RESEARCH ARTICLE

Genomic and proteomic mutation landscapes of SARS-CoV-2

Christian Luke D. C. Badua 💿 | Karol Ann T. Baldo 💿 | Paul Mark B. Medina 💿

Department of Biochemistry and Molecular Biology, Biological Models Laboratory, University of the Philippines Manila, Ermita, Manila, Philippines

Correspondence

Paul Mark B. Medina, Department of Biochemistry and Molecular Biology, Biological Models Laboratory, College of Medicine, University of the Philippines, Pedro Gil St., Malate, 1000 Metro Manila, Philippines. Email: pmbmedina@post.upm.edu.ph

Abstract

The ongoing pandemic caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), affects thousands of people every day worldwide. Hence, drugs and vaccines effective against all variants of SARS-CoV-2 are crucial today. Viral genome mutations exist commonly which may impact the encoded proteins, possibly resulting to varied effectivity of detection tools and disease treatment. Thus, this study surveyed the SARS-CoV-2 genome and proteome and evaluated its mutation characteristics. Phylogenetic analyses of SARS-CoV-2 genes and proteins show three major clades and one minor clade (P6810S; ORF1ab). The overall frequency and densities of mutations in the genes and proteins of SARS-CoV-2 were observed. Nucleocapsid exhibited the highest mutation density among the structural proteins while the spike D614G was the most common, occurring mostly in genomes outside China and United States. ORF8 protein had the highest mutation density across all geographical areas. Moreover, mutation hotspots neighboring and at the catalytic site of RNA-dependent RNA polymerase were found that might challenge the binding and effectivity of remdesivir. Mutation coldspots may present as conserved diagnostic and therapeutic targets were found in ORF7b, ORF9b, and ORF14. These findings suggest that the virion's genotype and phenotype in a specific population should be considered in developing diagnostic tools and treatment options.

KEYWORDS

coldspot, coronavirus, genetic variability, mutation, mutation hotspot, SARS-CoV-2, virus bioinformatics

1 | INTRODUCTION

Coronavirus disease 2019 (COVID-19) presented with pneumonialike symptoms surfaced from a seafood market at Wuhan, Hubei Province in China in December 2019, and has since spread across the globe.¹ According to the WHO, it has affected 213 countries and territories with 23,057,288 people infected and 800,906 deaths worldwide.² Mitigation of this public health crisis can be accomplished through effective public health safety protocols, vaccines, and targeted viral treatment. The scientific community has then been in haste to develop vaccines and therapeutic drugs to combat the COVID-19.

COVID-19 is caused by a novel coronavirus, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).^{3,4} It is a positive-sense RNA virus, like SARS-CoV and Middle East respiratory syndrome coronavirus, with a genome size of 29,903 nucleotides.⁵ Figure 1 shows the comparison of the genes and proteins between SARS-CoV-2 and SARS-CoV (2003). Most of its genome codes for ORF1ab (~72%) which is involved in viral replication and pathogenesis, while other ORFs code for structural proteins (spike [S], envelope [E], membrane glycoprotein [M], and nucleocapsid [N]).

Christian Luke D. C. Badua and Karol Ann T. Baldo contributed equally to this study and are co-first authors.

FIGURE 1 SARS-CoV-2 structure, and comparison of the genomes and proteomes of SARS-CoV-2 (2019) and SARS-CoV (2003). (A) Structure of the SARS-CoV-2, the etiologic agent of COVID-19. Information on these proteins is publicly available from the COVID-19 UniProt Resource (https://covid-19.uniprot.org/). (B) Comparison of the genomes and proteomes of SARS-CoV-2 and SARS-CoV (2003). COVID-19, coronavirus disease 2019; SARS-CoV, severe acute respiratory syndrome coronavirus

Genes for accessory proteins are also present in SARS-CoV-2 as with SARS-CoV, however, some of the proteins coding for these accessory proteins (ORF3a, ORF7b, ORF8, and ORF10) are yet to be identified for their function.^{6,7} Mutations in coronaviruses are expected to have mutation rates ranging between 10^{-5} and 10^{-3} substitutions per nucleotide site per cell infection (s/n/c).^{8,9} Accordingly, information can be obtained from SARS-CoV-2 genomes coming from initial cases in Wuhan, China up to the recent submissions.

Determining mutation hotspots and coldspots in SARS-CoV-2 may provide insights on their effects on the properties (i.e., virulence, infectivity, and severity) and characteristics of SARS-CoV-2. Hence, drugs, vaccines, and diagnostics effective against SARS-CoV-2 variants are crucial today in containing the COVID-19 pandemic. This study provides an overview of mutation characteristics at the coding and noncoding regions of the SARS-CoV-2 genome, as well as the mutations in the translated proteins.

2 | MATERIALS AND METHODS

2.1 | Collection of SARS-CoV-2 genomes

Publicly available genomes from 31 countries submitted to the National Center for Biotechnology Information (NCBI) nucleotide database and the GISAID EpiCoVTM database by January 19, 2020 to May 15, 2020, were collected for the study (Table S1). Gathering of 151 publicly available "complete" and/or "partial" (genome length > 29,700 nucleotides = complete; genome length < 29,700 nucleotides = partial) genomes of SARS-CoV-2 (reference sequence NC_045512, GenBank) was conducted from March 12, 2020 to May 15, 2020. There were two data collection points in this study: genomes from both databases that were submitted from December 2019 to March 2020 (86 genomes) and December 2019 to May 2020 (65 additional genomes). Manual grouping of these sequences according to three geographic areas was made for ease of analysis. China-derived samples were classified under

the "China," United States-derived samples were classified under the "USA," while the genome sequences from other countries besides United States or China were classified under the "Others." The overall data set containing all the samples from China, United States, and Others is referred as the "Total."

2.2 | Nucleotide and amino acid variant detection

Each genome sequence was aligned to NC_045512 using the MAFFT.^{10,11} The default parameters as presented in the web tool were used for the multiple sequence alignment. The nucleotide variants from the reference sequence (NC_045512) were manually annotated and were re-evaluated using the "Low Frequency Variant Detection" tool of the CLC Genomics Workbench 20.0.3. (QIAGEN Bioinformatics, Aarhus, Denmark). Mutations from both the coding and noncoding regions were recorded.

Using the nucleotide mutations, the resulting amino acid mutations throughout the proteome of SARS-CoV-2 were determined. The amino acid changes were automatically annotated using the "Map Reads to Reference" tool and a subsequent run in the "Low Frequency Variant Detection" tool in the CLC Genomics Workbench 20.0.3. The resulting proteome from each SARS-CoV-2 genome was created and edited using CLC Genomics Workbench 20.0.3. The whole proteome was then aligned for phylogenetic analysis, and for identification of the resulting amino acid mutations.

2.3 Construction of phylogenetic trees

A phylogenetic tree based on the translated protein-coding genes of SARS-CoV-2 was constructed using the same command-line in IQ-TREE version 1.6.12 and was also edited, and visualized using MEGA X.¹²⁻¹⁵ The phylogenetic tree was constructed using an ultrabootstrap method considering 1000 and considered 151 genomes

for the construction of the said tree. $^{12\text{--}14}$ The resulting tree was edited and visualized using MEGA X. 15

2.4 | Data analysis

Mutation hotspots were identified as genome sites with two or more occurring mutations; on the other hand, mutation coldspots are those with no occurring mutations. The characterization of nucleotide mutations was done in terms of the nature of the nucleotide substitution (transition or transversion) and insertion and deletions (indel). The mutation densities (Equation 1) in the genome and proteome of SARS-CoV-2 were determined.

Mutation density = number of mutations ÷ size of genomic (ntlength) or proteomic (aa length) region (1)

Amino acid substitutions were characterized according to the nature of change that occurred (e.g., leucine to isoleucine would be classified under "Similar Change," serine to phenylalanine would be classified under "Polar <> Neutral," aspartic acid to serine would be classified under "Charged <> Polar," while glutamic acid to glycine would be "Charged <> Neutral"). Furthermore, amino acid substitutions leading to residues with similar nature were classified as "Similar Change," while those substitutions that did not produce amino acids with similar nature were classified under "Dissimilar Change."

3 | RESULTS

The mutations in the genome and proteome of SARS-CoV-2 are described per geographic area (China, United States, and Others) in two time points (December 2019–March 2020; December 2019–May 2020). This section starts with a presentation of the phylogenetic data according to the nucleotide sequences and amino acids of SARS-CoV-2. Then, the nucleotide substitution types (transversions, transitions, and InDels) were identified per geographic area in the two time points. This was followed by a presentation of the amino acid substitutions due to nucleotide mutations. Finally, remarkable mutations and mutation patterns in the proteins of SARS-CoV-2 (S glycoprotein, ORF8, and N) were reported.

3.1 | Nucleotide and amino acid-based phylogenetic analyses of SARS-CoV-2 show three major clades of SARS-CoV-2 and a minor clade (P6810S ORF1ab)

The phylogenetic analysis of mutations in different regions was analyzed using MAFFT software and three major clades were identified. As shown in Figure 2, the L3606F (ORF1ab) is characterized by the color pink, P4715L (ORF1ab)/D614G (S) is highlighted by the color green, and L84S (ORF8)/S2839S (ORF1ab) is denoted by the color blue. The largest among these clades were the L84S (ORF8), having 43 samples. This was caused by a transition substitution in the ORF8 gene (T28144C) leading to an L84S substitution in the ORF8 protein. L84S (ORF8) had four subclades; two of these subclades had subclades as well (Figure 2B). The second-largest major clade was the P4715L (ORF1ab)/D614G (S) having two subclades. These subclades were identified as R203K and G204R (N), and the G57H (ORF3a)/T265I (ORF1ab)/S3384L (ORF1ab). Lastly, the L3606F (ORF1ab) major clade contained 19 samples; 52.63% of these samples were from the "Others" geographic area, 36.84% were from the United States, while 10.53% were from China. This clade also has a subclade represented by the V378I mutation (ORF1ab; Figure 2B).

A transversion substitution (29868G>C) in the 3'-untranslated region (UTR) of the SARS-CoV-2 genome was identified which defined the occurrence of a nucleotide-based clade. This clade also contained a subclade bearing a missense mutation in the 2'-O-ribose methyl-transferase (nsp16) of ORF1ab (20692C>T; P6810S). Overall, the mutations classifying this clade were identified in five China-derived samples, while P6810S has not been identified in current literature.

3.2 | The proportion of transitions, transversion, and indels in SARS-CoV-2 genome is similar among the geographical areas

The genomic mutation profile of SARS-CoV-2 was evaluated, and the distribution of the mutations across the viral genomes from different geographical areas is summarized in Figure 3A. Overall, in total, 674 nucleotide mutations were identified using genome samples collected from December 2019–May 2020 (Table 1).

Generally, mutation frequencies among the geographical areas followed 3:1 transition to transversion ratio (Figure 3B,C), in which the C>T substitution was most common (44.7%), followed by T>C (13.95%). Interestingly, ORF3a and 3' UTR genes had higher transversion density than transition similar between the two timepoints; while G>T transversion (10.83%), was the third most frequently occurring nucleotide change. Altogether, approximately similar proportions of nucleotide change types were observed between genomes among the geographical areas collected from December to March 2020 versus December–May 2020 (Figures 3B,C). These findings may suggest that the genomic mutation characteristics of SARS-CoV-2 from the earlier timepoint may not be significantly varied from the later period (e.g., between March and May 2020).

Among the SARS-CoV-2 genomic regions, the UTRs yielded the highest mutation density, with 7.5×10^{-3} mutation density at the 5'-UTR and 2.5×10^{-2} mutation density at the 3'-UTR among all geographical areas, for both timepoints (Figure 3D,E). Notably, indels were found mostly at the UTRs. As shown in Figure 4B, no UTR mutations were common among all areas, while mutations common between United States and Others are at 5'-UTR (241C>T) and 3'-UTR (29742G>T and 29870C>A); and between China and Others, 26delA and 28C>T at the 5'-UTR were common. Overall, the UTRs are consistently densely mutated suggesting that these genome regions are mutation prone regions of the SARS-CoV-2 genome.

RNAL OI

1705

FIGURE 2 Phylogenetic tree of 151 SARS-CoV-2 from genomes collected from March 12, 2020 to April 2020 from NCBI GenBank[™] and GISAID EpiCoV®. (A) Phylogenetic tree based on the genomes of SARS-CoV-2. (B) Phylogenetic tree based on the proteins of SARS-CoV-2. Individual viral samples are represented as dots. Samples under the geographic cluster "China" are colored red, blue for sequences under the geographic cluster "USA," while for the "Others" geographic cluster, these are colored black. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NCBI, National Center for Biotechnology Information

3.3 | Most amino acid substitutions in SARS-CoV-2 genomes from the United States and Others geographic areas resulted to residues with a similar nature ("Similar Change") for both time points

The impact of overall genomic mutation characteristics in the viral proteins were then investigated from the genomic data and the description of these will be according to geographic area and will be magnified towards the differences between the two time points. Most of the nucleotide mutations in the SARS-CoV-2 genome (62.01%) lead to missense mutation in their proteins. Genome

reference positions or nucleotide mutation hotspots 11083 (ORF1ab; nsp6), 26144 (ORF3a), and 28144 (ORF8) were common among all geographical areas (Figure 4A).

Most of the amino acid substitutions in China were "Polar \leftrightarrow Neutral" changes (66.67%) for the first time point, while this proportion decreased at the second time point (57.14%), with an addition of deletion mutations (1.43%). There was also an increase in substitutions where residues had a "Similar Change" in nature (e.g., valine \leftrightarrow isoleucine; 18.52% - 12/2019-03/2020; 31.43% - 12/2019-04/2020). These data could be seen in Figure 5B. Furthermore, the mutation hotspots based on mutation densities also changed in

FIGURE 3 Characterization of nucleotide mutations in SARS-CoV-2. SARS-CoV-2 genomes were identified independently, and mutations were considered to occur spontaneously. Mutations were identified by identifying substitutions in the SARS-CoV-2 reference genome NCBI GenBankTM accession ID: NC_045512. (A) Nucleotide mutation frequency plot in total (overall), and in geographical clusters: China, United States, and Others. (B) Proportion of the nucleotide mutation types in SARS-CoV-2 genomes submitted on December 23, 2019–March 11, 2020, and (C) December 23, 2019–April 19, 2020. These were grouped as total, China, United States, and other. (D and E) Mutation density profiles of total SARS-CoV-2 genomes and clustered geographically: China, United States, and Others between the two time points. Mutation markers are colored according to the type of nucleotide change, that is, transition (blue), transversion (green), indel (violet). The maximum genome coverage of read-mapped genomes for variant detection is indicated (e.g., N = 150 in total for overall data set). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NCBI, National Center for Biotechnology Information

China, where mutations in the Spike glycoprotein, Protein 3a, Membrane protein, ORF6 protein, and ORF10 protein appeared in the second time point (Figure 5C).

In the United States, the proportions of the type of amino acid substitutions did not change drastically (Figure 5). "Polar \leftrightarrow Neutral" mutations were almost similar between the two time points (36.36% 12/2019-03/2020; 36.57% - 12/2019-04/2020), while "Similar change" mutations changed minimally (46.75%12/2019-03/2020; 47.01% - 12/2019-04/2020).). "Similar change" mutations had the highest frequency among the mutation types in United States samples. Mutation density presented in bar graphs show that there was an appearance of amino acid substitutions in the M and ORF7a proteins (Figure 5C).

For the Others geographic area, there is a great change in the proportions of mutations that are "*Polar* \leftrightarrow *Neutral*,""*Charged* \leftrightarrow *Polar*," and "*Charged* \leftrightarrow *Neutral*" (Figure 5B). The proportion of "*Polar* \leftrightarrow *Neutral*" mutations in the earlier time point was higher than that of the second time point (31.71% \rightarrow 22.49%) as shown in Figure 5B. The proportion of "*Charged* \leftrightarrow *Polar*" and "*Charged* \leftrightarrow *Neutral*" mutations increased between the two time points (4.88% \rightarrow 7.10% "*Charged* \leftrightarrow *Polar*"; 4.88% \rightarrow 18.34% "*Charged* \leftrightarrow *Neutral*"). Appearance of mutations in the M protein and ORF6 protein occurred in the Others geographic area according to the mutation density graphs (Figure 5C), with the appearance of "*Similar Change*" substitutions in the second time point for the ORF8 protein and N protein as compared to the initial time point (Figure 5C).

				2-00-						
and and and an	nicdo obitoco/nictor		Nucleotide	Deferences			Relative	A A socition	Amino acid	Type of AA change/
Genome region	Protein/peptide chain	пошан	position	Kererence	Allele	Frequency	irequency	AA position	mutation	mutation
5′-UTR	N/A	N/A	4	A	F	1	0.67	N/A	N/A	N/A
			26	A		2	1.33			
			28	U	 ⊢	2	1.33			
			31	A	F	1	0.67			
			34	A	F	1	0.67			
			35	A	 ⊢	2	1.33			
			36	U	н н	7	1.33			
			75	C	A	1	0.67			
			104	Т	A	1	0.67			
			111	Т	υ	1	0.67			
			112	Т	U	1	0.67			
			119	U	U	1	0.67			
			120	Т	υ	1	0.67			
			124	U	A	1	0.67			
			186	U	н н	2	1.33			
			241	C	⊢	24	16.00			
			254	U	-	2	1.33			
ORF1ab	Leader protein/nsp1	Leader protein/nsp2	270	A	U	1	0.01	2	E>G	Charged<>Neutral
			313	C	 ⊢	e	2.00	16	Silent	Silent
			490	Т	, 4	4	0.03	75	D>E	Similar Charge
			508	TGGTCATGTTATGGT		7	0.01	82	G82_V86del	Deletion
			514	Т	υ	1	0.67	83	Silent	Silent
			565	Т	U	1	0.67	100	Silent	Silent
			614	ט	A	1	0.01	117	A>T	Polar<>Neutral
			618	A	U	1	0.01	118	Y>C	Polar<>Neutral
			654	IJ	A	1	0.01	130	G>E	Charged<>Neutral
			686	AAGTCATTT		1	0.01	141	Deletion	Deletion
			721	F	U	1	0.67	152	Silent	Silent
	nsp2	nsp3	884	U	F	1	0.01	207	R>C	Charged<>Polar
			1059	U	-	6	0.04	265	T>I	Polar<>Neutral
			1076	U	F	1	0.01	271	P>S	Polar<>Neutral
			1102	C	F	1	0.67	279	Silent	Silent
			1385	С	F	1	0.01	374	Н>Ү	Charged<>Neutral
			1397	ט	✓	0	0.02	378	<u>\</u>	Similar Charge
										(Continues)

TABLE 1 Summary of detected nucleotide and amino acid mutations in SARS-CoV-2

1707

		Nucleotide				Relative		Amino acid	Type of AA change/
Genome region Protein/peptide chain	Domain	position	Reference	Allele	Frequency	frequency	AA position	mutation	mutation
		1431	ATG	ı	1	0.01	389	Deletion	Deletion
		1548	U	۷	1	0.01	428	S>N	Similar Charge
		1623	Т	U	1	0.01	453	L>T	Polar<>Neutral
		1691	A	U	1	0.01	476	><	Similar Charge
		1895	U	⊢	1	0.01	544	V>L	Similar Charge
		2091	U	⊢	1	0.01	609	T>I	Polar<>Neutral
		2269	A	⊢	1	0.67	668	Silent	Silent
		2277	Т	υ	1	0.01	671	T <i< td=""><td>Polar<>Neutral</td></i<>	Polar<>Neutral
		2388	U	⊢	1	0.01	708	T>I	Polar<>Neutral
		2416	U	⊢	2	1.33	717	Silent	Silent
		2446	Т	υ	1	0.67	727	Silent	Silent
		2472	U	⊢	7	4.67	736	Silent	Silent
		2717	U	۷	1	0.01	818	G>S	Polar<>Neutral
nsp3	nsp3 chain	2875	U	۷	1	0.67	870	Silent	Silent
		2971	U	⊢	1	0.01	902	Δ_	Similar Charge
	Nsp3 N-terminal/	3037	U	⊢	23	15.33	924	Silent	Silent
	DUF3655 (domain with	3099	υ	⊢	2	0.01	945	T>I	Polar<>Neutral
	unknown function)	3177	U	⊢	4	0.03	971	P>L	Similar Charge
	nsp3 chain	3259	U	⊢	1	0.01	998	Q>H	Charged<>Polar
	Macro domain	3299	Т	U	1	0.67	1012	Silent	Silent
		3333	TTG	ı	1	0.01	1023		Deletion
		3411	U	⊢	1	0.01	1049	A>V	Similar Charge
		3518	U	⊢	1	0.01	1085	V>F	Similar Charge
		3738	U	⊢	1	0.01	1158	P>L	Similar Charge
	nsp3 chain	3778	A	ט	1	0.67	1171	Silent	Silent
	Nsp3 ss-polyA binding	4234	C	⊢	1	0.67	1323	Silent	Silent
	domain	4402	T	υ	6	4.00	1379	Silent	Silent
	PL2Pro domain	4780	U	⊢	1	0.67	1505	Silent	Silent
	Papain-like viral protease	4946	T	υ	1	0.01	1561	S>P	Polar<>Neutral
		5062	U	⊢	6	0.04	1599	L>F	Similar Charge
		5084	A	ט	1	0.01	1607	><	Similar Charge
	Papain-like viral	5572	U	⊢	1	0.01	1769	Σ	Similar Charge
	protease/peptidase C16	5608	A	ט	1	0.67	1781	Silent	Silent
		5784	C	⊢	1	0.01	1840	T>I	Polar<>Neutral
		5845	A	⊢	4	0.01	1860	K>N	Charged<>Polar

Genome region Protein/peptide chain	Domain	Nucleotide position	Reference	Allele	Frequency	Relative frequency	AA position	Amino acid mutation	Type of AA change/ mutation
	Nucleic acid-binding	6026	U	⊢	1	0.01	1921	P>S	Polar<>Neutral
	domain	6031	U	⊢	1	0.67	1922	Silent	Silent
		6035	A	U	1	0.01	1924	S>G	Polar<>Neutral
		6040	U	⊢	2	1.33	1925	Silent	Silent
		6312	U	٩	2	0.01	2016	T>K	Charged<>Polar
	nsp3 chain	6501	U	⊢	1	0.01	2079	P>L	Similar Charge
		6636	U	⊢	1	0.01	2124	T	Polar<>Neutral
		6695	U	⊢	1	0.01	2144	P>S	Polar<>Neutral
		6819	U	⊢	2	0.01	2185	S>I	Polar<>Neutral
		6968	U	A	1	0.01	2235		Similar Charge
		6996	Т	U	2	0.01	2244	l>T<	Polar<>Neutral
		7016	U	A	1	0.01	2251	G>S	Polar<>Neutral
		7105	U	⊢	1	0.67	2280	Silent	Silent
		7488	U	⊢	1	0.01	2408	T>I	Polar<>Neutral
		7866	U	⊢	1	0.01	2534	G>V	Similar Charge
		8001	A	U	1	0.01	2579	D>A	Charged<>Neutral
		8388	A	U	1	0.01	2708	N>S	Similar Charge
nsp4	nsp4	8653	U	⊢	1	0.01	2796	M>I	Similar Charge
		8728	A	U	1	0.67	2821	Silent	Silent
		8782	U	⊢	43	28.67	2839	Silent	Silent
		8945	A	ט	1	0.01	2894	N>D	Charged<>Polar
		8987	Т	٩	1	0.01	2908	Ъ-	Similar Charge
		9034	A	U	1	0.67	2923	Silent	Silent
		9157	Т	υ	1	0.67	2964	Silent	Silent
		9274	A	ט	1	0.67	3003	Silent	Silent
		9430	C	⊢	1	0.67	3055	Silent	Silent
		9474	C	⊢	1	0.01	3070	A>V	Similar Charge
		9477	Т	A	с	0.02	3071	F>Y	Similar Charge
		9491	C	⊢	1	0.01	3076	Н>Ү	Charged<>Neutral
		9534	C	⊢	1	0.01	3090	T>I	Polar<>Neutral
		9561	C	⊢	1	0.01	3099	S>L	Polar<>Neutral
		9924	C	⊢	1	0.01	3220	A>V	Similar Charge
		10015	С	⊢	1	0.67	3250	Silent	Silent
3C-like proteinase	Peptidase C30 domain	10036	C	⊢	1	0.67	3257	Silent	Silent
		10232	С	⊢	2	0.01	3323	R>C	Charged<>Polar
									(Continues)

MEDICAL VIROLOGY - WILEY

			Nucleotide				Relative		Amino acid	Type of AA change/
Genome region	Protein/peptide chain	Domain	position	Reference	Allele	Frequency	frequency	AA position	mutation	mutation
	nspó	nspó	10507	U	⊢	7	0.67	3414	Silent	Silent
			11075		E	Ļ	0.01	3605_3606	F_LinsF	Insertion
			11083	U	U	7	0.01	3606	L>F	Similar Charge
			11083	U	⊢	16	0.11	3606	L>F	Similar Charge
			11101	A	U	1	0.67	3612	Silent	Silent
			11410	U	∢	2	1.33	3715	Silent	Silent
			11750	U	⊢	Ļ	0.01	3829	L>F	Similar Charge
			11752	U	⊢	Ļ	0.67	3829	Silent	Silent
	nsp7	nsp7	11764	Т	A	Ļ	0.01	3833	N>K	Charged<>Polar
			11916	U	⊢	e	0.02	3884	S>L	Polar<>Neutral
			11937	U	∢	7	0.01	3891	C>Y	Polar<>Neutral
	nsp8	nsp8	11956	U	⊢	1	0.67	3897	Silent	Silent
			12102	U	⊢	1	0.01	3946	S>L	Polar<>Neutral
			12115	U	⊢	Ţ	0.67	3950	Silent	Silent
			12473	U	⊢	Ļ	0.67	4070	Silent	Silent
			12478	U	∢	2	0.01	4071	Γ^Σ	Similar Charge
	nsp9	nsp9	12534	U	⊢	7	0.01	4090	T>I	Polar<>Neutral
	nsp10	nsp 10	13072	U	⊢	Ļ	0.67	4269	Silent	Silent
			13225	U	U	1	0.01	4321	F>L	Similar Charge
			13226	Т	U	7	0.67	4321	Silent	Silent
	RNA-dependent RNA	RNA-dependent RNA	13620	U	⊢	Ļ	0.67	4452	Silent	Silent
	polymerase	polymerase N-terminal	13730	U	⊢	2	0.01	4489	A>V	Similar Charge
			14408	J	⊢	26	0.17	4715	P>L	Similar Charge
		RdRp chain	14657	J	⊢	1	0.01	4798	A>V	Similar Charge
			14786	C	⊢	1	0.01	4841	A>V	Similar Charge
			14805	U	⊢	6	4.00	4847	Silent	Silent
			14849	Т	U	Ļ	0.01	4862	L>R	Charged<>Neutral
			14856	A	⊢	1	0.67	4864	Silent	Silent
			14858	Т	۷	1	0.01	4865	V>D	Charged<>Neutral
		RdRp catalytic	15324	U	⊢	4	2.67	5020	Silent	Silent
			15418	U	⊢	1	0.01	5052	A>S	Polar<>Neutral
			15597	Т	υ	1	0.67	5111	Silent	Silent
			15607	Т	υ	1	0.67	5115	Silent	Silent
		RdRp Chain	15910	U	⊢	Ļ	0.01	5216	D>Y	Charged<>Neutral
			15960	U	⊢	£1	0.67	5232	Silent	Silent

Genome region Protein/peptide chain	Domain	Nucleotide	Reference	Allele	Frequency	Relative frequency	AA position	Amino acid mutation	Type of AA change/ mutation
		02076	F	ţ	-	r,	5007	Cilcat	Cilcut
Helicase	COVI ZNBU	162/2		5	-	0.67	5336	Silent	Silent
		16293	C	F	1	0.67	5343	Silent	Silent
		16325	U	υ	7	0.01	5354	C>S	Similar Charge
		16467	A	ט	7	0.67	5401	Silent	Silent
	Helicase chain	16877	U	⊢	Ţ	0.01	5538	T>	Polar<>Neutral
		17000	U	⊢	Ļ	0.01	5579	T>	Polar<>Neutral
	(+) RNA virus Helicase	17141	U	٨	1	0.01	5626	A>D	Charged<>Neutral
	ATP-binding domain	17247	т	υ	2	1.33	5661	Silent	Silent
		17249	U	⊢	1	0.01	5662	A>V	Similar Charge
		17280	U	⊢	1	0.67	5672	Silent	Silent
		17373	U	⊢	5	3.33	5703	Silent	Silent
		17376	A	U	1	0.67	5704	Silent	Silent
		17410	U	⊢	1	0.01	5716	R>C	Similar Charge
		17423	A	U	1	0.01	5720	Y>C	Polar<>Neutral
		17470	C	⊢	1	0.67	5736	Silent	Silent
	(+) RNA virus Helicase C-	17747	U	F	6	0.06	5828	P>L	Similar Charge
	terminal domain	17825	C	⊢	1	0.01	5854	T>I	Polar<>Neutral
		17858	A	U	10	0.07	5865	Y>C	Polar<>Neutral
		17894	C	⊢	1	0.01	5877	A>V	Similar Charge
Guanine-N7	Guanine-N7	18060	C	⊢	11	7.33	5932	Silent	Silent
methyltransferase	methyltransferase	18115	U	⊢	1	0.01	5951	Н>Ү	Charged<>Neutral
		18126	т	υ	1	0.67	5954	Silent	Silent
		18603	т	υ	1	0.67	6113	Silent	Silent
		18736	Т	U	0	0.02	6158	F>L	Similar Charge
		18744	C	⊢	1	0.67	6160	Silent	Silent
		18788	C	⊢	1	0.01	6175	T>I	Polar<>Neutral
		18814	U	⊢	1	0.67	6184	Silent	Silent
		18975	Т	A	1	0.67	6273	Silent	Silent
		18996	Т	υ	1	0.67	6244	Silent	Silent
		18998	U	⊢	2	0.01	6245	A>V	Similar Charge
		19065	Т	U	1	0.67	6267	Silent	Silent
		19175	A	υ	1	0.01	6304	D>A	Charged<>Neutral
		19610	C	⊢	1	0.01	6449	T>	Polar<>Neutral
	N-Endo, uridylate-specific	19684	U	⊢	1	0.01	6474	V>L	Similar Charge
	endoribonuclease	20268	A	U	1	0.67	6668	Silent	Silent

(Continues)

MEDICAL VIROLOGY -WILEY

(Continued)	
-	
Ш	
8	
T A	

			Nucleotide				Relative		Amino acid	Type of AA change/
Genome region	Protein/peptide chain	Domain	position	Reference	Allele	Frequency	frequency	AA position	mutation	mutation
	N-Endo, uridylate-		20281	Т	υ	7	0.01	6673	F>L	Similar Charge
	specific		20298	АТТ	,	1	0.01	6679	Deletion	Deletion
	endoribonuclease		20437	A	⊢	7	0.01	6725	S>C	Similar Charge
			20449	A	⊢	1	0.01	6729	N>Y	Polar<>Neutral
	2'-O-Ribose	2'-O-Ribose	20692	U	⊢	ю	0.02	6810	P>S	Polar<>Neutral
	methyltransferase	methyltransferase	20936	U	⊢	Ļ	0.01	6891	T>M	Polar<>Neutral
			20995	U	۷	Ļ	0.01	6911	G>S	Polar<>Neutral
			21137	A	ט	7	0.01	6958	K>R	Similar Charge
			21147	Т	υ	Ļ	0.67	6961	Silent	Silent
			21316	U	٩	Ļ	0.01	7018	D>N	Charged<>Polar
			21384		⊢	Ļ	0.01	7041	Insertion	Insertion
			21386	U	⊢	Ļ	0.01	7041	S>F	Polar<>Neutral
			21387		F	7	0.01	7042	Insertion	Insertion
			21426	Т	ט	7	0.67	7054	Silent	Silent
S	Spike protein S1/ surface glycoprotein S1	Spike protein S1/surface glycoprotein S1 chain	21595	U	н	4	0.67	11	Silent	Silent
		Spike protein S1 N-	21644	Т	٩	Ļ	0.01	28	×>N	Polar<>Neutral
		terminus	21691	U	⊢	Ļ	0.67	43	Silent	Silent
			21707	C	⊢	2	0.01	49	Н>Ү	Charged<>Neutral
			21711	U	F	1	0.01	50	S>L	Polar<>Neutral
			21784	Т	۷	1	0.01	74	N~K	Charged<>Polar
			21830	U	⊢	1	0.01	90	V>F	Similar Charge
			21906	A	ט	Ļ	0.01	115	Q>R	Charged<>Polar
			21991	TTA		1	0.01	145	Deletion	Deletion
			22033	U	٨	1	0.01	157	F>L	Similar Charge
			22104	ט	⊢	1	0.01	181	G>V	Similar Charge
			22151	A	ט	1	0.01	197	><	Similar Charge
			22224	υ	ט	1	0.01	221	S>W	Polar<>Neutral
			22303	F	ט	1	0.01	247	S>R	Charged<>Polar
			22432	U	⊢	1	0.67	290	Silent	Silent
			22468	U	⊢	1	0.67	302	Silent	Silent
		Spike receptor binding domain/spike protein S1 Cterminal domain	22785	U	F	Ļ	0.01	408	R>I	Charged<>Neutral
			23185	U	⊢	7	0.67	541	Silent	Silent

Genome region	Protein/peptide chain	Domain	Nucleotide position	Reference	Allele	Frequency	Relative frequency	AA position	Amino acid mutation	Type of AA change/ mutation
		Spike receptor binding domain	23271	C	н	Ţ.	0.01	570	A>V	Similar Charge
		Spike protein S1/surface	23403	٨	U	26	0.17	614	D>G	Charged<>Neutral
		glycoprotein S1 chain	23520	U	F	1	0.01	653	A>V	Similar Charge
			23613	U	⊢	1	0.01	684	A>V	Similar Charge
	Spike protein S2/	Spike protein S2 chain	23876	U	۷	1	0.01	772	۷>ا	Similar Charge
	surface glycoprotein S2		23929	U	⊢	2	1.33	789	Silent	Silent
			23952	Т	ט	1	0.01	797	F>C	Polar<>Neutral
		Spike protein S2' chain/	24022	Т	υ	1	0.67	820	Silent	Silent
		fusion peptide 1	24023	U	⊢	1	0.67	821	Silent	Silent
		Spike protein S2' chain/	24325	A	ט	e	2.00	921	Silent	Silent
		heptad repeat 1	24351	U	⊢	1	0.01	930	A>V	Similar Charge
			24370	U	⊢	1	0.67	936	Silent	Silent
		Spike protein S2' chain	24694	A	⊢	2	1.33	1044	Silent	Silent
			24789	U	⊢	1	0.01	1076	17	Polar<>Neutral
			24862	A	U	1	0.67	1100	Silent	Silent
		Spike protein S2' chain/ heptad repeat 2	25156	U	F	ст.	0.67	1198	Silent	Silent
ORF3a	ORF3a protein	ORF3a protein	25433	U	⊢	1	0.01	14	1~1	Polar<>Neutral
			25533	Т	۷	1	0.67	47	Silent	Silent
			25534	U	⊢	1	0.01	48	V>F	Similar Charge
			25563	U	⊢	5	0.03	57	Q>H	Charged<>Polar
			25672	U	A	1	0.01	94	Ē.	Similar Charge
			25687	U	⊢	1	0.01	66	A>S	Polar<>Neutral
			25771	U	۷	1	0.01	127	L	Similar Charge
			25775	U	⊢	1	0.01	128	W>L	Similar Charge
			25806	A	⊢	1	0.67	138	Silent	Silent
			25810	U	ט	1	0.01	140	L>V	Similar Charge
			25979	U	⊢	e	0.02	196	G>V	Similar Charge
			26048	Т	ט	1	0.01	219	L>W	Similar Charge
			26088	U	⊢	1	0.67	232	Silent	Silent
			26144	U	⊢	10	0.07	251	G>V	Similar Charge
ш	Envelope protein	Envelope protein	26326	U	F	2	1.33	28	Silent	Silent
			26354	Т	۷	1	0.01	37	L>H	Charged<>Neutral
										(Continues)

MEDICAL VIROLOGY - WILEY

Genome region	Protein/peptide chain	Domain	Nucleotide position	Reference	Allele F	requency	Relative frequency	AA position	Amino acid mutation	Type of AA change/ mutation
Σ	Membrane glycoprotein	Membrane glycoprotein	26526 26530 26729 26849 27046	υς⊢υυ			0.01 0.01 3.33 0.01 0.01	2 3 69 175	A>S D>G Silent M>I T>M	Polar<>Neutral Charged<>Neutral Silent Similar Charge Polar<>Neutral
ORF6	ORF6 protein	ORF6 protein	27225 27299 27384	υгг	Γ U U		0.01 0.01 0.67	8 33 61	Q>H I>T Silent	Charged<>Polar Polar<>Neutral Silent
ORF7a	ORF7a protein	SARS coronavirus X4 like	27635	U	т Т		0.01	81	S>L	Polar<>Neutral
ORF8	ORF 8 protein	ORF 8 protein	27925 27964 28077 28144	U U U μ		1 1 1 12 12	0.01 0.01 0.29	11 24 84	T>I S>L V>L L>S	Polar<>Neutral Polar<>Neutral Similar Charge Polar<>Neutral
z	Nucleocapsid phosphoprotein	Nucleocapsid phosphoprotein	28311 28378 28409 28657 28658 28854 28855 28885 28885 28881 28881 28881 28882 28883 28885 28885 28885 28995 29095 29140	υσυνμαυσυσσυσαμυσ			0.01 1.33 0.01 2.00 0.05 0.01 0.01 0.01 0.01 0.01 0.01 0	13 35 128 1197 195 202 203 203 204 204 203 203 203 203 203 203 203 203 203 203	P>L Silent P>S Silent Silent Silent A>G S>L A>G S	Similar Charge Silent Polar<>Neutral Silent Silent Polar<>Neutral Charged<>Neutral Polar<>Neutral Similar Charge Similar Charge Similar Charge Charged<>Neutral Polar<>Neutral Polar<>Neutral Silent Silent Silent Charged<>Polar

Genome region	Protein/peptide chain	Domain	Nucleotide position	Reference	Allele	Frequency	Relative frequency	AA position	Amino acid mutation	Type of AA change/ mutation
			29148 29230 29301 29303 29527		оннна		0.01 0.67 0.01 0.01 1.33	292 319 343 344 418	l>T Silent A>V P>S Silent	Polar<>Neutral Silent Similar Charge Polar<>Neutral Silent
Between N and ORF10 non coding region	N/A	N/A	29540	U	۲	7	1.33			
ORF10	ORF10 protein	ORF10 protein	29563 29573	U U	⊢∢	1 4	0.67 0.01	6 2	Silent V>I	Silent Similar Charge
ORF10, stem loop	N/A	N/A	29635	U	F	tı	0.67	N/A	N/A	N/A
3、UTR: 3, UTR: 3	Υ. Y	Y Z	29695 29736 29736 29742 29742 29742 29844 29845 29845 29845 29861 29868 29868 29867 29868 29867 29868	А G G CGATCGAGTG G G G G C A A A A A A A A A A A A A A	00F4F,000040044404F	1 ° ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1 ° 1	0.67 2.00 2.00 0.67 1.33 0.67 1.33 0.67 1.33 0.67 1.33 3.33 3.33 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67	۲ V	۲ Z	NA NA

1715

1716

 (A)Number of SARS-CoV-2 genome positions with missense and indel mutations
(B) Number of SARS-CoV-2 genome positions at the Untranslated regions (UTRs) with mutations

FIGURE 4 Commonly occurring hotspots were identified per geographical clusters (China, United States, and Others) and results were summarized as the number of SARS-CoV-2 genome positions with (A) missense and indel mutations at the protein-coding regions and (B) detected mutations at the untranslated regions (UTRs), mainly, 5' and 3'-UTR

The total count of amino acid substitutions in the proteins of SARS-CoV-2 was 381. From the data that was collected at the earlier timepoint, most of the mutations in the proteins were classified under "Similar Change" (44.83%), while insertions were the least frequent (1.15%). In addition of data from the later study timepoint, "Similar Change" mutations were most frequent however with decreased proportion (43.45%); and insertions was also the least frequent then at 0.84% proportion. The breakdown of the mutations in the SARS-CoV-2 proteins based on the collected genomes are shown in Figure 5A.

Overall, there was an observed shift in the proportions of the different classes of amino acid mutations between the two collection periods and geographic areas. There was an increase in proportion of "Similar Change" mutations in China between the two collection periods, while deletion mutations emerged at later time (Figure 5A). In comparison with United States, the proportion of the classes of amino acid mutations were generally unchanged. Prominent mutations have been found and further evaluated in this study in a spacio-temporal perspective, which involve both structural and non-structural proteins of SARS-CoV-2.

3.4 | The D614G substitution in the spike glycoprotein is the most frequently occurring mutation among the structural proteins and occurred mostly in the Others geographic area

In samples from China, the D614G substitution did not occur, in both time points (Figure 5A), however, in the United States samples, there was an increase in the frequency of the D614G mutation ($n_{D614G} = 1 \rightarrow n_{D614G} = 8$; Figure 5A). The same pattern was seen in the Others geographic area ($n_{D614G} = 4 \rightarrow n_{D614G} = 18$). The mutation density of the spike glycoprotein increased in all of the geographic areas (China, United States, and Others areas, based on Figure 5C).

The D614G substitution in the Spike glycoprotein (S) occurred five times in the sample population from the data collected at earlier

time and occurred 26 times from the overall total data. This mutation occurred with the P4715L (ORF1ab) mutation (Figures 2B and 5A). The D614G is a result of a transition mutation in the S gene of SARS-CoV-2 (23403A>G) and classified as "Charged \leftrightarrow -Neutral" aa mutation. The mutation density S based on earlier data was 0.01414 mutation events/aa length of S glycoprotein, while this value approximately doubled based on the overall data. In addition, four other hotspots in the spike protein were detected in this study (Table 1). These data may suggest that the S variant occurred outside of China and is more observed in separate countries and in the United States.

3.5 | ORF7b protein coldspots and ORF8 protein hotspots are conserved among all geographical areas

Among the geographical areas, no mutations were found in ORF6, ORF7a/7b, ORF9b, ORF10, and ORF14 proteins by the earlier study timepoint, hence considered as coldspots at that period (Figures 3D and 5B). On the other hand, at the later time point, only ORF7b, ORF9b, and ORF14 proteins were identified as mutation coldspots (Figures 3E and 5B). Note that it may be due to limitations in annotation of various viral genome regions that no mutations were detected in ORF9b and ORF14 proteins, as the study based the identification of genes and proteins from publicly available annotation to reference sequence (NCBI GenBankTM Accession ID: NC_045512). All in all, the ORF7b gene/protein was observed to have no mutations in all geographical region and between the study timepoints, therefore this gene may be potentially conserved in SARS-CoV-2.

Prominently, ORF8 protein presented the highest mutation density among nonstructural proteins (0.223 mutations/aa site in overall total), similar in all geographical areas similar in two time-points (Figures 3D,E and 5B). Collectively at the later timepoint, its mutation density almost doubled. Along with the increased in

1717

FIGURE 5

LEY-MEDICAL VIROLOGY

mutation densities in other notable sites: doubled in nsp3 (0.072 mutations/aa site by March-0.136 mutations/aa site by May), and quadrupled in the RNA-dependent-RNA polymerase (RDRP) (0.0139 mutations/aa site by March-0.0515 mutations/aa site by May). The recurrence of ORF8 mutations were attributed to L84S which consistently was the most frequently occurring in China and United States (Figures 3A and 5A). In Others, however, the most recurrent mutation varied that was G251V in protein 3a in earlier timepoint, while P4715L in RDRP by the later timepoint (Figures 3A and 5A). This may suggest that the distinctive abundance of ORF8 mutations is generally similar among different areas, as its collective frequency increases over time.

3.6 | The Nucleocapsid Phosphoprotein (N) exhibited the highest mutation density among the structural proteins of SARS-CoV-2

For both time points, N had the highest mutation density (0.02148 for earlier data; 0.1122 for overall data). Twelve nucleotide sites considered as hotspots in N, comprising 48% of the mutations in N (Table 1). Mutation densities of the other structural proteins are shown in Figure 5B. Interestingly, 10 SARS-CoV-2 samples had a substitution mutation in nucleotide positions 28881-28883 (GGG>AAC). This nucleotide mutation led to two amino acid substitutions (R203K and G204R). The earliest recorded SARS-CoV-2 genome having this mutation was from Florida, USA (February 28, 2020; accession ID: MT276330) while the other nine genomes that have this mutation come from the Others geographic area (Israel, Peru, Brazil, Greece, Czech Republic, and Argentina). However, the order of mutation densities of structural proteins among geographic areas varied, with the Others geographic area having N as the third highest mutation density for the overall data (Figure 5C). These suggest that the mutation in the N protein did not occur initially in China but occurred first from the United States.

4 | DISCUSSION

4.1 | Presence of a novel mutation and a high frequency mutation in SARS-CoV-2

Nsp16 is responsible for the messenger RNA capping of the coronavirus genome, primarily to protect from host recognition.¹⁶

According to the crystal structure of nsp16, the domain of P6810 in nsp16 is unknown, however, it is characterized as part of a bend in nsp16. Proline exhibits conformational rigidity projected to result to a kink; its substitution may cause a change in the steric conformation of the aforementioned bend.¹⁶ In addition, one of the immediate surrounding amino acids of nsp16-nsp10 complex that is proximal to P6810 is a tryptophan at aa position 7029 of ORF1ab.¹⁶ Substitution of serine (P6810S) might exhibit an enhanced interaction for hydrogen bonding with tryptophan.^{17,18} There is a need to further investigate this mutation to determine its significance in host evasion. It is important also to further evaluate its prevalence in the Chinese population, and in the global population to fully understand its implications in the function of nsp16.

The increased recurrence of L84S mutation may suggest that this variant might be favorable for virus' survival across geographical regions.^{6,19} The subclades of L84S have mutations that may affect viral replication, immune evasion, viral release, and virion assembly.^{1,20-23} Further research may ascertain the changes in the function of ORF8 due to this mutation, in virus replication, as well as potential changes in immune evasion and viral release.

4.2 | Comparison of mutations in different SARS-CoV-2 studies reveal similarities and differences in mutation patterns

Observations in this study are consistent with the general pattern where transitions are more prevalent over transversions, perhaps due to steric considerations.^{24,25} Interestingly, mutations in ORF3a (modulating host immune response), and 3'-UTR (RNA stability and translation) consists largely of transversions, suggesting that these regions may be more erroneous than other regions and more prone to random substitution of transversions.²⁴ This might suggest that there are changes in virulence and replication stability across global regions.

Differences in findings may be observed based on previously published literature, using the mutation landscape of SARS-CoV-2. A study by Pachetti et al.²⁵ described that a mutation in RDRP (nt14408) increased in count, 7 (February) to 10 (cumulative by March). This was consistent with this study's findings with greater recurrence; 4 occurrences (March) to 26 (cumulative by May). In addition, another research by Kim et al.²⁶ also described the low frequency of mutations in E, M, and ORF7a, similar by this study's

FIGURE 5 Characterization of amino acid mutations in SARS-CoV-2. Collection dates refer to the collection dates according to the annotated date of collection from GISAID or NCBI GenBank. (A) Comparison of the amino acid mutations according to the nature of the change in charge between earlier and overall data, and across different geographic clusters (China, United States, and Others). (B) Proportion of the nature of the change in amino acid charge and Indels that occurred in the total sample population, and for the geographic clusters between earlier and overall data. (C) Comparison of the mutation density profiles between earlier and overall data. Red indicates mutation density values resulting in amino acids having dissimilar nature to the reference, while blue indicates the mutation density values that resulted in amino acids having similar nature to the reference. The maximum genome coverage of read-mapped genomes for variant detection are indicated (e.g., *N* = 150 in overall data for overall data set). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; NCBI, National Center for Biotechnology Information

result. Other studies such as this described high frequency of mutations in ORF1ab and may be attributed to the relatively high genome length of the region. To address this, this study normalized the factor of gene length and presented the data through mutation densities of each gene in SARS-CoV-2. Discrepancies in mutation frequencies between this study and that of Tiwari and Mishra²⁷ may be attributed to the following reasons: (1) In this study, a single frequency of a mutation is already considered a valid mutation. In contrast to Tiwari and Mishra's²⁷ study, mutations should occur at least three times before these were considered as legitimate mutations. (2) Since the samples considered in this study were collected at a later time during the pandemic, thus providing more time and opportunity for the virus to accumulate mutations. In contrast to Tiwari and Mishra's study where samples were collected earlier into the pandemic, less time for the virus to accumulate mutations.27

4.3 | Implications of identified mutations in SARS-CoV-2 to treatment options and diagnostics

Remdesivir is currently at Phase 3 of COVID-19 clinical trials, which is known to inhibit RDRP.²⁸ The active component of remdesivir (GS-441524; adenosine nucleotide analog) binds to RDRP catalytic site and halts nucleic acid elongation.²⁹ The missense mutation (D722Y) occurred at the catalytic site along with neighboring variants (V472D and L469S), a change from an acidic to a nonpolar residue, may potentially result to increase in hydrophobicity at the region, leading to a more elusive conformation. This potential impact may significantly influence the RDRP conformation which might challenge the effectivity of remdesivir.³⁰ Hence, SARS-CoV-2 RDRP mutations, especially considering regional variability, should be further investigated on their potential effect on RDRP structure and function to support the use of remdesivir.

The absence of D614G mutation in China while it was abundant in the Others geographic area suggest potentially variable effectiveness of vaccines and neutralization factors that target the RBD among different geographic areas. Alternatively, relatively conserved regions in Spike heptad 1-heptad two repeats, may present as potential drug or vaccine targets, inhibiting viral entry. As shown in this study, mutations in the Spike glycoprotein could confer alterations in its domains which may be involved in epitope recognition (i.e., RBD, S1-N terminal domain) of neutralizing antibodies (nAbs).^{31,32} Hence, binding of the potential nAb with putative SARS-CoV-2 epitopes may be hindered. Further studies should be done to evaluate putative effectiveness of neutralizing monoclonal antibodies against SARS-CoV-2.

The changes in the mutation frequencies and densities in N imply that the evolution of the genes and proteins of N over time in different landmasses is beneficial for the adaptation of SARS-CoV-2 as it spreads globally.³² Currently, the WHO, and the Centers for Disease Control and Prevention recommend the use of N1 and N2 genes in COVID-19 surveillance.³³ Recent publications have criticized the use of these genes in COVID-19 diagnosis using reverse MEDICAL VIROLOGY -WILEY

transcriptase-polymerase chain reaction (RT-PCR) because of its relatively high mutation index.^{34,35} There are variants that fall in the forward primer for N3, and in the reverse primer of N1, (nt 28688).³⁶ This was a hotspot mutation in the genome and proteome of SARS-C-oV-2, as observed in this study. These support that the variations in N may pose difficulties in diagnosis using N-targeted primers for quantitative RT-PCR.

The SARS-CoV-2 genomes used in this study are assumed to have come from individuals undergoing COVID-19 testing and before any of them received antiviral treatment. Since SARS-CoV-2 genomes from individuals who have received antiviral treatment are not currently available, comparisons on the mutation patterns between these two groups cannot be determined yet, but speculations can be made. Mutations in the virus can exist and persist in the absence of selective pressure, therefore the diversity of mutations is high and no variants exist with unusually high frequencies. This is likely the phenomenon we have observed, with a few exceptions like L84S (ORF8), D614G (S), and L3606F (ORF1ab). However, antiviral drugs can serve as selective pressure against certain types of mutations in the viruses, possibly reducing the overall diversity of the virus, but at the same time, increasing the frequencies of a select few virus variants that are resistant to the antiviral drug. These variants may be more dominant in the population and this may affect the overall patterns and frequencies of mutations in SARS-CoV-2.

In conclusion, this study highlights the importance of the characterization of both nucleotide and amino acid mutation landscape in SAR-CoV-2 to identify hotspots and coldspots that may be significant in the effectivity of diagnostic tools and treatment options for COVID-19, over the different areas worldwide as the pandemic continues.

ACKNOWLEDGMENTS

The authors would like to acknowledge and give their sincere gratitude towards the scientific community involved in providing, curating, and disseminating data for SARS-CoV-2 genomes, particularly GISAID and NCBI. The authors would also like to acknowledge QIAGEN for their generous action of providing free access for a limited time to their Genomics Workbench Application. In addition, the University of the Philippines College of Medicine MD-PhD Batch 10, Baldo, J. Asi, R. J., and Batulan, R. Q., are to be acknowledged for their aid in checking the readability and comprehensibility of the paper. Finally, the authors would like to acknowledge all the healthcare workers and frontline-support workers involved in the response to the COVID-19 pandemic, in our institution, and in our country. The authors of this study declared that this study has received no financial support.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests regarding this study.

AUTHOR CONTRIBUTIONS

Christian Luke D. C. Badua, Karol Ann T. Baldo, and Paul Mark B. Medina designed this study. Christian Luke D. C. Badua and Karol EY-MEDICAL VIROLOGY

Ann T. Baldo equally contributed to data collection, data analysis, technical graphics and processing, and writing the paper. Paul Mark B. Medina contributed to critical evaluation of the figures and results, and the critical review of the manuscript. All authors contributed to revising the manuscript and approving of the final version submitted.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are publicly available in NCBI GenBank at https://www.ncbi.nlm.nih.gov/nucleotide/ and in GISAID EpicCoV at https://www.gisaid.org/.

ORCID

Christian Luke D. C. Badua D https://orcid.org/0000-0002-1114-1322

Karol Ann T. Baldo b https://orcid.org/0000-0001-7854-7004 Paul Mark B. Medina b https://orcid.org/0000-0001-6116-1818

REFERENCES

- 1. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. *Nature.* 2020;579(7798):265-269. https://doi.org/10.1038/s41586-020-2008-3
- World Health Organization. 2020. https://www.who.int/docs/ default-source/coronaviruse/situation-reports/20200824-weeklyepi-update.pdf?sfvrsn=806986d1_4. Accessed August 27, 2020.
- Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group [published online ahead of print Febraury 11, 2020]. *bioRxiv*. 2020. https://doi.org/10.1101/ 2020.02.07.937862
- Chu H, Chan JF-W, Yuen TT-T, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. *Lancet Microbe.* 2020;1(1):e14-e23. https://doi.org/10.1016/s2666-5247(20)30004-5
- Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature*. 2020; 579(7798):270-273. https://doi.org/10.1038/s41586-020-2012-7
- Enjuanes L. Coronavirus Replication and Reverse Genetics. Berlin, NY: Springer; 2005.
- Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. *Gene Reports*. 2020;19:100682. https://doi.org/ 10.1016/j.genrep.2020.100682
- Cotten M, Watson SJ, Zumla AI, et al. Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. *mBio*. 2014;5(1):e01062-13. https://doi.org/10.1128/mbio.01062-13
- Peck KM, Lauring AS. Complexities of viral mutation rates. J Virol. 2018;92(14):e01031-17. https://doi.org/10.1128/jvi.01031-17
- Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* 2017;20(4):1160-1166. https://doi.org/10.1093/ bib/bbx108
- Kuraku S, Zmasek CM, Nishimura O, Katoh K. aLeaves facilitates ondemand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. *Nucleic Acids Res.* 2013;41(W1):W22-W28. https://doi.org/10.1093/nar/gkt389
- 12. Nguyen L-T, Schmidt HA, Haeseler AV, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-

likelihood phylogenies. Mol Biol Evol. 2014;32(1):268-274. https://doi.org/10.1093/molbev/msu300

- Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler AV, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods*. 2017;14(6):587-589. https://doi.org/10. 1038/nmeth.4285
- Hoang DT, Chernomor O, Haeseler AV, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. *Mol Biol Evol.* 2017;35(2):518-522. https://doi.org/10.1093/molbev/msx281
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Mol Biol Evol.* 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/ msy096
- Kim Y, Jedrzejczak R, Endres M, Godzik A, Joachimiak A. Crystal structure of the methyltransferase-stimulatory factor complex of NSP16 and NSP10 from SARS CoV-2 [published online ahead of print April 20, 2020]. *bioRxiv*. https://doi.org/10.2210/pdb6w61/pdb
- National Center for Biotechnology Information. PubChem Database. 2020. L-Proline, CID=145742, https://pubchem.ncbi.nlm.nih. gov/compound/Proline. Accessed June 7, 2020.
- National Center for Biotechnology Information. PubChem Database. 2020. Serine, CID=5951, https://pubchem.ncbi.nlm.nih.gov/ compound/Serine. Accessed June 7, 2020.
- Maitra A, Sarkar MC, Raheja H, et al. Mutations in SARS-CoV-2 viral RNA identified in Eastern India: possible implications for the ongoing outbreak in India and impact on viral structure and host susceptibility. J Biosci. 2020;45(1):76. https://doi.org/10.1007/ s12038-020-00046-1
- Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. *PLoS One.* 2009;4(12):e8342. https://doi.org/10. 1371/journal.pone.0008342
- Huang C, Narayanan K, Ito N, Peters CJ, Makino S. Severe acute respiratory syndrome coronavirus 3a protein is released in membranous structures from 3a protein-expressing cells and infected cells. J Virol. 2006;80(1):210-217. https://doi.org/10.1128/jvi.80.1. 210-217.2006
- Rota PA. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. *Science*. 2003;300(5624): 1394-1399. https://doi.org/10.1126/science.1085952
- Tseng Y-T, Wang S-M, Huang K-J, Wang C-T. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J Biomed Sci. 2014;21(1): 34. https://doi.org/10.1186/1423-0127-21-34
- Zhao Z, Boerwinkle E. Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome. *Genome Res.* 2002;12(11):1679-1686. https://doi.org/10.1101/gr.287302
- Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. https://doi.org/10. 1186/s12967-020-02344-6
- Kim JS, Jang JH, Kim JM, Chung YS, Yoo CK, Han MG. Genome-wide identification and characterization of point mutations in the SARS-CoV-2 genome. Osong Public Health Res Perspect. 2020;11(3): 101-111. https://doi.org/10.24171/j.phrp.2020.11.3.05
- Tiwari M, Mishra D. Investigating the genomic landscape of novel coronavirus (2019-nCoV) to identify non-synonymous mutations for use in diagnosis and drug design. J Clin Virol. 2020;128:104441. https://doi.org/10.1016/j.jcv.2020.104441
- Ou J, Zhou Z, Dai R, et al. Emergence of RBD mutations in circulating SARS-CoV-2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein [published online

MEDICAL VIROLOGY - WILEY

ahead of print March 23, 2020]. bioRxiv. https://doi.org/10.1101/2020.03.15.991844

- Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. *Lancet*. 2020;395(10224):565-574. https://doi.org/ 10.1016/s0140-6736(20)30251-8
- Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev. 2020;7(6):1012-1023. https://doi.org/10. 1093/nsr/nwaa036
- Zhang L, Jackson C, Mou H, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity [published online ahead of print June 12, 2020]. *bioRxiv*. https://doi. org/10.1101/2020.06.12.148726
- Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. *Emerg Microbes Infect*. 2020;9(1):382-385. https://doi.org/10.1080/22221751.2020.1729069
- Jiang S, Hillyer C, Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. *Trends Immunol.* 2020;41(5): 355-359. https://doi.org/10.1016/j.it.2020.03.007
- Moosa M, Banerjee P. Subversion of host stress granules by coronaviruses: potential roles of π-rich disordered domains of viral nucleocapsids. J Med Virol. 2020;92(4):455-459. https://doi.org/10. 1002/jmv.26195

- Lin S, Shen R, He J, Li X, Guo X. Molecular modeling evaluation of the binding effect of ritonavir, lopinavir and darunavir to severe acute respiratory syndrome coronavirus 2 proteases [published online ahead of print February 18, 2020]. *bioRxiv*. https://doi.org/10. 1101/2020.01.31.929695
- Zeng W, Liu G, Ma H, et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun. 2020; 527(3):618-623. https://doi.org/10.1016/j.bbrc.2020.04.136

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Badua CLDC, Baldo KAT, Medina PMB. Genomic and proteomic mutation landscapes of SARS-CoV-2. *J Med Virol.* 2021;93:1702-1721.

https://doi.org/10.1002/jmv.26548