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Background  
Secondary anterior cruciate ligament (ACL) injury is a complication of ACL 
reconstruction (ACLR), which may result from altered neuromuscular control affecting 
anticipatory postural adjustments (APAs) and compensatory postural adjustments (CPAs) 
required for maintaining balance during movement. However, it remains unclear how 
APAs and CPAs differ in single-leg landings post-ACLR compared to healthy subjects. 

Purpose  
The purpose of this study was to clarify the differences in muscle activities of APAs and 
CPAs, lower limb kinematics, and kinetics between athletes with a history of ACLR and 
healthy athletes during single-leg landing. 

Study design   
Cross-sectional study. 

Methods  
Eighteen female athletes were recruited and divided into ACLR (n = 9) and control groups 
(n = 9). The experimental task involved a single-leg landing from a 30 cm box. Joint 
angles and moments were determined using a 3-dimensional motion analysis system, 
while muscle activity was assessed using surface electromyography. Analysis intervals 
were divided into two phases: the APA phase (-150 ms to 50 ms) and the CPA phase (50 
ms to 250 ms), with initial contact (0 ms) as the reference point. Muscle activity onset 
time was defined as the time when the baseline exceeded by the sum of mean values and 
2 standard deviations. 

Results  
No significant differences were observed in muscle activity or onset time between the 
ACLR and control groups. However, an increased hip external rotation moment was 
observed during the CPA phase in the ACLR group. 

Conclusion  
These findings suggest that APAs and CPAs of athletes who returned to sports more than 
1 year post-ACLR may be similar. The increased hip external rotation moment in the 
ACLR group during the CPA phase could represent a specific compensatory strategy to 
decrease the hip internal rotation angle post-ACLR. 
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Level of Evidence    
III 

INTRODUCTION 

Anterior cruciate ligament (ACL) injuries frequently occur 
in female athletes,1 and many undergo ACL reconstruction 
(ACLR) to return to sport (RTS).2 It has been reported that 
the incidence of a second ACL injury in the ACLR group was 
0.47 per 1000 athlete exposures (AEs), which is about twice 
as high as the incidence of the initial ACL injury at 0.24 per 
1000 AEs.3 Since secondary ACL injury is more common in 
females than in males,3 there is a relatively high need to in
vestigate female athletes. 
Seventy percent of ACL injuries occur via non-contact 

mechanisms4 and are caused by large ground reaction 
forces acting on the landing leg during rapid deceleration 
movements such as single-leg landing.5 These may not only 
result from the initial ACL injury, but also the risk of injury 
may be greater after ACLR. This is due to alterations in 
movement patterns, such as joint angles, joint moments, 
and coordination movements during single-leg landing and 
hopping post-ACLR, resulting from deficits in neuromus
cular control.6,7 Afferent mechanosensory feedback control 
from the knee joint after initial contact (IC), which occurs 
to stabilize the joint during landing movements, takes more 
than 100 ms.8,9 However, ACL injury occurs 40 ms after 
IC,10 which renders feedback control too late to prevent 
ACL injury. Therefore, the timing of ACL injury may occur 
before feedback occurs. Consequently, assessing neuromus
cular control before and after the onset of sensory input 
during single-leg landing movements can elucidate the on
going neuromuscular activity strategies when an ACL injury 
is expected to occur. 
In a previous study of biomechanics during drop-landing 

after ACLR, asymmetry of sagittal plane knee extension 
moment, knee valgus angle, and hip internal rotation mo
ment were identified as risk factors for secondary ACL in
jury.11 Additionally, knee valgus angle enhances hip rota
tion moment and knee extension moment asymmetry, and 
deficits in single-leg balance are associated with the risk 
of reinjury. Knee abduction moment, internal tibial rota
tion moment, and anterior tibial shear force12 under ax
ial impact produced clinically relevant ACL injuries.13 In 
summary, it has been pointed out that biomechanics dur
ing landing are an important factor in secondary ACL injury 
prevention after ACLR, but the changes in neuromuscular 
activity associated with movement patterns during landing 
are not clear. Therefore, it is necessary to examine these 
factors together to identify strategies for preventing sec
ondary ACL injuries after ACLR. 
The ability to minimize postural disturbances plays a 

crucial role in preventing injuries during sports activities.14 

These efforts are achieved through compensatory and an
ticipatory strategies aimed at minimizing both unpre
dictable and predictable perturbations.8,15 Anticipatory 
postural adjustments (APAs) and compensatory postural 
adjustments (CPAs) come into play to maintain postural 
stability. APAs involve the activation or inhibition of lower 

limb muscles before internal or external balance perturba
tion occurs.16 Their primary role is to mitigate the impact 
of postural perturbation for maintaining balance.17 Con
versely, CPAs are typically triggered by sensory feedback 
signals evoked by perturbation.9,18 Consequently, there is 
continuous muscle activity from the anticipatory to the 
compensatory phase during the movement.19 Therefore, it 
remains unclear during which phase of the landing ACL in
jury occurs in ACLR. By measuring APAs and CPAs before 
and after IC, it may be possible to clarify the mechanism 
of sensorimotor coordination during a risky landing mo
tion. Also, it is possible that post-ACLR athletes’ neuro
muscular control is affected by training during rehabilita
tion to return to sport.20 Hence, APAs and CPAs post-ACLR 
may exhibit distinct features compared to those observed in 
healthy subjects. However, the discrepancies between APAs 
and CPAs in female athletes with and without a history of 
ACLR have not yet been verified. 
The purpose of this study was to clarify the differences in 

muscle activities of APAs and CPAs, lower limb kinematics, 
and kinetics between athletes with a history of ACLR and 
healthy athletes during single-leg landing. The hypotheses 
of this study were as follows: 1) muscle activity onset is de
layed in the ACLR group compared to the control group; 
2) muscle onset time was the same, but quadriceps activ
ity during the compensatory phase was higher; and 3) hip 
adduction, internal rotation, and knee abduction angle at 
landing, along with hip adduction moment and knee abduc
tion moment are reported to be higher in the ACLR group.21 

METHODS 
PARTICIPANTS 

This cross-sectional study included nine female college 
athletes with a history of ACLR (ACLR group) and nine 
healthy subjects without a history of ACLR (CON group), 
selected from female athletes affiliated with university ath
letic clubs. The inclusion criteria for the ACLR group were 
as follows: 1) being 12 months post-surgery and having re
turned to full sports participation, 2) graft types being au
tograft (e.g., bone-patellar tendon-bone or hamstring ten
don), 3) participation in sports activities such as cutting, 
pivoting, and jump-landing sports (handball, basketball, 
soccer, tennis, or lacrosse) prior to the injury, 4) no history 
of meniscal injury or surgery on either the ipsilateral or 
contralateral knee before ACL injury, and 5) absence of any 
disorders in the peripheral sensory system or history of 
surgery on the lumbar spine or lower limbs. The inclusion 
criteria for the CON group were: 1) no lower limb injuries 
and/or concussions within the prior three months and 2) 
no disorders in the peripheral sensory system or history of 
surgery on the lumbar spine or lower limbs. 
The authors obtained written informed consent from all 

volunteers before their participation, following approval by 
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the Ethics Committee of the Faculty of Health and Sports 
Sciences at the University (approval number 020-166). 

EXPERIMENTAL TASK 

The experimental task involved a single-leg landing from a 
30 cm box, with participants instructed to land on the cen
ter of the force platform placed in front of the box. Addi
tionally, 
participants were instructed to place their hands on their 

waists to minimize the effect of balance retention by their 
upper limbs. For the single-leg landing motion, the injured 
leg was used in the ACLR group, while the dominant leg 
was used in the CON group. The dominant leg was defined 
as the leg preferred for kicking the ball by the participants. 
Throughout the experiment, participants were barefoot to 
eliminate the influence of footwear. Each participant was 
allowed to participate in several practice trials, and mea
surements continued until three successful trials were com
pleted. Failed trials were characterized by foot slip after 
landing, loss of balance (where the sole of the opposite foot 
touched the floor or force plate), or inability to maintain 
the correct arm position. 

DATA COLLECTION 

Surface electromyography (EMG) data were recorded at 
1,000 Hz using a Data-LITE wireless EMG sensor (Biomet
rics Ltd.) and collected synchronously with the motion and 
force platform data. The skin at each electrode site was 
shaved and cleaned using an alcohol swab. Ultrasonography 
(Venue 50; GE Healthcare Japan) was used to define the 
anatomical properties of the superficial region of individual 
muscles for electrode placement, following the SENIAM 
recommendations.22 Electromyographic (EMG) activities of
the tibialis anterior (TA), medial head of the gastrocnemius 
(MG), rectus femoris (RF), biceps femoris (BF), semitendi
nosus (ST), gluteus medius (GM), and adductor longus (AL) 
were measured. Electrodes were placed as follows: TA, 1/3 
on the line between the tip of the fibula and the tip of the 
medial malleolus; MG, at the most prominent bulge of the 
muscle; RF, at 50% on the line from the anterior superior 
iliac spine to the superior part of the patella; BF, approx
imately halfway between the tibial lateral epicondyle and 
the ischial tuberosity over the muscle belly; ST, at 50% on 
the line between the ischial tuberosity and the medial epi
condyle of the tibia; GM, 50% on the line from the iliac 
crest to the trochanter; and AL, between the sartorius and 
gracilis muscles. 
A three-dimensional motion analysis system (VICON 

MX, Oxford, UK) captured task motions at a 250 Hz sam
pling rate using 13 infrared cameras. Thirty-five retrore
flective markers were placed on the anatomical landmarks 
across each participant’s body according to the standard 
Plug-in Gait model (Genetic Hays marker set).23,24 

Ground reaction force (GRF) data were measured using 
a force platform (Kistler Instruments, Inc., model 9281C, 
Winterthur, Switzerland). EMG and kinematic data were 
time-synchronized and acquired at 1,000 Hz. The GRF of 

the eight components (Fx, Fy, Fz, Mx, My, Mz, Cx, and Cy) 
were calculated for one force plate. 

DATA ANALYSIS 

The following parameters were analyzed: (1) integrated 
electromyographic (IEMG) data, (2) muscle activity onset 
at the IC, (3) hip and knee joint angles, and (4) hip and 
knee joint moments. The analysis interval ranged from 150 
ms before landing to 250 ms after landing, divided into 
the APA and CPA phases. Given previous studies suggesting 
that ACL injury may occur up to 100ms after IC, the analysis 
range was assumed to be no more than 100 ms after IC. 
IEMG was calculated for 4 different epochs, each lasting 
100 ms in relation to T0 (defined as the instant when verti
cal ground reaction force exceeded 10N).25 APAs accounted 
for the electromechanical delay between muscle activity 
onset and torque generation, including the interval from 
T0 to 50 ms.26 The time windows for the four epochs were 
as follows: 1) from -150 to -50 ms (anticipatory activity, 
APA1); 2) -50 to +50 ms (anticipatory activity, APA2); 3) +50 
to +150 ms (compensatory reactions, CPA1); and 4) + 150 to 
+250 ms (compensatory reactions, CPA2). 
Anticipatory EMG activity was calculated as follows: 

EMG (APA1) represents the integral of EMG activity 

of the muscles from -150 to -50 ms with respect to t0, and 
similarly, EMG (APA2) is the integral of EMG activity, 

defined as the integral of the EMG signal from -50 to +50 ms 
with respect to t0. Compensatory EMG activity was calcu
lated as follows: EMG (CPA1) represents the integral of 

the EMG activity of the muscles from +50 to +150 ms with 
respect to t0, while EMG (CPA2) was the integral of the 

EMG activity of the muscles from +150 to +250 ms with re
spect to t0.16 

Data were analyzed offline using MATLAB (MathWorks 
Inc., USA). All EMG signals were rectified and filtered using 
a low-pass second-order Butterworth filter with a cutoff 
frequency of 20 Hz. For maximum voluntary contraction, 
IEMG data were calculated, and a 3 s IEMG was used to 
normalize the dynamic contraction recorded during landing 
(%MVC). Muscle activity onset was detected from the 
stance phase before landing for the baseline signal and 100 
ms before approximately 300 ms from IC. Onset time was 
defined as the time when the EMG amplitude of the base
line signal exceeded the mean + 2SD for 12 ms. 
Raw kinematic and kinetic data were filtered on the basis 

of frequency-content analysis of digitized coordinate data. 
GRF and marker trajectories were filtered at 15 Hz using 
a fourth-order Butterworth filter with VICON Nexus 2.0 
software (Oxford Metrics Ltd., UK), consistent with previ
ous studies.27 For all kinematic and kinetic data, the mean 
value of each 100 ms epoch was calculated. Joint angles and 
moments were averaged for each epoch, with time windows 
for the four epochs calculated at the same intervals as those 
for integral EMG. 
Joint moments were computed on the reference leg side 

via a complete inverse-dynamic model implemented using 
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Table 1. Participant characteristics   

　 ACLR group (n = 9) CON group (n = 9) p-value 

　 Mean ± SD Mean ± SD 　

Age (years) 20.8±1.4 20.4±1.2 0.599 

Body height (mm) 1624.7±52.5 1646.2±76.7 0.497 

Body weight (kg） 57.5±5.9 57.8±6.3 0.922 

Q-angle (°) 2.78±0.972 2.11±3.1 0.547 

Thigh-foot angle (°) 9.56±3.504 8.67±5.6 0.691 

Navicular drop test (cm) 4.11±3.06 4.22±2.8 0.937 

General joint laxity 1.6±0.9 1.1±1.1 0.303 

Leg heel angle (°) 3.0±1.4 4.1±1.2 0.088 

ACLR, anterior cruciate ligament reconstruction. CON, control 

the VICON Plug-in Gait. These moments were reported as 
external torques. Calculated GRF and joint moments were 
standardized according to the subject’s body mass (Nm/kg). 

STATISTICAL ANALYSIS 

To assess the normal distribution of the data, the Shapiro-
Wilk tests were conducted prior to analysis. Independent-
sample t-tests were used to ascertain significant differences 
in the onset time of muscle activity between participants 
in the ACLR and CON groups. For assessing significant in
teractions of each phase and participants in IEMG, hip, and 
knee joint angle, and moment, a two-way repeated mea
sures analysis of variance (ANOVA) was utilized, followed 
by post hoc tests. Post-hoc Bonferroni multiple compar
ison procedures were used. Statistical analyses were per
formed using SPSS version 27 (IBM Corp., Armonk, NY, 
USA), with statistical significance set at p < 0.05. Addi
tionally, a post-hoc power analysis was performed using 
G*Power software31(Version 3.1.9.6, University of Dussel
dorf, Dusseldorf, DEU).28 The post-hoc power analysis, con
sidering the significant result and the hip external rotation 
moment (effect size: 0.68), showed a power of 0.49 for both, 
calculated at an alpha level of 0.05. 

RESULTS 

Descriptive characteristics of participants are summarized 
in Table 1. 
The onset times of muscle activity are depicted in Figure 

1 for all participants, as well as specifically for the ACLR 
and CON groups. No significant differences were observed 
in the onset time of muscle activity (p > .05). 
The IEMG results for each muscle in the ACLR and CON 

groups are presented in Table 2. Comparisons of the IEMG 
in each phase between ACLR and control groups revealed 
no interaction between groups (p>0.05) but significant 
main effects for the IEMG in each phase. 
Multiple comparisons showed significantly higher values 

for CPA1 and 2 compared to APA1, and for CPA1 compared 
to APA2 in the TA (p < 0.05). In the MG, APA1 and 2 were 
significantly higher than CPA1 and 2 (p <0.05); in RF, CPA1 
was significantly higher than APA1, and APA2 was signif

icantly higher than CPA2 (p <.05); in the BF, APA1 and 2 
and CPA1 were significantly higher than CPA2 (p <0.05); in 
ST, APA2 and CPA1 were significantly higher than APA1 (p 
<.05). In the GM, APA2 was significantly higher than APA1, 
CPA1and 2, (p <0.05). Also, in AL, APA2 and CPA1 were sig
nificantly higher than APA1 (p <0.05). 
Comparison of hip and knee joint angles in each phase 

between ACLR and control groups showed no interaction 
but significant main effects for the joint angles in each 
phase (Table 3). Multiple comparisons revealed that the hip 
flexion angle was significantly higher in the following or
der: CPA2, CPA1, APA1, and APA2, (p <0.05). The angles of 
adduction and abduction were significantly greater in the 
CPA1 and 2 compared to APA1 and 2 (p <0.05). Similarly, 
the angles of internal and external rotation were signifi
cantly higher in CPA2 than in APA1, and in CPA1 and 2 
compared to APA2 (p <0.05). The flexion angle of the knee 
joint increased significantly in the following order: CPA2 > 
CPA1 > APA1 > APA2 (p <0.05). Additionally, the angles of 
adduction and abduction were significantly higher in CPA1 
than in APA1 and significantly higher in CPA2, CPA1, and 
APA2 (p <0.05). The internal and external rotation angles 
were significantly greater in CPA1 and 2 than in APA1 and 
2 (p <0.05). 
The hip external rotation moment exhibited a significant 

interaction between the ACLR and CON groups (p<0.018) 
(Table 4). Using the post hoc test, the hip external rotation 
moment of the ACLR group (CPA1=0.46 ± 0.16 Nm/km, 
CPA2 = 0.44 ± 0.1 Nm/km) at CPA1 and 2 was significantly 
larger than that of the CON group (CPA1 = 0.27 ± 0.06 Nm/
km, CPA2 = 0.32 ± 0.09 Nm/km). For other parameters, a 
main effect was observed only for the phase, and multiple 
comparisons showed that the hip flexion moments were 
significantly higher for CPA1 and 2 compared to APA1 and 
2 (p <0.05). The moments of adduction and abduction were 
significantly higher in the following order: CPA1, CPA2, 
APA2, and APA1 (p <0.05). APA1 and 2 exhibited signifi
cantly higher internal and external rotation moments than 
CPA1 and 2 (p <0.05). There was no interaction between 
the phase and joint moments of each group, and a main ef
fect of the phase was observed only for the knee joint mo
ments. Multiple comparisons revealed that the flexion mo
ments were significantly higher in CPA1 and 2 compared to 
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Figure 1. Muscle activity onset    
ACLR, anterior cruciate ligament reconstruction. CON, control. TA, tibialis anterior. MG, medial head of the gastrocnemius. RF, rectus femoris. BF, biceps femoris. ST, semitendi
nosus. GM, gluteus medius. AL, adductor longus 

Table2. IEMG   

Phase; Time (ms) 　 APA1; -150 ~ -50 APA2; -50 ~ 50 CPA1; 50 ~ 150 CPA2; 150 ~ 250 

　 　 (CI) (95%CI) (95%CI) (95%CI) 

TA ACLR 39.3 (26.9 – 51.7) 62.7 (52.1 – 73.2) 86.6 (71.3 – 102) 83.8 (67 – 100.6) 

(%MVC) CON 39.3 (26.9 – 51.7) 62.7 (52.1 – 73.2) 86.6 (71.3 – 102) 83.8 (67 – 100.6) 

MG ACLR 84.6 (59.1 – 110.1) 72.3 (55.1 – 89.5) 41.2 (25.2 – 57.1) 26.7 (17.2 – 36.3) 

　 CON 95.5 (75.7 – 115.4) 85.3 (71.6 – 99) 46.6 (38 – 55.1) 33.1 (22.9 – 43.2) 

RF ACLR 61.2 (26.6 – 95.7) 118.3 (62.3 – 174.2) 96.6 (51.9 – 141.4) 63.7 (36 – 91.3) 

　 CON 74.5 (35.3 – 113.8) 139.8 (54.9 – 224.7) 111 (73.7 – 148.4) 73.6 (45.6 – 101.6) 

BF ACLR 56.7 (33.9 – 79.6) 51.1 (37.3 – 64.9) 45.3 (33.2 – 57.3) 36.2 (26.1 – 46.4) 

　 CON 60 (31.4 – 88.6) 57 (36.4 – 77.6) 48.1 (31.8 – 64.3) 32 (20 – 44) 

ST ACLR 30.9 (17.3 – 44.5) 43 (25.1 – 60.9) 41.7 (27 – 56.5) 27.7 (18.4 – 37.1) 

　 CON 28.7 (17.4 – 40) 36.9 (23.2 – 50.6) 48.2 (33.7 – 62.6) 36.4 (22.7 – 50) 

GM ACLR 56.2 (35.2 – 77.3) 74.7 (55.9 – 93.5) 51.9 (41.4 – 62.5) 36.4 (27.4 – 45.5) 

　 CON 43.4 (28.9 – 57.8) 60.6 (47.1 – 74) 55 (44.5 – 65.5) 39.1 (29.5 – 48.7) 

AL ACLR 24.9 (14.4 – 35.4) 46.1 (29.4 – 62.9) 54.3 (30.7 – 78) 44.8 (24.2 – 65.5) 

　 CON 22.4 (14.2 – 30.6) 38 (27.8 – 48.1) 48 (31.1 – 65) 34.5 (19.5 – 49.5) 

Mean ± SD 
ACLR, anterior cruciate ligament reconstruction. CON, control. TA, tibialis anterior. MG, medial head of the gastrocnemius. RF, rectus femoris. BF, biceps femoris. ST, semitendi
nosus. GM, gluteus medius. AL, adductor longus. APA, Anticipatory postural adjustments. CPA, compensatory postural adjustments. 

APA1 and 2 (p <0.05). The moments of adduction and ab
duction were significantly higher in the CPA1, CPA2, APA2, 
and APA1 groups (p <0.05). The moments of internal and 
external rotation were significantly higher in the following 
order: CPA1, CPA2, APA2, and APA1 (p <0.05). 

DISCUSSION 

This study aimed to elucidate differences in muscle activi
ties during APAs and CPAs, as well as lower limb kinematics 
and kinetics between athletes with a history of ACLR and 
healthy athletes during single-leg landing. The hypotheses 
were: 1) muscle activity onset is delayed in the ACLR group 
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Table 3. Hip and knee joint angles      

Phase; Time 
(ms) 

　 　
APA1; -150 ~ 

-50 
APA2; -50 ~ 

50 
CPA1; 50 ~ 

150 
CPA2; 150 ~ 

250 

　 　 　 (95%CI) (95%CI) (95%CI) (95%CI) 

Hip Angle 
(°) 

Flexion+/ ACLR 
34.3 (29 – 

39.6) 
30.7 (26 – 

35.5) 
48 (43.2 – 

52.9) 
56.2 (50.4 – 

61.9) 

Extension- CON 
31.3 (27.1 – 

35.6) 
25.7 (21.2 – 

30.3) 
41.2 (35.7 – 

46.7) 
48.4 (41.7 – 

55.1) 

Adduction+/ ACLR 
-2.5 (-5.3 – 

0.2) 
-5.9 (-9.1 – 

-2.7) 
3.3 (-0.7 – 7.2) 7.9 (4 – 11.9) 

Abduction- CON 
-1.5 (-3.8 – 

0.7) 
-5.5 (-7.4 – 

-3.6) 
4.6 (0.8 – 8.3) 9.4 (6.3 – 12.4) 

Internal 
rotation+/ 

ACLR 
-2.6 (-12.9 – 

7.7) 
-3.5 (-14.1 – 7) 

-0.7 (-12.9 – 
11.5) 

-0.1 (-13.8 – 
13.7) 

　
External 
rotation- 

CON 4.6 (1.9 – 7.3) 4.2 (2.2 – 6.3) 8.9 (5.7 – 12.1) 
10.7 (6.9 – 

14.4) 

Knee Angle 
(°) 

Flexion+/ ACLR 
29.2 (24 – 

34.4) 
21.9 (19.5 – 

24.3) 
58 (56 – 59.9) 

66.2 (63.9 – 
68.5) 

Extension- CON 
33.8 (29.1 – 

38.4) 
23 (20.3 – 

25.7) 
57.5 (54.1 – 

60.9) 
65.7 (59.6 – 

71.7) 

Adduction+/ ACLR 5.1 (1.9 – 8.2) 3.6 (1.1 – 6.1) 7.9 (1.6 – 14.3) 8.5 (0.9 – 16) 

Abduction- CON 4.6 (1.8 – 7.4) 3.2 (0.8 – 5.5) 9.3 (3.9 – 14.6) 
10.4 (4.2 – 

16.5) 

Internal 
rotation+/ 

ACLR 4.5 (1.1 – 7.9) 6.7 (3 – 10.3) 
17.7 (15.1 – 

20.3) 
17.7 (15.5 – 

20) 

　
External 
rotation- 

CON 5.3 (2.1 – 8.5) 5.2 (2.7 – 7.6) 
17.5 (14.1 – 

21) 
17 (12.5 – 

21.6) 

Mean ± SD 
ACLR, anterior cruciate ligament reconstruction. CON, control. APA, Anticipatory postural adjustments. CPA, compensatory postural adjustments. 

compared to the control group; 2) muscle onset time is the 
same, but quadriceps activity in the compensatory phase is 
higher; and 3) hip adduction moment and knee abduction 
moment are higher in the ACLR group during landing. Con
trary to these hypotheses, the results of this study revealed 
that female athletes who underwent RTS post-ACLR exhib
ited muscle activation patterns similar to those of healthy 
subjects in both anticipatory and compensatory phases of 
single-leg landings. 

ONSET TIMES OF MUSCLE ACTIVITY / IEMG 

No significant differences were found in muscle activities 
during APAs and CPAs in any muscle between the ACLR and 
CON groups, which contradicts the study’s hypotheses. It 
has been suggested that factors such as muscle training29 

and sensorimotor training included in rehabilitation may 
have contributed to early recovery of reflex excitability and 
motor neurons,30 enhancing neuromuscular control after 
ACLR.20 These may be adaptations due to learning by the 
central nervous system to plan anticipatory responses in 
advance.31 This finding aligns with previous research indi
cating that muscle activity in men after 14 months post-
ACLR did not differ from that in healthy subjects.32 Fur
thermore, it suggests that female athletes who underwent 
RTS more than one year after ACLR may have recovered to 
a similar extent as healthy subjects in terms of muscle ac
tivation. Reduced muscle activity after RTS has been asso

ciated with poor performance and reduced dynamic stabil
ity of the knee during landing,33 underscoring the clinical 
significance of understanding changes in muscle activity at 
RTS.20,34 On the other hand, previous studies have reported 
earlier onset times or longer durations of muscle activi
ties in the quadriceps and hamstring muscles before land
ing,35 indicating increased pre-muscle activity as a pro
tective mechanism to stiffen the joint in preparation for 
impact after landing.36 However, these findings were 
mainly observed during the initial rehabilitation period (4 
to 6 months post-surgery), whereas this study and others 
included subjects approximately 15 months32 and 60 
months33 post-surgery. Thus, early EMG onset may only be 
evident during the initial rehabilitation period. These re
sults emphasize the clinical importance of understanding 
changes in muscle activity during RTS.20,37 While the pre
sent study showed that factors leading to the risk of ACL 
injury by muscle activity onset were eliminated more than 
one year after ACLR, a reported secondary ACL injury rate 
of 9% in the involved leg within two years after ACLR3 

suggests that other factors may still pose a risk for sec
ondary ACL injury. ACLR has been associated with abnor
mal gamma loop activity, affecting the neuromuscular sys
tem through the spinal cord38 and sensory-motor deficits at 
the motor cortex level.39 Therefore, future research should 
explore changes in corticomotor excitability using func
tional MRI, transcranial magnetic stimulation, and H-re
flexes to further understand these mechanisms. 
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Table 4. Hip and knee joint moments      

Phase; Time 
(ms) 

　 　
APA1; -150 ~ 

-50 
APA2; -50 ~ 

50 
CPA1; 50 ~ 

150 
CPA2; 150 ~ 

250 

　 (95%CI) (95%CI) (95%CI) (95%CI) 

Hip moment Flexion+/ ACLR 
0.41 

(0.3 − 0.52) 
0.34 

(0.17 − 0.5) 
2.02 

(1.59 − 2.45) 
1.84 

(1.52 − 2.16) 

(Nm/kg) Extension- CON 
0.49 

(0.38 − 0.6) 
0.45 

(0.34 − 0.56) 
2.05 

(1.75 − 2.34) 
1.86 (1.62 − 

2.1) 

Adduction+/ ACLR 
-0.03 

(-0.1 − 0.05) 
0.23 

(0.04 − 0.43) 
1.24 

(0.47 − 2.01) 
0.78 

(0.18 − 1.37) 

Abduction- CON 
-0.08 

(-0.13 − -0.02) 

0.02 
(-0.09 − 

0.12) 

0.56 
(0.35 − 0.78) 

0.39 
(0.21 − 0.56) 

Internal 
rotation+/ 

ACLR 
-0.02 

(-0.04 − 0.00) 

-0.05 
(-0.07 − 

-0.03) 

-0.46 
(-0.56 − 

-0.35) 

-0.44 
(-0.51 − -0.38) 

　 External rotation- CON 
-0.02 

(-0.03 − -0.01) 

-0.04 
(-0.06 − 

-0.03) 

-0.27 
(-0.3 − -0.23) 

-0.32 
(-0.38 − -0.26) 

Knee moment Flexion+/ ACLR 
-0.21 

(-0.26 − -0.15) 

-0.01 
(-0.14 − 

0.11) 

1.84 
(1.54 − 2.14) 

1.04 
(0.77 − 1.31) 

(Nm/kg) Extension-　 CON 
-0.21 

(-0.28 − -0.15) 
-0.11 

(-0.2 − -0.03) 
1.61 

(1.36 − 1.86) 
0.91 

(0.63 − 1.19) 

Varus+/ ACLR 
0.03 

(-0.01 − 0.07) 
0.25 

(0.22 − 0.29) 
0.94 

(0.62 − 1.27) 
0.64 

(0.44 − 0.83) 

Valgus-　 CON 
0.02 

(-0.01 − 0.05) 
0.21 

(0.16 − 0.26) 
0.89 

(0.61 − 1.16) 
0.59 

(0.36 − 0.81) 

Internal 
rotation+/ 

ACLR 
0.01 

(0.00 − 0.01) 
0.08 

(0.07 − 0.09) 
0.25 

(0.19 − 0.31) 
0.14 

(0.11 − 0.17) 

　
External rotation- 

　
CON 

0.01 
(0.00 − 0.01) 

0.08 
(0.06 − 0.09) 

0.25 
(0.19 − 0.32) 

0.14 
(0.07 − 0.2) 

Mean ± SD 
ACLR, anterior cruciate ligament reconstruction. CON, control. APA, Anticipatory postural adjustments. CPA, compensatory postural adjustments. 
* Significant difference between the ACLR and CON 

KINEMATICS/KINETICS 

The present study revealed a significant interaction in hip 
external rotation moments during the CPA phase, with 
higher values observed in the ACLR group compared to the 
CON group. However, no significant differences were found 
in lower limb joint angles between the two groups. Previ
ous studies have shown that in kinematics, increased knee 
valgus and hip adduction angle during landing and cutting 
movements are risks for ACL injury,40,41 and decreased hip 
and knee flexion angles, along with increased GRF during 
such movements, can exert significant stress on the ACL.42 

In kinetics, participants with smaller hip external rotator 
moments at the initial stage of landing were over eight 
times more likely to sustain a second ACL injury compared 
to those with greater hip external rotation moments.11 The 
similarity in lower limb joint angles between both groups 
in this study, alongside the increased hip external rotation 
moments in the ACLR group during CPAs, may be attrib
uted to ACL injury prevention strategies implemented after 
ACLR, potentially affecting movement and postural control 
through kinetic changes. These strategies are considered 
ACLR-specific compensatory mechanisms aimed at reduc

ing the angle of hip internal rotation occurring 50 ms post-
IC, which corresponds to the feedback phase following sen
sory nerve input. Consequently, the high value of hip 
external rotation moment observed in this study may sig
nify a postural strategy during single-leg landing move
ment after ACLR. 

LIMITATIONS 

This study had some limitations. First, lower limb muscle 
strength was not measured, which could have affected mus
cle activity during single-leg landing, especially consider
ing reports indicating a relationship between muscle fiber 
conduction velocity and force in isometric contractions of 
the quadriceps during knee extension43 might cause a dif
ference in muscle activity during single-leg landing. Sec
ond, the experiment was conducted in a laboratory setting 
and involved only single-leg landings, which may yield dif
ferent responses compared to performance during actual 
sports activities. This context should be considered when 
interpreting the data. Third, the ACLR group comprised 
only female athletes who had returned to competition ap
proximately one year or more after surgery, and it remained 
unclear when and to what extent muscle function had re
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covered. Therefore, longitudinal studies investigating ACLR 
muscle function and assessing training effects are war
ranted. Fourth, the study had a limited number of subjects, 
and only a post hoc power analysis was conducted. Despite 
the small sample size, meaningful results were obtained. 
Finally, this study only included the involved leg, although 
it is well-established that neuromuscular changes after ACL 
injury can also affect the contralateral leg.44 Including the 
contralateral leg in future studies will provide a better un
derstanding of contralateral injury mechanisms and pos
tural control after ACLR. In the future, it will be essential 
to examine the effects of post- ACLR status on muscle 
strength and surgical techniques. 

CONCLUSION 

The findings of the current study indicate that in female 
athletes who underwent RTS after ACLR, the onset of mus
cle activity during single-leg landing was similar to that of 
the control group. Both the amount and pattern of mus
cle activity during APAs and CPAs were similar to those 
observed in the control group. Additionally, no significant 
differences were observed in hip and knee joint angles be
tween the two groups. However, during the CPA phase, the 
ACLR group exhibited higher values of hip external rota
tion moments compared to the control group. Clinically, 

this finding underscores the importance of assessing and 
addressing hip biomechanics and muscle function during 
rehabilitation to optimize movement quality and reduce the 
risk of secondary injuries. Future studies should investi
gate how variations in muscle strength affect neuromus
cular control and landing mechanics, which could inform 
rehabilitation strategies aimed at optimizing strength and 
function. 
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