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Abstract

Retinal homeostasis relies on intricate coordination of cell death and survival in response to

stress and damage. Signaling mechanisms that coordinate this process in the adult retina

remain poorly understood. Here we identify Decapentaplegic (Dpp) signaling in Drosophila

and its mammalian homologue Transforming Growth Factor-beta (TGFβ) superfamily, that

includes TGFβ and Bone Morphogenetic Protein (BMP) signaling arms, as central media-

tors of retinal neuronal death and tissue survival following acute damage. Using a Drosoph-

ila model for UV-induced retinal damage, we show that Dpp released from immune cells

promotes tissue loss after UV-induced retinal damage. Interestingly, we find a dynamic

response of retinal cells to this signal: in an early phase, Dpp-mediated stimulation of Saxo-

phone/Smox signaling promotes apoptosis, while at a later stage, stimulation of the Thick-

veins/Mad axis promotes tissue repair and survival. This dual role is conserved in the

mammalian retina through the TGFβ/BMP signaling, as supplementation of BMP4 or inhibi-

tion of TGFβ using small molecules promotes retinal cell survival, while inhibition of BMP

negatively affects cell survival after light-induced photoreceptor damage and NMDA induced

inner retinal neuronal damage. Our data identify key evolutionarily conserved mechanisms

by which retinal homeostasis is maintained.

Introduction

A functional and resilient visual system, durable to potential insults, is crucial for rapid inter-

pretation of an animal’s surroundings. In both mammals and insects, the visual system con-

tains a specific organization of structures; a lens to focus incoming light, a fluid filled vitreous,

photoreceptors to sense and transmit light sensing signals to the optic lobes, pigmented cells to

prevent diffraction, and immune cells adjacent to the tissue to mediate the damage response

[1]. Photoreceptors that make up these systems become postmitotic in early maturation (24
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hours after puparium formation (APF) in Drosophila [2]; the first postnatal week in mice [3,4],

and no stem cell pool exists to replace them. As such, progressive loss of these cells due to

injury can significantly impact the organ’s function. When the eye suffers damage, retinal tis-

sue must strike a balance between repair, survival, and apoptosis. This homeostatic response is

mediated in part by immune cell-derived cytokines and growth factors, which influence the

balance between apoptosis and survival of damaged cells [5–7]. The exact interplay of these

factors in the retinal damage response remains to be fully understood.

Drosophila is an excellent model for studying the interaction between immune cells and

photoreceptors during retinal tissue repair. 90% of Drosophila hemocytes are macrophages

(plasmatocytes), existing in clusters around every major organ including the eyecups [8].

Genetic or UV-C induced damage directed to the post-mitotic Drosophila pupal retina can

induce reproducible, quantifiable damage that persists to adulthood and is sensitive to genetic

perturbations, allowing dissection of pathways that mediate photoreceptor apoptosis and con-

trol survival [2,7,9]. Persistent DNA damage induced by UV has been shown to promote initi-

ator caspase activity in photoreceptors and thus apoptosis [10–17].

After UV damage, hemocytes are recruited to the retina, where they are activated by the

Pdgf1 orthologue Pvf1 in response to activation of the Dpp signal transducer Schnurri (Shn)

in damaged retinal cells [9,18]. Pvf1, in turn, induces the neurotrophic factor Mesencephalic

Astrocyte Derived Neurotrophic Factor (MANF), in hemocytes, regulating their transition to

an anti-inflammatory, pro-repair phenotype [7] and this response is conserved in mice [7].

However, the precise role of Dpp/Shn signaling in coordinating the tissue repair response

remains unclear.

Canonically, Dpp signals through two downstream type 1 receptors, Thickveins (Tkv) and

Saxophone (Sax), which both form heterotetrameric complexes with the type II receptor Punt

[19]. The downstream target of Tkv is Mad, while Sax phosphorylates Smox, resulting in its

nuclear translocation [20]. A coordination of Tkv and Sax signaling has recently been

described in the tissue damage response of the fly intestinal epithelium, where Sax/Smox sig-

naling mediates activation of intestinal stem cell (ISC) proliferation in response to entero-

pathogen infection, while Tkv/Mad signaling promotes the return to quiescence of these cells

[21]. This response is coordinated by the control of Tkv protein turnover in ISCs. Tkv degra-

dation is reduced during ISC activation, allowing for Tkv protein accumulation and replace-

ment of Sax in Tkv/Punt complexes [22].

In mammals, Dpp homologues include various members of the bone morphogenic protein

(BMP) and transforming growth factor beta (TGFβ) family. Their downstream targets include

Smad 1/5/9 (activated by BMP) and Smad 2/3 (activated by TGFβ). BMP 2/4 have been shown

to act in an anti-inflammatory manner in multiple systems, biasing macrophages to their anti-

inflammatory M2 subtype [23–26]. These proteins also stimulate Müller glia proliferation, pro-

mote survival of retinal ganglion cells after damage, and decrease microglial activation in vivo
[27–30]. However, the timing and mechanism(s) by which Dpp/BMP signaling modulates

repair in the retina is not fully understood. It is also unclear how these two homologous path-

ways interact in this tissue.

In this report, we characterize the role of Dpp/BMP/TGFβ signaling in the retinal damage

response of Drosophila and mice. We find a conserved role for early Sax/Smox signaling and

Smad 2/3 in promoting photoreceptor apoptosis after light damage, and a later role for Tkv/

Mad and Smad 1/5/9 signaling in promoting survival. We further provide evidence for a role

of immune cells as sources for the ligands of these pathways after injury. Our findings provide

critical new insight into mechanisms that maintain retinal homeostasis after injury.
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Results

Hemocyte derived Dpp controls the damaged retinal tissue response in

Drosophila
Our previous findings had identified Shn as a critical mediator of the retinal damage response

in flies (9), yet the role of Dpp signaling in that response remained unclear. To start assessing a

possible role for Dpp signaling components in retinal apoptosis, we performed genetic interac-

tion experiments using a previously characterized fly line overexpressing a constitutively active

form of the Jun N-terminal Kinase Kinase (JNKK) Hemipterous (Hep) under the control of

the photoreceptor and cone cell driver Sep-Gal4 [9,31–34]. In this line (Sep-HepACT), HepACT

expression is initiated during development in postmitotic photoreceptor and cone cells in the

third instar larval eye disc, inducing photoreceptor apoptosis through activation of the pro-

apoptotic gene hid [32,35].

When Sep-HepACT was crossed to flies expressing Sax-RNAi or Smox-RNAi under the con-

trol of UAS, a significant increase in surviving photoreceptors compared to control flies

(crossed to UAS::mCherry-RNAi) was observed (Fig 1A and 1A’). Overexpression of the nega-

tive feedback inhibitor of Dpp signaling, Daughters against Dpp (Dad; [36,37]), also promoted

survival when compared to control (Figs 1A’ and S1F). Conversely, we found that knocking

down Tkv and Mad resulted in a significant decrease in surviving photoreceptors (Fig 1A

and 1A’).

To assess whether this antagonistic effect of Sax/Smox and Tkv/Mad signaling are also

observed during UV-induced cell death, we used an assay in which the headcase of pupae is

removed at 24 hours after puparium formation, and animals are irradiated on one side with

17.5 microjoules of UV-C radiation [2,32]. In this model, hemocytes are attracted to the retina

after UV-C induced damage and are critical to limit excessive cell death. When animals

emerge after development, the extent of apoptosis can be measured by quantifying the size of

the irradiated eye in relation to the non-irradiated control eye. We used the glass multimer

reporter driver (GMR-Gal4; [38]) to express RNAi targeting Dpp pathway components in all

postmitotic cells of the retina, and found that Sax or Smox knockdown inhibits UV-induced

tissue loss, while Tkv or Mad knockdown promote it (Fig 1B and 1B’). A similar protective

effect was observed when we knocked down Dpp in hemocytes used a hemocyte-specific

driver (hemolectin::Gal4; [39]) (Fig 1B) in support of previous studies from our lab and others

demonstrating that hemocytes secrete Dpp [21,40–44]. These data further support a model in

which Sax/Smox signaling promotes apoptosis and Tkv/Mad signaling inhibit apoptosis in the

retina.

To directly investigate the effects of Dpp signaling in photoreceptors, we irradiated Dro-
sophila pupa, waited an additional 24 hours as previously described [2,9], and analyzed retinae

during the post maturation stage (27, 30, 36 and 48 hours post UV exposure; equivalent to 51,

54, 60 and 72 hours post puparium formation). We used expression phospho-Mad (pMad) to

assess activation of the Tkv/Mad pathway in Elav+ photoreceptors [45] during each post matu-

ration timepoint, under both non UV control (S1A and S1A’ Fig) and UV condition (Fig 1C).

After UV treatment, pMad activity in Elav+ cells peaked at 36 hours (Fig 1C’). We further

assessed Smox nuclear localization using a Smox::GFP knock-in line in which GFP-tagged

Smox is expressed from the endogenous Smox locus [46] in non UV control condition (S1B

and S1B’ Fig). Nuclear localization of Smox represents activation of the Sax/Smox response

[21]. Compared to pMad, Smox undergoes nuclear translocation at the earliest time point we

assessed, 27 hours post UV exposure (Fig 1D and 1D’). To assess whether the kinetics of Sox/

Smox and Tkv/Mad activation correlates with the induction of apoptosis, we stained for

cleaved Drosophila caspase-1 (DCP1), a short-prodomain caspase and crucial driver of cell
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Fig 1. Dpp inhibition controls JNK and UV driven apoptosis in Drosophila. (1A-A’) Representative images and quantitation of ratio of surviving photoreceptors to

total in w;Sep::Gal4,UAS::HepACT flies crossed with RNAi lines of each genotype. Representative images and quantification of adult GMR::Gal4; /UAS::RNAi progeny

following knockdown of is compared through ratio of UV-exposed to unexposed eye (1B-B’). Representative images and quantitation of the pMad (in maturing GMR::

Gal4;Dad-nGFP/UAS::RNAi) and nuclear Smox (in GMR::Gal4;Smox::FLAG::GFP/UAS::RNAi) (1D-D’) expression in Elav+ (1C-C’) progeny eye with and without

irradiation at 27, 30, 36 and 48hours post UV. Representative images and quantitation of total DCP1+ Elav+ cells (1E-E’) or DadnGFP+/Elav+ cells (1 E”-F’”) in GMR::
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death [47]. When compared to control animals, DCP1 activity peaks at 36 hours post UV

exposure (Fig 1E and 1E’). Expression of Dad as reported by the DadnGFP reporter [48,49]

also peaked in Elav+ cells at 36 hours following irradiation (Fig 1E” and 1E”‘).

These kinetics led us to hypothesize that Mad activation induced Dad transcription inhibits

Sax/Smox signaling post-UV thereby limiting apoptosis. To test this, we examined the effects

of Dpp, Tkv/Mad and Sax/Smox perturbations on UV-induced apoptosis. Knocking down

Dpp in immune cells significantly reduced apoptosis (as determined by anti-DCP1 staining)

when compared to controls (Fig 1F and 1F’), while also resulting in a significant increase in

Dad activity at 48hours post UV (Fig 1F” and 1F”‘).

Knockdown of Dpp in immune cells under non UV state did not significantly differ from

control level of apoptosis (S1C and S1C’ Fig). Knockdown of Sax or Smox, on the other hand,

resulted in a significant decrease in apoptosis at the 30 and 36 hour time points (Fig 2A, 2A’,

2B and 2B’) compared to control, associated with a significant increase in Dad-nGFP expres-

sion (Fig 2A”–2B”)(S3A, S3A’–S3B, S3B’ Fig). Knocking down Tkv or Mad, in turn, signifi-

cantly increased the number of DCP1+ cells at every time point (Fig 2C, 2C’–2D, 2D’), and

decreased Dad-nGFP reporter activity (Figs 2C”–2D”; S3C, S3C’–S3D, S3D’). These observa-

tions were recapitulated when Tkv/Mad and Sax/Smox perturbations were targeted directly to

photoreceptors and cone cells by Sep::Gal4 rather than to the whole retina (Figs 2E, 2E’–2F,

2F’ and S4). DCP1+ cell count under control Sep::Gal4 had similar results to GMR::Gal4

under UV and non UV states (S3D, S3D’ and S3D” Fig).

Our data suggest a bimodal response of photoreceptors to Dpp after UV irradiation that is

controlled by Sax and Tkv signaling. Additionally, suppression of Dad expression by Smox

and subsequent activation of Dad expression by Mad contribute to the regulation of photore-

ceptor cell death and survival.

BMP and TGFβ signaling are activated in a time dependent manner

following retinal stress and damage

As the Drosophila visual system has many similarities with the mammalian retina [50], we next

asked whether the bimodal response of the two arms of the Dpp pathway to damage in the

Drosophila eye is conserved in mammals. We specifically focused on the TGFβ superfamily,

which has a close homology to the Drosophila Dpp canonical pathway and has shown to play a

role in the immune response in multiple systems [51,52]. Two important members of the fam-

ily, BMP and TGFβ, share close homology with Dpp [52,53]. Following binding-induced

TGFβ type 1 receptor phosphorylation, they trigger phosphorylation and nuclear translocation

of Smads (Smad 1/5/9 for BMP pathway or Smad 2/3 for TGFβs), and transcriptional activa-

tion of Smad target genes. Based on our studies in Drosophila, we hypothesized that the

TGF//Smad2/3 arm of the pathway is responsible for the inflammatory or apoptotic response,

and the BMP/Smad1/5/9 arm for the anti-inflammatory pro-repair response.

To test this hypothesis, and to elucidate the dynamics of TGFβ superfamily activation, we

used light-induced photoreceptor stress and damage models previously used by various labs

including ours [7,54,55]. Briefly, C57BL/6 mice were exposed to high-intensity (10,000 lux)

light for 1.5 hours to induce retinal stress without overt retinal apoptosis. We then analyzed

the phosphorylation of the mammalian homologues to Mad and Smox, Smad1/5/9 and

Smad2/3 [56] comparing non-light exposed conditions to control (S5A Fig), 0, 6, 12, 24 and 36

Gal4;Dad-nGFP/UAS::mCherryRNAi progeny with and without irradiation at various time points post exposure. Representative images and quantitation of total DCP1

+ Elav+ cells (1FF’) or DadnGFP+Elav+ cells (1 F”-F’”) in maturing GMR::Gal4;Dad-nGFP/ Hml::DppRNAi progeny compared to controls. Scale Bar: 20 μm. Experiments

were conducted with n = 2 replicates and n = 3–9 eyes/timepoint. Error bars indicate s.e.m. P-values from Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001.

https://doi.org/10.1371/journal.pone.0258872.g001
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Fig 2. Following UV driven whole eye radiation damage, Sax and Smox RNAi inhibit apoptosis, while Mad and Tkv RNAi promote it. Representative images and

quantitation of total DCP1+ Elav+ cells (2-A’; 2B-B’) or DadnGFP+ Elav+ cells (2A”-S2A”‘; 2B”-S2B”‘) in maturing GMR::Gal4;Dad-nGFP/ Sax-RNAi and Smox-RNAi

progeny compared to controls. Representative images and quantitation of total DCP1+ Elav+ cells (2C-C’; 2D-D’) or DadnGFP+ Elav+ cells (2C”-S2C”‘; 2D”-S2D”‘) in

maturing GMR::Gal4;Dad-nGFP/ Tkv-RNAi and Mad-RNAi progeny compared to controls. Representative images and quantitation of total DCP1+ Elav+ cells (2-E-E’;

2F-F’) in maturing Sep::Gal4;/ Smox-RNAi and Mad-RNAi progeny compared to controls. Scale Bar: 20 μm. Experiments were conducted with n = 2 replicates and

n = 3–5 eyes/timepoint. Error bars indicate s.e.m. P-values from Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001.

https://doi.org/10.1371/journal.pone.0258872.g002
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hours post exposure. Upon exposing 3.5 month old C57BL/6 mice to light, we observed ele-

vated levels of phosphorylated Smad 1/5/9 (BMP response) in the inner nuclear layer (INL) of

the retina, starting at 6 hours post-light exposure, and peaking at 12 hours post exposure (Fig

3A and 3A’). Phosphorylation of Smad 2/3 (TGFβ activation) peaked earlier, at 6 hours post

exposure (Fig 3B and 3B’).

Next, we asked if the response differs in BALB/c mice, which are more sensitive to light

damage and exhibits widespread apoptosis in the retina following light exposure [54,57].

BALB/c mice were exposed to 5,000 lux light for 1 hour to induce apoptosis as previously

shown [7]. TUNEL assay was performed on retina 24 hours post exposure to confirm signifi-

cant apoptosis (S5B Fig). Interestingly, even prior to light exposure, BALB/c mice exhibit per-

sistent TGF-β activity (pSmad 2/3) in the inner nuclear layer, suggesting substantial retinal

stress under normal light conditions (Fig 3C). Immediately after light exposure (0 hours), this

activity increases transiently, but by 6 hours, the pSmad2/3 signal returns to pre-light exposure

levels and is absent once apoptosis sets in at 24 hours (Fig 3C’). As opposed to C57BL/6 mice,

BALB/c mice exhibited no phosphoSmad1/5/9 (BMP) activity in the inner retina either under

control conditions or after light exposure at any of the timepoints assessed in our study (S5D

Fig). These studies suggest that TGFβ signaling may be involved in the early response which is

typically of inflammatory nature, while BMPs may play a role in a later response which tends

to be protective and anti-apoptotic. The absence of BMP/SMAD1/5/9 response in BALB/c

mice was further investigated below to test a cause or effect conundrum.

We and others have previously shown that the retinal damage response relies on factors

secreted by activated immune cells [58–61]. We next tested whether the light stress-induced

BMP response is impacted when immune cells are absent. We used CD11b::DTR mice

wherein myeloid cells can be inducibly ablated using intraperitoneally injected diphtheria

toxin (DT) [62,63]. We have previously shown that light stress results in photoreceptor apo-

ptosis in CD11b::DTR mice despite them being on C57BL/6 background [7]. DT induced

immune cell loss in CD11b::DTR mice also resulted in loss of pSmad 1/5/9 in the inner retina

under apoptosis inducing light-damage condition (Fig 3D and 3D’ in comparison to PBS

injected light damaged control retinas where pSmad 1/5/9 activation was seen in CRALBP

+ Müller glial cells in (S5E Fig). These studies suggest that immune cells participate in the

damage-induced BMP response in mammalian retinas.

Modulation of the BMP signaling pathway protects against damage

induced retinal apoptosis

We hypothesized that BMP mediates an anti-inflammatory protective retinal damage response

and sought to test this hypothesis by asking whether modulation of BMP signaling would alter

retinal repair response. We used the NMDA excitotoxic damage model previously used by

multiple labs to cause inner retinal damage [64–67] in addition to the light damage model. The

excitotoxin NMDA damages the ganglion and amacrine cells in the retina and has been used

to model retinal damage due to glaucoma, retinal ischemia and diabetic retinopathy [68–71].

To directly monitor BMP activity, we used BRE-eGFP transgenic mice. These mice report the

transcriptional response of BMP-Smad activation through the BMP response element (BRE)

[72]. In these mice, GFP expression was observed in CRALBP+ Müller glia following NMDA

exposure (Fig 4A).

To modulate the BMP signaling pathway, mice were injected intravitreally with either

recombinant BMP4 or the small molecule BMP inhibitor Dorsomorphin [28,73]. Upon com-

paring various treatments, we confirmed that GFP activity increases following BMP4 treat-

ment and reduces with Dorsomorphin (Fig 4A and 4A’). TUNEL staining at 48-hours post-
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NMDA injection revealed that inhibition of BMP signaling increased apoptosis, while supple-

mentation of BMP4 inhibited NMDA induced apoptosis (Fig 4B and 4B’). To assess whether

this was a conserved retinal damage response or specific to NMDA damage, we assessed path-

way modulation under light-induced photoreceptor damage conditions (20,000 Lux for 2

hours [74]). TUNEL staining at 48 hours post exposure revealed that inhibition of BMP signal-

ing increases apoptosis and supplementation of recombinant BMP4 reduces it (4C,C’), similar

to our observations in the NMDA damage model.

Inhibition of TGFβ signaling pathway protects against damage induced

retinal apoptosis

Since our data suggested that TGFβ may be involved in the earlier inflammatory response to

damage, we tested if inhibiting the pathway using the small molecule TGFβ inhibitor

Fig 3. BMP and TGFβ activation occurs in a time dependent manner following light stress and damage. Representative retinal images and quantitation of control dark

adapted 3.5 m/o C57BL/6 mice, or 0, 6, 12, and 24 hours post exposure to 10,000 lux for 1.5 hours stained for pSmad 1/5/9 (in green, 3A-A’) and pSmad 2/3 (in

green,3B-B’). Similar analysis of pSmad 2/3 in light-damaged BALB/c mice retinal sections (3-C). Representative retinal images and quantitation in 3.5 m/o CD11b::DTR

mice treated with either diphtheria toxin or PBS control and exposed to 10,000 Lux. Sections were stained pSmad 1/5/9 (green) (3D-D’). Arrows (red) highlight pSmad

expression in the inner retinal in all images. Scale Bar: 30 μm. Experiments were conducted with n = 2 replicates and n = 3–5 mice/condition. Error bars indicate s.e.m.

Pvalues from Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001. PE = post-exposure. DAPI (blue) marks nuclei in all panels.

https://doi.org/10.1371/journal.pone.0258872.g003
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SB431542 [75] would be protective. We carried similar NMDA and light-damage experiments

as above and co-treated the mice with 25 μM of SB431542 intravitreally. In both damage mod-

els, we observed that inhibition of the TGFβ pathway reduced retinal apoptosis compared to

control mice (Fig 4B and 4C). Interestingly, we also observed a small reduction in BRE-GFP

activity following TGFβ inhibition (Fig 4A) suggesting cross-regulation between the pathways.

Microglia activation can be modulated by manipulating BMP/ TGFβ
pathways

Lastly, we asked whether microglia activation can be biased by modulation of TGFβ and BMP

pathways. Recently, morphological changes in microglia have been shown to reflect activation

[76]. A change from a ramified non-activated morphology to an amoeboid shape signifies acti-

vation, and the ratio of the two morphologies can be used as a measure of relative activation.

Retinal tissue was stained for the pan-microglia marker IBA1 and the inflammatory activation

marker CD68. We carried out fractional analysis comparing the ratio of ramified over total

(ramified and amoeboid microglia) between conditions (Fig 4D) to determine the fraction of

Fig 4. Modulation of the BMP/TGFβ signaling pathway affects tissue damage induced retinal apoptosis and immune activation. 3.5 m/o BRE-eGFP reporter

mice intravitreally injected with 25mM NMDA were treated with either; PBS control, mBMP4, Dorsomorphin (BMP Inhibitor), or SB431542 (TGFβ Inhibitor).

At 48 hours, BRE-GFP (green) colocalization assessed and quantified with Muller glial marker, CRALBP (white) and plotted following various treatments in

comparison to control NMDA (4A-A’). TUNEL assay (red) was performed under above conditions, with total TUNEL+ cells plotted in comparison to control

(4B-B’). Effects of various treatments tested in light damage conditions following 20,000 Lux exposure for 1.5 hours with retina collected 48 hours post exposure.

TUNEL assay was then performed and quantified in comparison to control (4C-C’). Retinal tissue analysis for immune markers IBA1 (white) and CD68 (green),

with ratio of ramified morphology immune cells over total compared between conditions (4D-D’). Total number of activated CD68+ immune cells was also

compared between treatment conditions (4D-D”). Scale Bar: 20 μm (4-A). 30 μm (4B-D). Experiments were conducted with n = 2 replicates and n = 3–5 mice/

condition. Error bars indicate s.e.m.; P-values from Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001. DAPI (blue) marks nuclei in all panels.

https://doi.org/10.1371/journal.pone.0258872.g004

PLOS ONE Dpp/BMP/TGFβ in retinal repair response

PLOS ONE | https://doi.org/10.1371/journal.pone.0258872 October 26, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0258872.g004
https://doi.org/10.1371/journal.pone.0258872


nonactivated microglia. Under PBS injected control conditions, all microglia have ramified

morphology (S5C Fig) and NMDA damage leads to over 60% of microglia changing to amoe-

boid morphology (Fig 4D’). We found inhibition of BMP (Dorsomorphin treatment) led to

further reduction in the ramified fraction (less than 20%), indicating increased activation,

whereas supplementation of BMP4 or inhibition of TGFβ led to increases in ramified micro-

glia, indicating reduced activation (Fig 4D’). Furthermore, the morphological changes in

microglia closely correlated with CD68 expression (Fig 4D”).

Discussion

Our studies identify the morphogen Decapentaplegic (Dpp) and its mammalian homologues

BMP/TGFβ as important regulators of retinal tissue survival post injury (Fig 5). Our findings

suggest that in the fly, Dpp is secreted from hemocytes that previous studies have shown to be

drawn to the injury site [9]. Hemocytes have also been shown to secrete Dpp in the fly intestine

and embryo after injury [21,41]. We find that the response to these hemocyte derived ligands

in the retina is dynamic: in Elav+ cells, Smox nuclear translocation is detected first after dam-

age, while Mad phosphorylation occurs later and correlates with Dad::GFP expression, consis-

tent with Mad-mediated induction of Dad, as described previously in literature [36,53,77].

Mad phosphorylation also correlates with peak levels of apoptosis, which are detected at 36

hours post UV, indicating that Mad activity is associated with the apoptotic state. Since loss of

hemocyte Dpp, or of retinal Sox and Sax all result in reduced tissue loss, while loss of Tkv and

Mad increased tissue loss, this suggests that hemocyte-derived Dpp induces retinal apoptosis

by activating Sax/Smox signaling, while the later engagement of Tkv/Mad signaling is required

to downregulate the apoptotic response. The selective engagement of Sax/Smox and Tkv/Mad

signaling at different timepoints in the injury response is reminiscent of a similar dynamic

observed in intestinal stem cells after bacterial infection [21,22].

As Dad is an inhibitory Smad, we hypothesize that Dad induction by Mad is required as a

negative feedback signal to repress Smox signaling (S1-E). Dpp has been similarly shown to

drive a proapoptotic response under damage in other tissues such as ovarian somatic cells, leg

Fig 5. Cartoon depicting the role of Dpp and TGFβ/BMP signaling as central controllers of photoreceptor death and survival after acute damage within the retina.

Based on our data, under immune cell secreted Dpp/TGFβ/BMP ligand activation, Sax/pSmox ~ TGFβR2/pSmad2/3 activate first driving retinal apoptosis, followed by

Tkv/pMad ~ BMPR2/pSmad 1/5/9 promoting increased retinal survival post-injury.

https://doi.org/10.1371/journal.pone.0258872.g005
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disk and retinal glia [78–80]. In ovarian cells, overexpression of Dpp was shown to drive acti-

vation of the pro-apoptotic genes reaper (rpr) and head involution defective (hid) [78]. Addi-

tionally, pSmox has been shown to induce cell and stage specific apoptosis of larval neurons in

other Drosophila models [81]. Interestingly, knocking down Sax and Smox in the eye increased

Dad-nGFP expression, while, as expected, knocking down Tkv and Mad significantly reduced

Dad-nGFP activity. Sax/Smox signaling may thus partially repress Tkv/Mad signaling in the

early phase of the injury response.

We also identified dynamic changes in the phosphorylation of the downstream effectors of

the mammalian homologues to Dpp, BMP and TGFβ, in our mouse retinal stress and injury

models. Under conditions of light-induced retinal stress based on our prior studies [7], we

observed an initial TGFβ activation represented by early peak of pSmad2/3 followed by a peak

in BMP (pSmad1/5/9) activity 6 hours later. Intriguingly, we observed an early Smox followed

by a delayed Mad phosphorylation in UV-damaged flies as well, suggestive of conserved

response in the arms of the pathway between the two species. These findings provide further

support to homology between pSmad2/3—Smox, and Smad1/5/9—Mad, as described in other

injury models in Drosophila as well as other species such as Haemonchus contortus [82–84].

We additionally observed that in our light damaged BALB/c mouse model which bears a

RPE65 SNP associated with increased susceptibility to light stress [54,57], pSmad 2/3 activity

exists under control conditions suggesting this arm of pathway is driven by retinal stress. Inter-

estingly, there was no detection of Smad1/5/9 activity at any timepoint following light expo-

sure. These results suggest that the BMP arm is protective and lack of activity of this arm of the

pathway is associated with increased apoptosis.

Our data also demonstrate that knockdown of CD11b-positive immune cells in the retina

significantly reduce the pSmad 1/5/9 activity in Müller glia during the light induced damage

response (S5-F). This suggests that immune cells play a role in activation of the mammalian

homologue of Tkv/Mad pathway, BMP. This could be by either directly secreting BMPs [85]

or through intermediates by promoting BMP induced Müller glial activation [86].

Supplementation of the BMP4 and inhibition of TGFβ through the ALK inhibitor

SB431542, reduce apoptosis after light and NMDA induced injury. Conversely, suppression of

BMP activity through the inhibitor Dorsomorphin increases both apoptosis and total CD68

+ cells, a known marker of immune cell mediated inflammation after injury [87]. Previous

work has found similar findings in damaged retinal ganglion cells [27,28]. Additionally,

NMDA damaged Müller glia from zebrafish, rodent and chick Müller glia derived progenitor

cells (MGPCs), showing pSmad 1/5/9 promotes regeneration and pSmad 2/3 inhibits it [88–

90]. Thus, our data further supports the tissue conserved response with an opportunity to

modulate it to promote repair in clinical settings.

The opposing effects of apoptotic driving TGFβ/Smad2/3 and apoptosis inhibiting BMP/

Smad1/5/9 on retinal injury are also correlated with different downstream target genes. BMP2/4

activity is closely associated with anti-apoptotic genes id1/2/3, sox9, ihx2, and wnt 10a/11/14/7b
[91]. TGFβ is associated with TGFβ-inducible early response gene 1 (tieg1), Bcl-2interacting

mediator of cell death (bim), death-associated protein kinase (DAP-kinase), TGFβ induced gene

human clone 3 (bigh3) and repression of id2 [92–94]. Additionally, it been shown that TGFβ
driven activation in injury can also drive delayed secondary necrosis in tissue, driving the cellular

membrane permeable to macromolecules, inducing delayed inflammation and leading to the acti-

vation of cleaved caspase-1 (Mitchell et al., 2013) [95,96]. However, not all previous literature on

TGFβ defines it as pro-apoptotic within the retina. Recent work ablating TGFβ signaling in retinal

microglia using tamoxifen induced Tgfbr2flox/flox mice lead to increased retinal degeneration and

Muller cell gliosis [97]. Also, AAV8-TGFβ1 was recently shown to promote cone survival in rd1

mice [98]. This protective response required Tgfbr1 and Tgfbr2 activity or microglia which express
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them. This suggests that while TGFβ activity downstream of Tgfbr2 on microglia drives secretion

of pro-survival effectors, other cell types including Muller glia may have different independent

roles especially in acute damage.

These results highlight the critical role of Dpp/BMP/TGFβ in regulating retinal tissue

repair. Future studies targeting downstream aspects of the mammalian pathway may have

therapeutic implications to delay or repair the onset of inflammation and allay retinal damage.

Materials and methods

Drosophila stocks and culture

Fly stocks were raised on standard cornmeal- and molasses-based food. All experiments were

performed at 25˚C. Both sexes gave the same results in all experiments, unless otherwise

described. Lines used were w;Sep::Gal4,UAS::HepACT, GMR::Gal4, GMR::Gal4;Dad-nGFP,

Sep::Gal4,CD8-GFP, and GMR::Gal4;Smox::FLAG::GFP. All lines were crossed with UAS::

Dad, UAS::DadRNAi, UAS::SaxRNAi, UAS::SmoxRNAi, UAS::TkvRNAi, UAS::MadRNAi, UAS::

Hml::DppRNAi, or UAS::mCherryRNAi, UAS-GFP and W1118 as controls.

Mice

All mice used in the described studies were housed and bred at the Association for Assessment

and Accreditation of Laboratory Animal Care International accredited vivarium of the Buck

Institute for Research on Aging, in a specific-pathogen-free facility, or in the UCSF Laboratory

Animal Resource Center, in individually ventilated cages on a standard 12:12 light cycle. Anes-

thetic state was induced in mice by 1.5% isoflurane for the duration of injection experiments.

In preparation for tissue collection, mice were placed in a new bedding lined cage and eutha-

nized by displacement of air with 100% carbon dioxide for 5 minutes, and concluded with cer-

vical dislocation to induce rapid loss of consciousness and death with a minimum of pain,

distress or discomfort. All procedures were approved by the Buck Institute Institutional Ani-

mal Care and Use Committee or UCSF IACUC Animal Care Committee.

Intraocular injections in mice

For intravitreal injection, recombinant proteins or compounds in 1-μl volume were injected

into the right eye using a graduated pulled glass pipette and a wire plunger (Wiretrol II, 5-

0000-2005, Drummond Scientific Company) or directly by using a Hamilton 10uL pipette fol-

lowing isoflurane anesthesia.

Light and NMDA damage in mice

C57BL/6, BALB/c, or BRE-eGFP 4x backcrossed with C57BL/6 background were dark adapted

for 18 hours, then intravitreally injected of control PBS or 25 mM NMDA, and recombinant

protein of either; mBMP4, Dorsomorphin (BMP Inhibitor), or SB431542 (TGFβ Inhibitor).

Animals were then exposed to either 5000–20,000 lux for 1–1.5 hours, or 25 mM NMDA. In

case of light damage, mice were allowed to recover from anesthesia, returned to their cages,

and housed in darkness until analysis. Retinal tissue was collected under control state, 0, 6, 12,

24 or 48 hours post exposure.

UV damage in Drosophila pupae retina and larvae

Pupae retinas were exposed to 17.5 microJoules of UV-C radiation 24 hours post puparium

formation and either collected 5 days post adulthood or 24, 27, 30, 36, and 48 hours post

exposure.
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Histological analysis, imaging, and quantification methods

Retinal sections and macrophages were analyzed by immunohistochemistry (IHC) and other

histological methods and imaged using a LSM 700 confocal laser-scanning microscope, images

were processed sequentially on separate channels. All images were used for quantification pur-

poses and processed with adobe photoshop software, ImageJ, Imaris 9.5.1, ZEN 3.2 and LAS X

software. Eyes were fixed with 4% formaldehyde, PBS washed and placed in progressively

increasing concentrations of PBS/Sucrose solution (5, 10, 15, 20%), mounted in O.C.T.(Tissue-

Tek) compound in -80 degrees C overnight, sectioned into 10 micron tissue on slide, prepared

as (Lamba et al., 2010) and analyzed with the following antibodies: Elav-9F8A9 (1:200, rat,

DSHB), pMad-EP823Y (1:300, rabbit, abcam), DCP1-Asp216 (1:100, rabbit, Cell Signaling),

pSmad 1/5/9 (1:300, rabbit, Cell Signaling), pSmad 2/3 (1:300, rabbit, Cell Signaling), GFP

(1:1000, rabbit, GeneTex), CRALBP (1:200, mouse, Santa Cruz), TUNEL, IBA1 (1:200, rabbit,

Abcam), and CD68 (1:100, rat, BioLegend).

Statistical analysis

All counts are presented as average and standard error of mean (SEM). Statistical analysis was

carried out using Microsoft Excel or GraphPad Prism 8.0.1, and Student’s t test or two-way

analysis of variance (ANOVA) was used to determine statistical significance, assuming normal

distribution and equal variance.

Supporting information

S1 Fig. Representative images and quantitation of control pMad+ Elav+ cells under all time-

points and non-UV WT genotype is compared (S1-A). Control nSmox+ Elav+ cells under all

timepoints and non-UV WT genotype is compared (S1-B). GMR::Gal4;Hml::DppRNAi prog-

eny total DCP1+ Elav+ cells is compared to control no UV animals (S1-C). Sep::Gal4;

mCherry-RNAi control progeny is compared vs no UV and with GMR::Gal4 control progeny

(S1-D). GMR::Gal4;UAS::Dad-RNAi is compared with control UV progeny (S1-E). Sep::Gal4;

UAS-HepACT; UAS-GFP representative control image (S1-F). Scale Bar: 20 μm. Error bars

indicate s.e.m.; P-values from Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001.

(TIF)

S2 Fig. Quantitation of Individual Drosophila eyes. Representative images and quantitation

of all experiments were collected below. Control UV WT progeny pMad+ Elav+ cells com-

pared with non UV progeny (S2-A). UV exposed control nSmox+ Elav+ cells is compared

with non UV progeny (S2-B). Total WT DCP1+ Elav+ cells quantitation compared with no

UV (S2-C). Total Dad-nGFP+ Elav+ cells compared between UV and no UV WT progeny

(S2-C’). Individual quantitation of total GMR::G4;Hml::DppRNAi DCP1+ Elav+ cells and Dad-

nGFP+ Elav+ cells compared with WT UV (S2-D). Error bars indicate s.e.m.; P-values from

Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001.

(TIF)

S3 Fig. Quantitation of Individual Drosophila eyes continued. Representative images and

quantitation of all experiments were collected below. UV exposed GMR::G4;SaxRNAi individ-

ual progeny DCP1+ Elav+ cells and Dad-nGFP+ Elav+ cells are compared to UV WT (S3-A).

UV exposed GMR::G4;SmoxRNAi individual progeny DCP1+ Elav+ cells and Dad-nGFP

+ Elav+ cells are compared to UV WT (S3-B). UV exposed GMR::G4;TkvRNAi individual

progeny DCP1+ Elav+ and Dad-nGFP+ Elav+ cells are compared to UV WT (S3-C). UV

exposed GMR::G4;MadRNAi individual progeny DCP1+ Elav+ and Dad-nGFP+ Elav+ cells

are compared to UV WT (S3-D). Scale Bar: 20 μm. Error bars indicate s.e.m.; P-values from
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Student’s t-test. �p<0.05, ��p<0.01, ��p<0.001.

(TIF)

S4 Fig. UV exposed Sep::G4;Smox and MadRNAi individual progeny DCP1+ Elav+ cells to

UV Sep WT. Error bars indicate s.e.m.; P-values from Student’s t-test. �p<0.05, ��p<0.01,
��p<0.001.

(TIF)

S5 Fig. pSmad 1/5/9 (BMP) and pSmad 2/3 (TGFB) control images of C57 animals (S5-A).

TUNEL stain in red of BALB/c animals post light exposure, with DAPI in blue (S5-B). PBS

WT Control unexposed retina with IBA1 in white and CD68 in green (S5-C). pSmad 1/5/9

representative images of BALB/c animals post light exposure at 0, 24 and 36 hours (S5-E). Rep-

resentative images of DT injected CD11b::DTR mice with pSmad 1/5/9 (BMP) in red, and

CRALBP in white (S5-E). Scale Bar: 30 μm.

(TIF)
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61. Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune path-

ways for the most common retinal degenerative diseases. EMBO Mol Med. 2018;10(10). https://doi.org/

10.15252/emmm.201708450 PMID: 29191946

62. Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy

and remodeling. Circulation. 2015 Mar 17; 131(11):1019–1030. https://doi.org/10.1161/

CIRCULATIONAHA.114.008788 PMID: 25779542

63. McPherson SW, Heuss ND, Lehmann U, Roehrich H, Abedin M, Gregerson DS. The retinal environ-

ment induces microglia-like properties in recruited myeloid cells. J Neuroinflammation. 2019 Jul 20; 16

(1):151. https://doi.org/10.1186/s12974-019-1546-9 PMID: 31325968

64. Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA. Stimulation of neural regeneration in the

mouse retina. Proc Natl Acad Sci USA. 2008 Dec 9; 105(49):19508–19513. https://doi.org/10.1073/

pnas.0807453105 PMID: 19033471

65. Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: a view from the eye. Cell Stem

Cell. 2008 Jun 5; 2(6):538–549. https://doi.org/10.1016/j.stem.2008.05.002 PMID: 18522847

66. Kuehn S, Rodust C, Stute G, Grotegut P, Meißner W, Reinehr S, et al. Concentration Dependent Inner

Retina Layer Damage and Optic Nerve Degeneration in a NMDA Model. J Mol Neurosci. 2017 Dec; 63

(3–4):283–299. https://doi.org/10.1007/s12031-017-0978-x PMID: 28963708

67. Lambuk L, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Ismail NM. Antiapoptotic effect of taurine against

NMDA-induced retinal excitotoxicity in rats. Neurotoxicology. 2019; 70:62–71. https://doi.org/10.1016/j.

neuro.2018.10.009 PMID: 30385388

68. Niwa M, Aoki H, Hirata A, Tomita H, Green PG, Hara A. Retinal Cell Degeneration in Animal Models. Int

J Mol Sci. 2015; 17(1).

69. Maekawa S, Sato K, Fujita K, Daigaku R, Tawarayama H, Murayama N, et al. The neuroprotective

effect of hesperidin in NMDA-induced retinal injury acts by suppressing oxidative stress and excessive

calpain activation. Sci Rep. 2017 Jul 31; 7(1):6885. https://doi.org/10.1038/s41598-017-06969-4 PMID:

28761134

PLOS ONE Dpp/BMP/TGFβ in retinal repair response

PLOS ONE | https://doi.org/10.1371/journal.pone.0258872 October 26, 2021 17 / 19

https://doi.org/10.1186/s12915-018-0503-x
http://www.ncbi.nlm.nih.gov/pubmed/29609607
https://doi.org/10.1016/j.neuron.2010.01.018
http://www.ncbi.nlm.nih.gov/pubmed/20399726
https://doi.org/10.1101/cshperspect.a022236
https://doi.org/10.1101/cshperspect.a022236
http://www.ncbi.nlm.nih.gov/pubmed/28108486
https://doi.org/10.1016/j.semcdb.2014.04.036
http://www.ncbi.nlm.nih.gov/pubmed/24813173
https://doi.org/10.1007/978-1-62703-080-9%5F6
http://www.ncbi.nlm.nih.gov/pubmed/23150362
https://doi.org/10.1167/iovs.06-1131
http://www.ncbi.nlm.nih.gov/pubmed/17460245
https://doi.org/10.1093/abbs/gmx124
http://www.ncbi.nlm.nih.gov/pubmed/29190314
https://doi.org/10.1167/iovs.02-1134
http://www.ncbi.nlm.nih.gov/pubmed/12766089
https://doi.org/10.3389/fimmu.2016.00444
http://www.ncbi.nlm.nih.gov/pubmed/27822213
https://doi.org/10.1073/pnas.1719601115
http://www.ncbi.nlm.nih.gov/pubmed/29915052
https://doi.org/10.1073/pnas.1820387116
https://doi.org/10.1073/pnas.1820387116
http://www.ncbi.nlm.nih.gov/pubmed/31023885
https://doi.org/10.15252/emmm.201708450
https://doi.org/10.15252/emmm.201708450
http://www.ncbi.nlm.nih.gov/pubmed/29191946
https://doi.org/10.1161/CIRCULATIONAHA.114.008788
https://doi.org/10.1161/CIRCULATIONAHA.114.008788
http://www.ncbi.nlm.nih.gov/pubmed/25779542
https://doi.org/10.1186/s12974-019-1546-9
http://www.ncbi.nlm.nih.gov/pubmed/31325968
https://doi.org/10.1073/pnas.0807453105
https://doi.org/10.1073/pnas.0807453105
http://www.ncbi.nlm.nih.gov/pubmed/19033471
https://doi.org/10.1016/j.stem.2008.05.002
http://www.ncbi.nlm.nih.gov/pubmed/18522847
https://doi.org/10.1007/s12031-017-0978-x
http://www.ncbi.nlm.nih.gov/pubmed/28963708
https://doi.org/10.1016/j.neuro.2018.10.009
https://doi.org/10.1016/j.neuro.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30385388
https://doi.org/10.1038/s41598-017-06969-4
http://www.ncbi.nlm.nih.gov/pubmed/28761134
https://doi.org/10.1371/journal.pone.0258872


70. Ranaei Pirmardan E, Soheili Z-S, Samiei S, Ahmadieh H, Mowla SJ, Naseri M, et al. In vivo evaluation

of PAX6 overexpression and NMDA cytotoxicity to stimulate proliferation in the mouse retina. Sci Rep.

2018 Dec 7; 8(1):17700. https://doi.org/10.1038/s41598-018-35884-5 PMID: 30531887

71. Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to

Glutamatergic Excitotoxicity Is Type-Specific. Front Neurosci. 2019 Mar 15; 13:219. https://doi.org/10.

3389/fnins.2019.00219 PMID: 30930737

72. Javier AL, Doan LT, Luong M, Reyes de Mochel NS, Sun A, Monuki ES, et al. Bmp indicator mice reveal

dynamic regulation of transcriptional response. PLoS One. 2012 Sep 11; 7(9):e42566. https://doi.org/

10.1371/journal.pone.0042566 PMID: 22984405

73. Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, et al. Dorsomorphin inhibits BMP

signals required for embryogenesis and iron metabolism. Nat Chem Biol. 2008 Jan; 4(1):33–41. https://

doi.org/10.1038/nchembio.2007.54 PMID: 18026094

74. Zhang J, Kiser PD, Badiee M, Palczewska G, Dong Z, Golczak M, et al. Molecular pharmacodynamics

of emixustat in protection against retinal degeneration. J Clin Invest. 2015 Jul 1; 125(7):2781–2794.

https://doi.org/10.1172/JCI80950 PMID: 26075817

75. Tappeiner C, Maurer E, Sallin P, Bise T, Enzmann V, Tschopp M. Inhibition of the tgfβ pathway

enhances retinal regeneration in adult zebrafish. PLoS One. 2016 Nov 23; 11(11):e0167073. https://

doi.org/10.1371/journal.pone.0167073 PMID: 27880821

76. Karperien A, Ahammer H, Jelinek HF. Quantitating the subtleties of microglial morphology with fractal

analysis. Front Cell Neurosci. 2013 Jan 30; 7:3. https://doi.org/10.3389/fncel.2013.00003 PMID:

23386810

77. Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, et al. Interplay of signal mediators of

decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters

against dpp. Mol Biol Cell. 1998 Aug; 9(8):2145–2156. https://doi.org/10.1091/mbc.9.8.2145 PMID:

9693372

78. Kang I, Choi Y, Jung S, Lim JY, Lee D, Gupta S, et al. Identification of target genes regulated by the Dro-

sophila histone methyltransferase Eggless reveals a role of Decapentaplegic in apoptotic signaling. Sci

Rep. 2018 May 8; 8(1):7123. https://doi.org/10.1038/s41598-018-25483-9 PMID: 29740006

79. Manjón C, Sánchez-Herrero E, Suzanne M. Sharp boundaries of Dpp signalling trigger local cell death

required for Drosophila leg morphogenesis. Nat Cell Biol. 2007 Jan; 9(1):57–63. https://doi.org/10.

1038/ncb1518 PMID: 17143268

80. Velarde SB, Quevedo A, Estella C, Baonza A. Dpp and Hedgehog promote the Glial response to neuro-

nal damage in the developing Drosophila Visual system. BioRxiv. 2020 Feb 25;

81. Wang Z, Lee G, Vuong R, Park JH. Two-factor specification of apoptosis: TGF-β signaling acts cooper-

atively with ecdysone signaling to induce cell- and stage-specific apoptosis of larval neurons during

metamorphosis in Drosophila melanogaster. Apoptosis. 2019; 24(1112):972–989. https://doi.org/10.

1007/s10495-019-01574-4 PMID: 31641960

82. Goldstein JA, Kelly SM, LoPresti PP, Heydemann A, Earley JU, Ferguson EL, et al. SMAD signaling

drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy. Hum Mol Genet.

2011 Mar 1; 20(5):894–904. https://doi.org/10.1093/hmg/ddq528 PMID: 21138941

83. Goldstein JA, Bogdanovich S, Beiriger A, Wren LM, Rossi AE, Gao QQ, et al. Excess SMAD signaling

contributes to heart and muscle dysfunction in muscular dystrophy. Hum Mol Genet. 2014 Dec 20; 23

(25):6722–6731. https://doi.org/10.1093/hmg/ddu390 PMID: 25070948

84. Li F-F, Gasser RB, Liu F, Shan J-N, Di W-D, He L, et al. Identification and characterization of an R-

Smad homologue (Hco-DAF-8) from Haemonchus contortus. Parasit Vectors. 2020 Apr 3; 13(1):164.

https://doi.org/10.1186/s13071-020-04034-0 PMID: 32245505

85. Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy IM, Schaffer DV. AgeAssociated Increase

in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells. 2015 May; 33(5):1577–1588. https://

doi.org/10.1002/stem.1943 PMID: 25538007

86. Dharmarajan S, Fisk DL, Sorenson CM, Sheibani N, Belecky-Adams TL. Microglia activation is essen-

tial for BMP7-mediated retinal reactive gliosis. J Neuroinflammation. 2017 Apr 5; 14(1):76. https://doi.

org/10.1186/s12974-017-0855-0 PMID: 28381236

87. Chistiakov DA, Killingsworth MC, Myasoedova VA, Orekhov AN, Bobryshev YV. CD68/macrosialin: not

just a histochemical marker. Lab Invest. 2017; 97(1):4–13. https://doi.org/10.1038/labinvest.2016.116

PMID: 27869795

88. Saika S. TGFbeta pathobiology in the eye. Lab Invest. 2006 Feb; 86(2):106–115. https://doi.org/10.

1038/labinvest.3700375 PMID: 16341020

PLOS ONE Dpp/BMP/TGFβ in retinal repair response

PLOS ONE | https://doi.org/10.1371/journal.pone.0258872 October 26, 2021 18 / 19

https://doi.org/10.1038/s41598-018-35884-5
http://www.ncbi.nlm.nih.gov/pubmed/30531887
https://doi.org/10.3389/fnins.2019.00219
https://doi.org/10.3389/fnins.2019.00219
http://www.ncbi.nlm.nih.gov/pubmed/30930737
https://doi.org/10.1371/journal.pone.0042566
https://doi.org/10.1371/journal.pone.0042566
http://www.ncbi.nlm.nih.gov/pubmed/22984405
https://doi.org/10.1038/nchembio.2007.54
https://doi.org/10.1038/nchembio.2007.54
http://www.ncbi.nlm.nih.gov/pubmed/18026094
https://doi.org/10.1172/JCI80950
http://www.ncbi.nlm.nih.gov/pubmed/26075817
https://doi.org/10.1371/journal.pone.0167073
https://doi.org/10.1371/journal.pone.0167073
http://www.ncbi.nlm.nih.gov/pubmed/27880821
https://doi.org/10.3389/fncel.2013.00003
http://www.ncbi.nlm.nih.gov/pubmed/23386810
https://doi.org/10.1091/mbc.9.8.2145
http://www.ncbi.nlm.nih.gov/pubmed/9693372
https://doi.org/10.1038/s41598-018-25483-9
http://www.ncbi.nlm.nih.gov/pubmed/29740006
https://doi.org/10.1038/ncb1518
https://doi.org/10.1038/ncb1518
http://www.ncbi.nlm.nih.gov/pubmed/17143268
https://doi.org/10.1007/s10495-019-01574-4
https://doi.org/10.1007/s10495-019-01574-4
http://www.ncbi.nlm.nih.gov/pubmed/31641960
https://doi.org/10.1093/hmg/ddq528
http://www.ncbi.nlm.nih.gov/pubmed/21138941
https://doi.org/10.1093/hmg/ddu390
http://www.ncbi.nlm.nih.gov/pubmed/25070948
https://doi.org/10.1186/s13071-020-04034-0
http://www.ncbi.nlm.nih.gov/pubmed/32245505
https://doi.org/10.1002/stem.1943
https://doi.org/10.1002/stem.1943
http://www.ncbi.nlm.nih.gov/pubmed/25538007
https://doi.org/10.1186/s12974-017-0855-0
https://doi.org/10.1186/s12974-017-0855-0
http://www.ncbi.nlm.nih.gov/pubmed/28381236
https://doi.org/10.1038/labinvest.2016.116
http://www.ncbi.nlm.nih.gov/pubmed/27869795
https://doi.org/10.1038/labinvest.3700375
https://doi.org/10.1038/labinvest.3700375
http://www.ncbi.nlm.nih.gov/pubmed/16341020
https://doi.org/10.1371/journal.pone.0258872


89. Lenkowski JR, Qin Z, Sifuentes CJ, Thummel R, Soto CM, Moens CB, et al. Retinal regeneration in

adult zebrafish requires regulation of TGFβ signaling. Glia. 2013 Oct; 61(10):1687–1697. https://doi.

org/10.1002/glia.22549 PMID: 23918319

90. Todd L, Palazzo I, Squires N, Mendonca N, Fischer AJ. BMP- and TGFβ-signaling regulate the forma-

tion of Müller glia-derived progenitor cells in the avian retina. Glia. 2017 Jul 13; 65(10):1640–1655.

https://doi.org/10.1002/glia.23185 PMID: 28703293
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