed
FOSL1 indicated poor survival in ESCA patients. The under-
expressed PRRT2 indicated good survival in GBM patients.
Some genes played poor-prognostic factors in cancers, for
example, ATF4 in ACC, BACH1 in LGG and UVM, and
FOSL1 in DLBC and UVM. Some genes played well-
prognostic factors in cancers, for example, MAFK in KICH,
MAPK3 in PCPG and MESC, NRF2 in UVM, and PIK3CA
in KIRC. This study provided dysregulation of the NRF2
pathway-related genes in various cancers with corresponding
clinical features. The highly consistent results might be poten-
tial biomarker in cancers.

This study not only analyzed the expressions of the Nrf2
pathway-related genes but also focused on the mutation data.
PIK3CAwas one of the most commonly mutated genes across
different cancer types, and this study also obtained consistent
results with the published reports. When compared to the
wild-type PIK3CA protein, the mutation type prompted

(f)

Figure 12: The Cox regression identified the prognostic model in STAD. (a) Survival curve between high- and low-risk score groups in
training set in STAD. (b) Survival curve between high- and low-risk score groups in testing set in STAD. (c) The multivariate Cox
regression analysis of risk factors in STAD. (d) ROC curve based on risk score in STAD. (e) ROC curve in the validation set based on
risk score in STAD. (f) The heatmap of clinical correlation between high- and low-risk score groups in STAD. ∗p < 0:05, ∗∗p < 0:01, and
∗∗∗p < 0:001.
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transformation and tumorigenicity. Efforts to target new hot-
spot mutations in PIK3CA were on the rise, which induced
PI3K-based cancer drugs continuing to emerge in the clinical
trials [38]. Aberrant expression of PIK3CA was recognized
as the major target genes involved in oxidative stress-
induced carcinogenesis. It might be a potential method to
study the pathophysiologic roles of somatic mutations and
develop highly specific agents in response to oxidative stress.
Comprehensive genomic analyses also identified somatic
mutations or other alterations in the NRF2 and KEAP1genes.
The somatic mutations in KEAP1, NRF2, and other mecha-
nisms increasing ROS could disrupt KEAP1-NRF2 binding
sites and aberrantly activate NRF2 [39]. The EP300-G211S
mutation was exclusively identified in the triple-negative
breast cancer patients, and its presence was significantly asso-
ciated with overall other pathological somatic mutational pat-
terns. During long-term follow-up of triple-negative breast
cancer patients, EP300-G211S was proved to be a protective
factor, which decreased breast cancer-specific mortality and
predicted a lower risk for relapses [40]. GSK3B encoded a
serine-threonine kinase, belonging to the glycogen synthase
kinase subfamily. It was involved in several cancers, including
prostate cancer, leukemia, hepatic carcinoma, cholangiocarci-
noma, melanoma, and breast cancer. GSK3B played a role in
oxidative stress and could be a possible therapeutic target of
synthetic inhibitors in many diseases. The mutation of various
phosphorylation sites in GSK3B was identified in cell nuclei of
prostate cancer tissue samples and contributed to prostate
cancer progression by increasing protein kinase B/Akt and
Akt activity [41]. Some high frequency of mutations, such as
PIK3CA, CREBBP, EP300, KEAP1, and CUL3, should be
focused on and especially PIK3CA mutations that have been
reported in many published data [38]. Those mutations were
expected to become new targets for cancer biotherapy.

This study also explored the association between the
NRF2 pathway-related gene expressions and TMB, MSI, or
CNV. TMB reflected cancer mutation quantity, which was
predictive of survival benefit in patients with various can-
cers, and was regarded as the most prevalent biomarker to
predict immunotherapy. EP300 as one of frequently mutated
genes in the bladder cancer was significantly associated with
increased TMB and enhanced antitumor immune response,
which might serve as a new biomarker to predict clinical
prognosis and immune response in bladder cancer [42].
TMB might additionally confer immunotherapy sensitivity,
so further study which genes contribute more to increase
TMB would be helpful for targeted therapy combination.
The colorectal cancers with PIK3CA mutation showed a
higher TMB than nonmutated cancers [43]. In this study,
some high correlated TMB genes, such as ATF4 in DLBC,
EIF2AK3 in LAML, MAF in DLBC, MAFF in ACC, MAFK
in THYM, MAPK8 in ACC, NRF2 in THYM, and RIT1 in
ACC (correlation coefficient > 0:4), should be focused on.
MSI generated from loss or gain of repetitive DNA tracts,
which was used as diagnostic phenotype in endometrial, gas-
trointestinal, and colorectal tumors. Those cancers were
divided into MSI, MSI-H (microsatellite instability-high),
MSI-L (microsatellite instability-low), and MSS (microsatel-
lite stability) clusters. Pembrolizumab and nivolumab were

approved by the FDA for the treatment of MSI-H cancers.
In the clinical trial of pembrolizumab for colorectal cancer
patients, the immune-related objective response rate of
MSI-H patients was 40%, while that of MSS patients was
0% [44]. Several lines of evidence showed that EP300 had
mononucleotide repeats in exons 27 and 31, which might
be mutation targets in gastric and colorectal cancers with
microsatellite instability. The expressional loss of EP300
might be one of the meaningful characteristics for MSI-H
cancers [45]. Another study identified the role of MSI status
in mutations of exons 9 and 20 of the PIK3CA gene in gas-
tric cancers. A majority of patients with the PIK3CA muta-
tion had MSI and had poor 5-year survival rate. The
mutations of exons 9 and 20 showed different 5-year survival
rate and for patients with the mutation in exon 9 were poor
[46]. In this study, some high correlated MSI genes, such as
BACH1 in DLBC, CUL3 in DLBC, MAFK in DLBC,
MAPK1 in DLBC, MAPK9 in ACC, PIK3CA in DLBC,
and PRRT2 in CHOL (correlation coefficient > 0:4), should
be focused on. CNV might drive cancer progression through
diversified forms, including single deletion, single gain, dou-
ble deletion, and double gain. The expression of correspond-
ing genes might be affected by CNV status, and expression
dysregulation occurred in various cancers. For example,
PIK3CA CNV gain was noted in cervical cancer patients.
Compared to CNV gain with wild type PIK3CA patients,
CNV normal with positive PIK3CA mutation was associated
with poorer OS and trend to worse PFS. This study indicated
that PIK3CA mutational status with CNV status (delete,
gain, or normal) might be important in predicting outcome
in cervical cancer patients [47]. TMB, MSI, and CNV that
were quantifiable clinical indexes, combined with several
biomarkers, would be a new paradigm for clinical practice.

Accumulating evidence demonstrated some crosstalk
mechanisms between oxidative stress and immune regula-
tion, including immune evasion, inflammation, innate
immune responses, adaptive immunity, immune-related
gene expression, activation, proliferation and differentiation
of immune-related cells, immune cell interaction, immune
suppression, and inflammatory mediators [48, 49]. Under
many pathophysiologic conditions, oxidative stress and
inflammatory responses were integrated and amplified in
specialized cell types, such as cancer cells, stromal cells,
and essential immune cells, to facilitate the progression of
disease [50]. For example, inflammasomes were cytoplasmic
multiprotein complexes and played a crucial role in immune
surveillance. They could be activated by ROS production to
secret proinflammatory cytokine interleukin (IL)-1β and
IL-18 [51]. The oxidative stress mediators also suppressed
cellular immune system in tumor microenvironment, espe-
cially effector T cell function. The T cell state and differential
response might depend on how long and how much ROS
exposure. Some T cells were even dead when they were
exposed to elevated ROS concentrations for a long time
[52]. In turn, high active ROS production can also be gener-
ated by neutrophils and macrophages in the form of “oxida-
tive burst.” Thus, it can be stated that tumor
microenvironment is virtually a cauldron of redox and
inflammatory substances [53]. As the oxidative stress played
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a critical role in the immune microenvironment and antitu-
mor immune response, some studies evaluated PD-L1
expressions and functions treating with molecules and drugs
for oxidative stress. Increasing ROS could promote PD-L1
expressions in cancer cells, and conversely decreasing ROS
generally suppressed PD-L1. The variable PD-L1 response
to ROS modulation showed complex interplay between oxi-
dative stress and immune microenvironment [54]. Our data
showed that the expressions of all selected NRF2 pathway-
related genes were significantly different among six immune
clusters based on TCGA Pan-Cancer data, and those
immune system influenced wound healing, IFN-gamma
dominant, lymphocyte depleted, inflammatory, immunolog-
ically quiet, and TGF-beta dominant. Further analysis of the
association of immune score and immune-related cells
revealed the similar results; namely, those NRF2 pathway-
related genes played roles in immune regulation. Most of
the findings in this study were consistent with previous
reports according to GenCLiP 3 dataset (http://ci.smu.edu
.cn/genclip3/GeneAssociation.php) [55], and many NRF2
pathway-related genes participated in multiple immune
responses, including MAPK1, MAPK8, JUN, PIK3CA,
MAPK3, FOS, MAPK9, EP300, KEAP1, CREBBP, MAF,
ATF4, GSK3B, EIF2AK3, FOSL1, CUL3, MAPK7, BACH1,
and NRF2. Many evidences demonstrated the involvement
of NRF2 in immune evasion; for example, melanocytes trig-
gered the expression of PD-L1 with exposure of UV, which
mediated inhibitory interactions between effector T cells
and cancer cells in an NRF2-dependent manner [56].
BACH1/2 participated in oxidative stress-mediated apopto-
sis and was involved in macrophage-mediated innate immu-
nity, B cell differentiation, adaptive immune response, and T
cell homeostasis [57]. Inhibiting the function of PD-1/PD-
L1 became one of the effective methods to activate human
immune system and significantly improve the prognosis of
various cancers. The reduced MAPK1 phosphorylation was
proved to inhibit PD-L1 expression and improve the
immune response to pancreatic cancer [58]. Jun/FOS was a
central driver of toll-like receptor 7-induced immune
responses by dendritic cells, which could regulate CCL2 pro-
duction and IL-23 expression to recruit plasmacytoid den-
dritic cells [59]. PI3K-AKT signaling played a crucial role
in immune cell development, especially in CD4+ T cell dif-
ferentiation. When the pathway was blocked, the expres-
sions of key regulators of T follicular helper cells were
remarkably downregulated, including LCOS, TCF7, BCL6,
and CXCR5 [60]. The patterns of tumor-infiltrating immune
cells were related to tumor mutations and clinicopathologi-
cal parameters. One study analyzed somatic mutations and
tumor mutational burden and constructed immune patterns
in 197 patients with non-small-cell lung cancer. KEAP1 was
one of the identified somatic mutations that correlated with
specific immune cell infiltrates. The evaluation of somatic
mutation states and immune patterns helps to better define
the immunogenic potency in immunotherapy [61]. The
transcription factor c-Maf controlled immune responses by
inducing anti-inflammatory cytokine IL-10 in CD4+ T cells,
including helper T cells, TH2 cells, and TH17 cells [62]. This
study supported an immune-activated/inhibited role of

NRF2 pathway-related genes in various cancers. A regula-
tion of the immune effects of the NRF2 pathway-related
genes might therefore have the potential to increase the
responsiveness to existing checkpoint inhibitor immune
therapy or trigger the endogenous antitumor response for
cancer therapy.

Cancer stem cells (CSCs) have the properties of unlim-
ited growth, resistance to existing chemotherapy, and gener-
ation of diverse cancer cells. The majority of cancer cells
might be destroyed with current therapies, but many
researchers believed that CSCs without eradicating could
lead to tumor recurrence and metastasis [63]. Studies on
CSCs have shown that different oxidative stress-related sig-
naling pathways were involved in stemness processes. ROS
maintained the stemness-associated properties of cancer
cells and promoted phenotypic plasticity. When compared
to non-CSCs, CSC subpopulation was tested low ROS level
in the tumor mass. Lower level of intracellular ROS helped
acquisition of stemness during neoplasia [64]. Immunohis-
tochemical analyses showed colocalization of stemness
markers and oxidative DNA lesions in cancer cells [65]. This
study also explored the association between expressions of
NRF2 pathway-related genes and RNAss. The majority of
the genes showed negative correlation with RNAss, and
some of them were reported in previous stem cell studies
according to GenCLiP 3 dataset (http://ci.smu.edu.cn/
genclip3/GeneAssociation.php) [55], including MAPK1,
MAPK3, MAPK8, JUN, EP300, ATF4, KEAP1, FOSL1,
FOS, MAPK9, PRRT2, BACH1, GSK3B, RIT1, EIF2AK3,
and MAPK7. The study demonstrated that the stem cell
microenvironment gained a powerful proliferative ability
and stem phenotype through activation of PI3K signaling
pathway. In comparison to retinal pigment epithelium cells
cultured alone, the cells cocultured with stem cells had a
higher colony-forming efficiency with significantly upregu-
lated PI3K pathway-related genes [66]. The inhibition of
activated MAPK1 could enhance stemness maintenance in
the tumor microenvironment, which suggested that phos-
phorylated MAPK could be a putative target for cancer treat-
ment. The development of inhibitors in MAPK signaling
pathway might change the current stemness-based effects
[67], such as chemoresistance. MYH9 was an effective pro-
moter of tumor stemness, which degraded GSK3B and β-
catenin destruction complex by ubiquitin-mediated process
to induce the downstream tumor stemness phenotype. C-
Jun transcriptionally stimulated MYH9 expression to form
MYH9/GSK3B/β-catenin/JUN feedback loop regulating
CSC properties in hepatocellular carcinoma [68]. Addition-
ally, this study also explored the association of the NRF2
pathway-related genes with drug sensibility, and the signifi-
cant results would provide potential new therapeutic strat-
egy. Finally, the different prognosis models in LUSC,
BRCA, and STAD might reveal that the same functional
genes were weighted unequally in heterogeneous tumors.
Those prognosis models made one start to rethink the
emphasis that placed molecular biomarker pattern and ther-
apeutic targets in the context of predictive, preventive, and
personalized medicine (PPPM) [69]. The individualized
patient stratification and predictive/prognostic assessment
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and therapeutic targets/drugs for personalized therapy of
different kinds of cancer patients would be a better paradigm
due to cancer heterogeneity.

5. Conclusions

Pan-cancer system analysis revealed that the NRF2 pathway-
related genes altered in different levels in various cancers.
The comprehensive understanding of these genes would
provide full view on expression, mutation, CNV, MSI, clini-
cal relevance, crosstalk with other system, stemness, and
drug sensitivity. The pan-cancer analysis was necessary and
effective method to find the concentrated performance,
meanwhile single kind of cancer could not be ignored, due
to the guideline of PPPM in individualized medicine.
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