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Following pulmonary inflammation, leukocytes that infiltrate the lung often assemble 
into structures known as inducible Bronchus-Associated Lymphoid Tissue (iBALT). Like 
conventional lymphoid organs, areas of iBALT have segregated B and T cell areas, spe-
cialized stromal cells, high endothelial venules, and lymphatic vessels. After inflammation 
is resolved, iBALT is maintained for months, independently of inflammation. Once iBALT 
is formed, it participates in immune responses to pulmonary antigens, including those 
that are unrelated to the iBALT-initiating antigen, and often alters the clinical course of 
disease. However, the mechanisms that govern immune responses in iBALT and deter-
mine how iBALT impacts local and systemic immunity are poorly understood. Here, we 
review our current understanding of iBALT formation and discuss how iBALT participates 
in pulmonary immunity.

Keywords: inducible bronchus-associated lymphoid tissue, tertiary lymphoid organ, ectopic lymphoid organ, 
lymphoid neogenesis, germinal center

iNTRODUCTiON

The evolutionary emergence of lymphocytes with diversified antigen receptors allows the immune 
system to recognize and respond to a myriad of unknown antigens. However, despite the enor-
mous number of B cells and T cells in the naive compartment, the frequency of B cells or T cells 
with any particular specificity is miniscule, necessitating efficient mechanisms to acquire and 
present antigens to the responding lymphocytes (1). Moreover, B and T cells of the same specificity 
must find one another and interact in a cognate way in order to differentiate into effector cells 
(2). In order to accomplish these goals, the immune system has evolved a system of secondary 
 lymphoid organs (3).

Secondary lymphoid organs, such as spleen, lymph nodes, Peyer’s patches, and other mucosa-
associated lymphoid tissues, recruit naive B and T cells from the blood and sample antigens from 
local non-lymphoid organs and mucosal surfaces, thereby allowing naive lymphocytes to efficiently 
peruse antigens from all the tissues of an entire organism without having to migrate through those 
tissues themselves (4). Moreover, secondary lymphoid organs are highly organized and contain 
architectural domains that facilitate sequential cellular interactions between antigen-presenting 
cells and lymphocytes and efficiently promote B and T cell activation, selection, and differentiation 
(1) – ultimately increasing the efficiency of the immune response.

Mammals, birds, and bony fish have easily recognizable secondary lymphoid organs and 
tissues with some of the characteristics of secondary lymphoid organs are observed in the gut 
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TABLe 1 | Association of iBALT with infectious and inflammatory diseases 
of the lung.

Disease important finding Reference

COPD SERPINEE2 prevents iBALT formation, inhibits 
thrombin

(119)

CXCL13 expression associated with iBALT (190)

iBALT associated with COPD stage (192)

iBALT associated with uptake of pulmonary 
antigens

(198)

Increase in dendritic cells in iBALT of COPD 
patients

(199)

CCL20-driven accumulation of dendritic cells 
in iBALT

(200)

Increased B follicles in COPD patients (201)

iBALT found in smokers and asthmatics (210)

CCR7 involved in iBALT formation after 
cigarette smoke

(195)

Particulate 
exposure

Exposure to diesel exhaust particles promotes 
iBALT

(88)

Cigarette smoke-induced iBALT (89)
iBALT associated with response to silica (226)

Pulmonary 
arterial 
hypertension

Formation of iBALT in patients with PAH (92)
Association of IL-17 in the formation of iBALT 
in PAH

(93)

Hypersensitivity 
pneumonitis

iBALT associated with hypersensitivity 
pneumonitis

(189)

iBALT areas found in hypersensitivity 
pneumonitis

(209)

Rheumatoid 
lung disease

iBALT found in patients with rheumatoid lung 
disease

(208)

Sjogren 
syndrome

IL-22 promotes CXCL13 expression and iBALT 
formation

(18)

Allograft 
rejection

iBALT formation associated with lung transplant 
rejection

(218)

iBALT formation associated with lung transplant 
tolerance

(222)

Allergy/asthma Pulmonary challenge of rats with antigens (35)
Pulmonary challenge of rats with HRP (62)
Pulmonary challenge with OVA leads to IgE in 
iBALT

(90)

IL-5 overexpression and eosinophils lead to iBALT (129)
iBALT is sufficient for immunity to allergens (176)
Local IgE production in iBALT in aspergillosis (211)
Poor association of iBALT with asthma in 
non-smokers

(212)

Viral infection iBALT independently promotes immunity to 
influenza

(23)

iBALT in mink infected with Aleutian disease 
virus

(28)

CXCL13, CCL19, and CCL21 are important for 
iBALT function

(56)

iBALT formation after infection with modified 
vaccinia ankara

(65)

iBALT accelerates immunity to pneumovirus (82)
Infection of mice with murine cytomegalovirus (85)
Dendritic cell – dependence of iBALT (121)
Immunologic memory maintained in iBALT (180)
iBALT-mediated immunity to SARS, influenza (181)
Acceleration of CD4 responses by iBALT (67)

Bacterial 
infection

iBALT in humans with bacterial infections (29)
iBALT in goats with Pasteurella haemolytica (31)

(Continued)
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lamina propria of cartilaginous fish, such as sharks (5). In fact, 
the appearance of cell clusters containing two types of adaptive 
immune cells can be traced back to pharynx of the lamprey (6), 
a jawless vertebrate and one of the oldest organisms to have 
an adaptive immune system (7). Thus, most vertebrates have 
evolved some type of tissue that is specialized to promote inter-
actions between various cells of the adaptive immune system. 
Other authors have recently reviewed the evolutionary aspects 
of lymphoid organs (5); therefore, in this review, we will focus 
only on the developmental and functional aspects of lymphoid 
tissues in the lung.

Most secondary lymphoid organs in mice and humans 
develop embryonically in the absence of microbial stimulation 
or foreign antigens (8). However, the structure and function of 
some secondary lymphoid organs, particularly those at mucosal 
surfaces, is dramatically altered upon exposure to environ-
mental antigens and commensal organisms (9). For example, 
Peyer’s patches in the small intestine dramatically increase in 
size and complexity following commensal colonization (10, 11). 
Similarly, Nasal-Associated Lymphoid Tissue in rodents does 
not completely develop until after birth and this process is 
accelerated by microbial exposure (12). Strikingly, the appendix 
of rabbits is both a primary and secondary lymphoid tissue that 
is functionally dependent on microbial colonization (13). More 
importantly, however, some lymphoid tissues, known as tertiary 
lymphoid tissues, develop only after environmental exposure 
to microbes, pathogens, or inflammatory stimuli. Tertiary 
lymphoid tissues form in a wide variety of organs, including 
pancreas (14), thyroid (15), thymus (16), salivary gland (17, 18), 
brain (19), liver (20), kidney (21), and others (22), but in this 
review, we will focus on tertiary lymphoid tissue that forms in 
the lung, known as inducible Bronchus-Associated Lymphoid 
Tissue or iBALT.

Although the lungs of mice and humans normally lack 
organized lymphoid tissue, areas of iBALT form in the lungs 
following some types of infection or inflammation (23, 24) 
(Table  1). iBALT is a classic example of a tertiary lymphoid 
tissue, since it does not develop in a pre-programed way and its 
occurrence, size, and number in the lung depends on the type 
and duration of antigenic exposure (25, 26). Areas of iBALT are 
observed in the lungs of mammals (27–31) and birds (32–34) 
and are likely found in all air-breathing vertebrates. However, 
iBALT is most well characterized in the lungs of rodents and 
humans. Here we will summarize below the results of studies 
from these species.

GeNeRAL FeATUReS OF iBALT

As the name indicates, iBALT does not occur at random sites 
in the lungs, but develops in close proximity to the basal side of 
the bronchial epithelium (35), often in the perivascular space 
of pulmonary blood vessels (36, 37). The leukocytes compris-
ing iBALT are arranged in two zones, the B cell follicle and the 
T cell zone (37), in a way that resembles the organization of 
conventional secondary lymphoid organs. The B cell follicles of 
iBALT contain tight clusters of IgD+ follicular B cells grouped 
around a network of stromal cells, known as follicular dendritic 
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Disease important finding Reference

Lymphatics around iBALT after Mycoplasma 
pulmonis infection

(64)

Infection of pigs with Actinobacillus 
pleuropneumoniae

(25)

Pulmonary exposure to LPS leads to IL-17-
dependent iBALT

(78)

iBALT in pigs exposed to hemolytic 
streptococcus

(81)

Formation of iBALT in human fetuses with 
amnionitis

(83)

Mycobacterium tuberculosis induces iBALT in 
mice

(87)

IL-17-dependent iBALT formation 
Pseudomonas aruginosa

(94)

IL-17-dependent CXCL13 after M. tuberculosis (100)
IL-23 maintains iBALT and granulomas in M 
tuberculosis

(98)

iBALT is sufficient for immunity to M tuberculosis (175)
iBALT is sufficient for immunity to M tuberculosis (177)
Pulmonary vaccination to F. tulerensis promotes 
iBALT

(182)

Lymphoid chemokines maintain iBALT in 
tuberculosis

(185)

iBALT recruits CXCR5 + T cells in tuberculosis (186)
Human tuberculosis granulomas resemble 
iBALT

(187)

Vaccination elicits iBALT and protects from 
tuberculosis

(188)

Lung cancer iBALT associated with good prognosis in lung 
cancer

(224)

iBALT associated with ILC3 cells in lung cancer (225)

Spontaneous 
iBALT

IL-6 overexpression leads to iBALT (130)
Oncostatin M overexpression leads to iBALT (131)
Poor Treg function in CCR7−/− mice leads to 
iBALT

(127)

Lung fibrosis Reduced bleomycin-induced fibrosis in lungs 
with iBALT

(227)

Reduced bleomycin-induced fibrosis in lungs 
with iBALT

(228)

TABLe 1 | Continued
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cells (FDCs), that express CD21, CXCL13, and lymphotoxin 
(LT) β receptor (LTβR) (38–41) (Figure 1B). B cell follicles in 
reactive iBALT areas may contain large germinal centers (23), in 
which B cells are rapidly dividing in response to antigen. These 
germinal centers will also contain activated CD4 T cells, known 
as T follicular helper (Tfh) cells (42, 43) (Figure 1A). The T cell 
zone of iBALT surrounds the B cell follicles and contains CD4 
and CD8 T cells as well as conventional dendritic cells (DCs) 
(24, 44) (Figure 1A).

The compartmentalization of B and T cell areas in iBALT 
requires specialized fibroblastic cells, usually referred to as stromal 
cells. Stromal cells in the B cell follicle are primarily FDCs, which 
express CXCL13, a chemokine that attracts CXCL13-expressing 
cells like B cells and Tfh cells (42, 45, 46). Stromal cells are also 
observed in the T cell zones of iBALT and are likely similar to the 
fibroblastic reticular cells (FRCs) found in the T zones of conven-
tional secondary lymphoid organs (47, 48). These cells express 
chemokines like CCL19 and CCL21 (49–51), which attract naive 
T cells and activated DCs (45, 52, 53). T zone stromal cells also 

produce IL-7 (54, 55), a cytokine important for the survival of 
naive lymphocytes.

In addition to the stromal cells that support the B and T cell 
areas, iBALT often features high endothelial venules (HEVs) 
(56), which are specialized blood vessels that express homing and 
adhesion molecules as well as chemokines that together recruit 
lymphocytes from the blood (57). HEVs in iBALT are located 
just outside the B cell follicle in the T cell zone (56). Although 
one might assume that iBALT is a mucosal lymphoid tissue based 
on its location in the lung, the HEVs of iBALT express peripheral 
lymph node addressin (PNAd) like the HEVs of peripheral lymph 
nodes (56), but do not express mucosal addressin cell adhesion 
molecule (MAdCAM), which is prominently expressed by 
mesenteric lymph nodes and Peyer’s patches in the intestine (58). 
HEVs in iBALT also express (or display) CCL21 (56), which is 
likely important for the recruitment of naive lymphocytes from 
the blood.

Given that iBALT is located underneath the bronchial epithe-
lium, one might assume that it acquires antigens directly from 
the lumen of the airways via epithelial M cells. Although antigen-
transporting M cells have been reported in the iBALT of some 
species (35, 59, 60), they are not consistently observed and many 
areas of iBALT do not have the classic structure of a mucosal 
lymphoid tissue, with a dome epithelium overlaying the B cell 
follicle (61). It is not clear at this time whether this inconsistency 
in the structure of iBALT is due to differences in species, the way 
in which iBALT is formed or the duration/magnitude of antigen 
exposure (62).

Despite the lack of obvious M cells in many iBALT areas, 
there are also lymphatic vessels that surround the B cell follicle 
and likely facilitate the uptake of antigens. In the normal lung, 
lymphatics originate from two distinct locations, one set of 
lymphatics originate from the parenchyma and follows the pul-
monary veins toward the draining lymph node, and the other set 
originates around the connective tissue between the airways and 
veins, and follows the airways toward the draining lymph node 
(63). New data show that additional lymphatic vessels are gener-
ated during lung inflammation surrounding the iBALT areas, 
apparently by sprouting from the existing lymphatic network 
(64). Given the placement of iBALT in the perivascular space next 
to large airways, we expect that afferent lymphatics drain from 
the distal portions of the lung toward iBALT. The best evidence 
for this model is the ability of iBALT to collect labeled DCs and 
particulates (23, 64, 65).

Lymph nodes have both afferent and efferent lymphatics, 
whereas most mucosal lymphoid tissues have only efferent 
lymphatics that connect to downstream lymph nodes and 
ultimately to the blood. We assume that many of the lymphatics 
associated with iBALT are efferent lymphatics that allow cells 
within iBALT to re-enter the circulation. In fact, we expect 
that iBALT follows the conventional model of lymphoid recir-
culation in which naive B and T cells enter iBALT from the 
blood through PNAd-expressing HEVs and then exit iBALT 
via efferent lymphatic vessels (66). Efferent lymphatic vessels 
would also allow activated effector and memory lymphocytes 
to exit iBALT and re-enter the circulation. Although the abil-
ity of efferent lymphatics to collect cells primed in iBALT and 
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FiGURe 1 | The structure of iBALT. C57BL/6 mice were intranasally administered LPS on days 3, 5, 7, 9, and 11 after birth, and lungs were obtained 6 weeks 
after the last LPS administration. (A) Frozen sections were probed with anti-CD3 (red), anti-CD11c (green), and anti-B220 (Blue), and images were acquired on a 
Nikon Eclipse Ti microscope using the 20× objective. The dashed line indicates the position of a blood vessel. Scale bar indicates 200 μm. (B) Frozen sections were 
probed with anti-CD21/35 (red), peanut agglutinin (PNA - green), and anti-B220 (blue), and images were acquired on a Nikon Eclipse Ti microscope using the 20× 
objective. Scale bar indicates 200 μm. 
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drain them to the downstream mediastinal lymph node has not 
been directly demonstrated, recent data show that the presence 
of iBALT promotes more rapid responses in the draining LN 
(67), suggesting that iBALT is connected to downstream lymph 
nodes and can alter the trafficking of antigen-bearing DCs 
and primed lymphocytes. Importantly, new data show that 
lymphatic endothelial cells in iBALT areas are more than just 
highways for leukocyte trafficking. In addition to producing 
the chemoattractant, CCL21, lymphatic endothelial cells also 
produce IL-7 and contribute to the maintenance of memory 
T  cells (68). Thus, the lymphatic vessels surrounding iBALT 
likely have multiple functions.

iBALT DeveLOPMeNT

Secondary lymphoid organs, such as lymph nodes and Peyer’s 
patches, form independently of antigenic or inflammatory stimuli 
in a highly ordered process that occurs during embryogenesis 
at very specific times (8) and reviewed in Ref. (69). Once that 
developmental window is passed, lymph nodes are no longer 
able to develop, even if all the necessary cells and molecules are 
present (8). In contrast, the development of iBALT requires an 
inflammatory or infectious stimulus in most species (25, 26, 
70–73), including rats (74–77), mice (78), goats (79), chicken 
(33), and humans (29, 73, 80), and its development can be initi-
ated throughout life. In contrast, pigs are reported to form iBALT 
in the lungs during fetal development (81). However, it is unclear 
whether this observation reflects a species or developmental 
difference.

Although the formation of iBALT is not restricted to a devel-
opmental window during embryogenesis, it seems to form more 
easily in the neonatal period just after birth (78, 82). For example, 
iBALT is found in the lungs of healthy adult humans at a relatively 
low frequency (83) but is found with increasing frequencies in 
the lungs of children and infants (29, 73, 83). The incidence of 
iBALT increases dramatically in all age groups following infection 
(70, 72, 73) but is highest in the lungs of infected children and 
infants and, most strikingly, is a prominent feature in 100% of 

late-term fetuses miscarried as a result of amnionitis (29), which 
results from an in utero pulmonary infection.

In part, the increased frequency of iBALT in the lungs of 
neonates and infants might reflect the initial exposure of a naive 
individual to stimuli such as pulmonary pathogens, microbial 
products, and allergens (25). However, the neonatal immune 
system also seems to favor the development of iBALT and other 
tertiary lymphoid tissues in mice living in controlled environ-
ments (78, 82, 84). For example, the injection of cell suspensions 
from dissociated lymph nodes into the skin of neonatal mice 
leads to the formation of highly organized lymphoid tissues 
(84), whereas the injection of the same cells into adults does 
not (84). Similarly, the repeated intranasal administration of 
the microbial product, LPS, to neonatal C57BL/6 mice induces 
iBALT formation, whereas repeated intranasal administration 
of LPS to weanling or adult C57BL/6 mice does not (78, 82). 
In another example, pulmonary infection of neonatal mice with 
cytomegalovirus (CMV) promotes the formation of Nodular 
Inflammatory Foci (NIF), whereas the pulmonary infection of 
adult mice with CMV does not (85, 86). NIFs are similar to 
iBALT in that they seem to support adaptive immune responses 
in the lung, but NIFs lack a B cell follicle and contain mostly 
a mix of CD8 T cells and DCs (85). At this point, it is unclear 
whether BALT and NIF formation are products of two different 
types of immune responses or whether CMV diverts the immune 
response leading to NIF formation as a byproduct and preventing 
BALT formation.

Interestingly, the preferential ability of neonates to form 
tertiary lymphoid tissues is less striking in BALB/c mice, as the 
pulmonary administration of LPS on a single day is sufficient to 
trigger iBALT formation in both neonatal and adult BALB/c mice 
(82). Moreover, other investigators have observed iBALT forma-
tion in adult mice following a variety of pulmonary challenges, 
including infections (87), particulates (88, 89), and allergens (90). 
Thus, the ability to trigger iBALT formation (or NIF formation) at 
particular stages of development likely reflects the inflammatory 
environment at the time of challenge and the type and duration 
of the challenge.
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FiGURe 2 | Model of iBALT development. The development of iBALT can be initiated by a wide variety of stimuli, including microbial products, bacteria, viruses, 
allergens, tumors, and particulates (left side), which trigger the activation and cytokine production from epithelial cells and dendritic cells. Innate cells, such as ILCs 
and γδT cells, become activated and produce cytokines and chemokines that attract inflammatory cells like neutrophils, monocytes, and eosinophils. Granulocytes 
produce cytokines that promote B cell activation as well as proteases and reactive oxygen that activate stromal cell precursors. These activities would all occur 
during an inflammatory process. Once mature B and T cells are recruited to the lung, they reinforce the differentiation of stromal cells into mature FDCs and FRCs 
that respectively support the B and T cell areas of iBALT. Once inflammation is resolved, the lymphocytes, dendritic cells, and stromal cells can maintain the iBALT 
structure using homeostatic mechanisms – lymphotoxin and chemokines – for months.
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Given that the structure of iBALT is similar to that of con-
ventional secondary lymphoid organs, it is not too surprising 
that the cytokines and chemokines (as well as their receptors) 
that are important for the development of secondary lymphoid 
organs are also important for the development of iBALT. For 
example, CXCL13 and its receptor, CXCR5 are required for the 
formation and maintenance of B cell follicles in both secondary 
lymphoid organs (45) and in iBALT (56). Similarly, the ligands 
for CCR7, CCL19, and CCL21 are important for the organiza-
tion of the T cell zone and for the recruitment of lymphocytes 
from the blood through HEVs in both conventional lymphoid 
organs (45) and iBALT (56). Moreover, under steady state condi-
tions, the expression of CXCL13, CCL19, and CCL21 is controlled 
by LT signaling through its receptors, LTβR and TNFR1 in both 
lymph nodes (91) and iBALT (78). However, during iBALT 
development, the expression of CXCL13 and CCL19 is controlled 

by IL-17 and possibly other inflammatory cytokines – indepen-
dently of LT (78). Although IL-17 promotes the expression of 
CXCL13, CCL19, and other inflammatory chemokines during 
iBALT development, once iBALT is formed and inflammation is 
resolved, the expression of CXCL13 and CCL19 is maintained by 
LT signaling, independently of IL-17 (78). Thus, LT and IL-17 act 
at different times during iBALT development (Figure 2).

IL-17 is also important for iBALT formation in patients with 
pulmonary arterial hypertension (92, 93). As might be expected, 
the expression of lymphoid chemokines, CXCL13, CCL19, and 
CCL21 in the iBALT areas of these patients correlated with the 
frequency of RORγt-expressing T cells, presumably Th17 cells 
(92). Similarly, the pulmonary administration of heat-killed 
Pseudomonas aeruginosa (HK-Pa) to mice promotes iBALT 
formation in an IL-17-dependent fashion (94). Interestingly, in 
HK-Pa-treated mice, IL-17 mediates the aggregation of B cells by 
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CXCL12, rather than CXCL13 (94). However, IL-17 is not always 
required for the formation of iBALT. For example, pulmonary 
infection of IL-17-deficient mice with Modified Vaccinia virus 
Ankara (MVA) promotes the formation of a classic iBALT struc-
ture (94). Despite the absence of IL-17, lymphoid chemokines, 
such as CXCL13 are still expressed, possibly as a result of reduced 
Treg activity (95) or complement-mediated neutrophil recruit-
ment (96) as will be discussed later in this review. Thus, there are 
multiple ways to recruit lymphocytes to the lung and organize 
them into iBALT-type structures. Nevertheless, IL-17 seems to 
be an important cytokine in the development of ectopic lymphoid 
tissues in multiple locations (19, 97).

IL-22 is also important for iBALT formation (18, 98). 
Although IL-22 is most well known to act on epithelial cells in 
the lung and gut to trigger anti-microbial defenses and promote 
epithelial repair (99), the IL-22 receptor is also expressed on 
stromal cells in the B cell follicle of iBALT (18). In addition, the 
LPS-induced development of iBALT is impaired in the absence 
of IL-22 (18). Moreover, the lymphoid domains of tuberculosis 
granulomas, which resemble iBALT, are also disrupted in the 
absence of IL-22 – the FDC network is smaller, the B cell follicle 
is smaller and CXCL13 expression is reduced (98, 100). IL-22 
is also important for the formation of other ectopic follicles, 
as the overexpression of IL-22 in the salivary gland strongly 
promotes the formation of ectopic follicles in that tissue (18). 
Interestingly, the IL-22 receptor is also expressed by stromal 
cells and FDCs in other locations, particularly following 
inflammation (101). However, IL-22 is not required for lymph 
node development or for the differentiation of stromal cells in 
lymph nodes (69). Thus, the requirement for IL-22 also distin-
guishes the development of iBALT from the development of 
conventional lymphoid tissues.

Another important difference in the development of lymph 
nodes and iBALT is the requirement for lymphoid tissue 
inducer (LTi) cells. LTi cells are a subset of innate lymphoid cells 
(ILCs) that are dependent on the transcription factors, RORγt 
and Id2, and express cytokines like TNF, LT, IL-22, and IL-17 
(102, 103). LTi cells express CXCR5 and CCR7 and, during 
embryogenesis, home to developing lymph nodes (104), where 
they express LTα and LTβ and, through the actions of the LTβR 
and TNFR1, promote the differentiation of local mesenchymal 
cells into mature fibroblastic stromal cells that form the scaf-
fold of secondary lymphoid organs (38, 105–109). Importantly, 
LTi cells are essential for the development of lymph nodes, as 
mice lacking RORγt or Id2 completely lack lymph nodes and 
Peyer’s patches (102, 110, 111). Given that LTi cells express 
IL-17, IL-22, and LT, one might expect that these cells would 
also be required for iBALT formation. However, mice lacking 
RORγt and Id2 (and therefore lacking LTi cells) generate fully 
formed iBALT structures in the lungs (78). Thus, LTi cells are 
not required (although they may be involved) in the develop-
ment of iBALT (Figure 2).

The differential requirement for LTi cells in the development 
of iBALT and lymph nodes probably reflects the difference in 
when these tissues are formed. Conventional lymph nodes form 
during embryogenesis in the absence of antigen or inflamma-
tion in an environment that lacks mature B and T cells (8). 

In  contrast, iBALT forms after birth following exposure to 
antigenic and inflammatory stimuli that trigger the activation 
of mature lymphocytes. Given that the neonatal lung has mature 
T cells, such as γδT cells and Tfh cells that express TNF, IL-17, 
IL-22, and LT (78); these cells may functionally replace LTi cells 
for promoting iBALT development in postnatal mice.

Although IL-17 promotes the expression of CXCL13 and 
CXCL12, which in turn recruit B cells and Tfh cells, this process 
may not entirely explain the role of IL-17 in iBALT formation. For 
example, IL-17 is most well known for promoting the expression 
of CXCL9, CXCL10, and CXCL11 (112, 113) as well as cytokines, 
like G-CSF, that strongly attract inflammatory cells like neu-
trophils. These chemokines and cytokines are also dramatically 
upregulated in an IL-17-dependent manner following pulmonary 
LPS exposure in neonates (78). In fact, large numbers of neutro-
phils are recruited to the lungs of LPS-exposed neonates and are 
required for iBALT formation (82). Neutrophils are important for 
the production of APRIL and IL-21, which maintain B cell activa-
tion and survival and thereby help to promote iBALT formation 
(82). Interestingly, neonates are prone to granulocytosis (114, 
115), which may help to explain why the formation of iBALT 
occurs more easily in this age group.

Other studies also support the role of neurophils in the formatin 
of iBALT. For example, mice doubly deficient for the genes encod-
ing the NQO1 and NQO2 proteins, two neutrophil-expressed 
enzymes that limit ROS generation, spontaneously develop 
iBALT (116). NQO1−/−NQO2−/−mice have increased numbers of 
granulocytes in the peripheral blood and, in the lungs, have areas 
of iBALT with elevated numbers of neutrophils (116). However, it 
is not clear from these studies whether the elevated production of 
reactive oxygen directly promotes iBALT or whether the elevated 
numbers of neutrophils in the lung perform some other function 
that promotes iBALT formation.

Neutrophils may also play a role in the spontaneous forma-
tion of iBALT in Serpine2-deficient (SE2−/−) mice. Serpine2 
is a protease inhibitor that inhibits proteases like thrombin, 
trypsin, urokinase plasminogen activator (uPA), and plasmin, 
but not elastase (117, 118). These mice spontaneously develop 
iBALT in their lungs as early as 8 weeks after birth (119). The 
formation of iBALT in SE2−/− mice is associated with the exces-
sive expression of both inflammatory (CXCL9, CXCL10, and 
CXCL11) and homeostatic (CXCL12, CXCL19, and CCL19) 
chemokines as well as heightened thrombin activity (119). 
Importantly, the pulmonary administration of thrombin to the 
lungs of WT mice promotes an NFkB-dependent increase in 
chemokine expression from epithelial cells. Thrombin also acti-
vates protease-activated receptors (PARs) on neutrophils and 
endothelial cells and promotes neutrophil chemotaxis (120), 
suggesting that neutrophils may play a role in this process. 
Given the role of proteases in COPD, a lung disease in which 
iBALT may contribute to pathology, it is likely that protease-
mediated processes will be an important contributing pathway 
in iBALT formation.

CD11c-expressing DCs are also important for the formation 
and the maintenance of iBALT. For example, mice depleted of 
CD11c-expressing cells rapidly lose existing areas of iBALT 
(94, 121) and the depletion of CD11c-expressing cells following 
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the pulmonary administration of LPS to neonates prevents iBALT 
formation (78). Conversely, the pulmonary administration of 
bone marrow-derived DCs (BMDCs) promotes the formation 
of iBALT structures (121). CD11c-expressing DCs may promote 
iBALT formation/maintenance directly by providing LT (121) or 
indirectly by supporting the activation of T cells and B cells. In 
addition, depending on how they are activated, DCs are potent 
sources of IL-23, which acts on ILC3 cells (122, 123), γδT cells 
(124), and even CD4 T cells (125) to promote their production 
of IL-17. One caveat to the interpretation of these studies is that 
alveolar macrophages also express CD11c and will be deleted in 
CD11c-DTR mice. Moreover, BMDCs are actually a mix of true 
DCs and macrophages (126). Thus, macrophages may play an 
important, although poorly understood, role in the development 
and maintenance of iBALT.

Regulatory T cells (Tregs) limit local immune responses 
and, not surprisingly, can restrain the formation of iBALT. For 
example, CCR7-deficient mice spontaneously form iBALT (127), 
in part, because CCR7-deficient Tregs are poorly recruited to 
the lymph node, which prevents them from inhibiting effector 
T cell responses. This process can be mimicked by the blockade 
of CD62L-dependent lymph node homing (127). However, the 
interpretation of these studies is complicated. Does poor T cell 
homing to the lymph node lead to increased homing to the lung, 
regardless of whether Tregs are working properly? Does depletion 
of Tregs or impairment of their activity promote autoimmunity 
and therefore local pulmonary inflammation and the develop-
ment of iBALT? There is also a connection between Tregs and 
neutrophils, as the selective depletion of FoxP3+ Tregs in neonatal 
mice increases the number of neutrophils and promotes iBALT 
formation (82), whereas the targeted depletion of neutrophils sig-
nificantly reduces the number and size of iBALT areas following 
intranasal LPS administration. Thus, Tregs play an inhibitory role 
in iBALT development consistent with their immunosuppressive 
activities.

Although the mechanisms that recruit leukocytes to the lung 
are clearly important in the formation of iBALT, the resolution 
of pulmonary inflammation will also likely play a role. In other 
words, if leukocytes are recruited to a site faster than they can 
be cleared, then they will build up over time and, upon reaching 
a critical mass, may spontaneously assemble into a lymphoid 
tissue like iBALT (128). In support of this idea, the treatment 
of mice with the S1P1R agonist, FTY720, also promotes iBALT 
development, possibly by retaining cells in the lungs (127). 
One mechanism for clearing cells from the lung is drainage 
via lymphatic vessels (64), which are concentrated surrounding 
iBALT areas (64). In fact, infection of mice with Mycoplasma 
pulmonis induces large areas of iBALT and increases the number 
and volume of intrapulmonary lymphatics (64). The increase 
in lymphatics is mediated by signaling through VEGF-R2 and 
VEGF-R3. However, the simultaneous blockade of both receptors 
does not impede iBALT development (64). These data suggest 
that differentiation of lung lymphatics and VEGF play a marginal 
role in the development of iBALT; however, the newly generated 
lymphatics surrounding iBALT areas are likely to be important 
in regulating pulmonary inflammation and edema in response 
to subsequent respiratory infections.

Although the development of iBALT following exposure to 
microbes or microbial products provides information about 
normal physiological processes, these types of experiments 
are complicated to interpret due to the wide array of pathways 
that may be triggered by infection. To avoid this problem, some 
investigators have used the reductionist approach of overex-
pressing individual cytokines in the lung. In three separate 
reports, all of them using an adenovirus expression system, the 
forced overexpression of IL-5 (129), human IL-6/IL16R (130), 
or the IL-6 family member, oncostatin M (OSM) (131) in mouse 
lungs successfully generated iBALT structures. Interestingly, 
these pro-inflammatory cytokines have the potential to activate 
B cells (129, 131–133), which we know are important for the 
production of LT and the differentiation of lung stromal cells 
into FDCs. However, the overexpression of OSM and IL-5 also 
promoted the accumulation of eosinophils in the lungs. Thus, 
the local activation of eosinophils may functionally replace 
the role of neutrophils in these circumstances and provide 
cytokines, reactive oxygen, or proteases that facilitate the for-
mation of iBALT.

TOwARD A MODeL OF iBALT 
DeveLOPMeNT

The formation of iBALT depends on pulmonary infection 
or inflammation, and it seems that a wide variety of stimuli, 
including bacteria, viruses, microbial products, allergens, and 
even tumors, are capable of triggering this process (Figure 2). 
In most cases, repetitive exposures (LPS, allergens), infectious 
agents (viruses, bacteria), or long-lasting stimuli (particulates) 
are required, suggesting that a transient inflammatory response 
is generally not sufficient to promote iBALT formation. Given 
the diverse nature of the stimuli capable of inducing iBALT 
formation; it is difficult to find a single pathway that is common 
to all. However, the recruitment of granulocytes (neutrophils 
or eosinophils) does seem to be a prominent feature of most 
models. Importantly, both neutrophils and eosinophils produce 
a variety of cytokines that help FDC differentiation (TNFα, LTβ), 
B cell activation (APRIL, IL-6), and promote the recruitment of 
more neutrophils (IL-23, G-CSF) or eosinophils (eotaxin, IL-5) 
(134, 135). They also make proteases and reactive oxygen that 
likely trigger receptors or cause damage in a way that promotes 
the accumulation of activated lymphocytes (136–138). These 
processes seem to be particularly active in neonates, perhaps 
because neonates are prone to heightened neutrophilia (114, 
139), have a relatively high frequency of IL-17-producing γδ-T 
cells (140) or ILCs (103), and a relatively low frequency of Tregs 
(141–143).

Additional neutrophil functions may also be important 
for iBALT formation or function. For example, during acute 
inflammation, neutrophils die via Fas-mediated apoptosis (144), 
and are subsequently cleared by macrophages (145). However, 
neutrophils may also die in a way that leads to the production of 
neutrophil extracellular traps (NETs) – a process called NETosis 
(146). Exposure of neutrophils to reactive-oxygen species as well 
as activation by LPS, IFNγ, or CXCL8 can favor NETosis over 
apoptosis (147), and lead to an increase in IL-23 and IL-17 (148), 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


8

Hwang et al. iBALT and Pulmonary Immunity

Frontiers in Immunology | www.frontiersin.org June 2016 | Volume 7 | Article 258

which would favor iBALT formation. A hallmark characteristic 
of NETs is that neutrophil granule contents (histones, antimi-
crobial peptides, neutrophil elastase, and cytokines) remain 
attached to the expulsed DNA (147). Moreover, NET production 
is associated with lung fibroblast differentiation (149), as well 
as the processing and bioactivation of IL-33 by elastase (150), 
which triggers IL-17F production by bronchial epithelial cells 
(151). Once produced, IL-17 may become trapped on the NETs 
(149) and further increase the neutrophil recruitment to the 
lungs and the differentiation/activation of lung stroma, again 
leading to iBALT formation (Figure 2). This idea is consistent 
with data showing that NETs contribute to the control of pulmo-
nary infection with Streptococcus suis in pigs and promote iBALT 
formation (152, 153).

Although iBALT development is triggered by inflammation, 
it can be maintained for months in the absence of inflammation 
by homeostatic mechanisms (78, 154). These mechanisms are 
the same as those that maintain the structure of conventional 
lymphoid tissues (Figure  1). For example, once B cell follicles 
are formed, B cells constitutively produce LT and TNF (41), 
which helps maintain the FDC network, HEVs, and lymphatic 
vessels (41). In turn, the stromal cells of the B and T cell zones 
make homeostatic cytokines, like IL-7 (54), and homeostatic 
chemokines, like CXCL12, CXCL13, CCL19, CCL20, and CCL21 
(91), all of which act to recruit lymphocytes, direct their homing 
to the proper architectural domains, promote their survival and 
maintain the expression of LT and TNF, which support the stro-
mal cells (91). Thus, once they are established, lymphocytes and 
stromal cells reinforce each other’s survival and differentiation in 
the absence of inflammatory cytokines or chemokines. Of course, 
in many chronic inflammatory conditions in the lung, both the 
inflammatory and homeostatic mechanisms operate simultane-
ously, which likely leads to continuous iBALT expansion and 
pathological outcomes.

Many of these same mechanisms are involved in the forma-
tion of tertiary lymphoid tissues in a variety of organs other 
than the lung. For example, tertiary lymphoid organs form in 
the brains of patients with multiple sclerosis (155, 156). The 
local expression of homeostatic chemokines, such as CXCL13, 
CCL19, and CCL21, correlates with the formation of these 
tissues (157) and soluble LTβR can suppress their formation 
and ameliorate the symptoms of EAE (156). Moreover, Th17 
cells are involved in the pathogenesis of EAE and multiple 
sclerosis (158), and IL-17 is involved in lymphoid neogenesis 
by promoting the expression of lymphoid chemokines (19) and 
for the differentiation of local stromal cells (159). Thus, some of 
the same inflammatory and homeostatic pathways are involved 
in the formation of ectopic lymphoid tissues in the lungs and 
the brain.

Transgenic models also reveal similarities and differences 
between target organs in the formation of tertiary lymphoid 
tissues. For example, the pancreas develops tertiary lymphoid 
tissues, particularly in the context of diabetes (14, 160). CXCL13 
is required for the organization of B cell follicles in the pancreas 
(161, 162), whereas chemokines like CCL21 and CCL19 are 
involved in recruiting B and T cells to the site and cytokines like 

IL-7 are important for their survival (49, 163, 164). Again, the LT 
and TNF signaling pathways are important for the maintenance 
of chemokine expression and the differentiation of stromal cells 
(164, 165), but their contribution to inflammation and diabetes 
is different (166). Interestingly, mice that express a CCL21 
transgene in the pancreas develop well-defined ectopic lymphoid 
tissues, whereas mice expressing CCL21 in the skin do not (167). 
Thus, although there are clear commonalities in the pathways that 
promote ectopic lymphoid tissues in different organs, some strik-
ing differences that can probably be attributed to the different 
types of cells present in each target organ.

Exposure to a particular inflammatory stimulus will also 
likely dictate what pathways are involved in ectopic lymphoid 
tissue formation. For example, DCs (15, 168), CCL21 (169), 
and the LTβR (170) are required for the formation of ectopic 
follicles in the thyroid without a requirement for Id2-dependent 
LTi cells (15). However, the over-expression of CXCL13 in the 
gut promotes the formation of isolated lymphoid follicles via the 
recruitment of IL-22-expressing ILC3 cells (171). IL-17 is also 
involved in the formation of ectopic follicles in the gut (172), 
suggesting that Th17 responses to commensal organisms are 
likely driving the formation of tertiary lymphoid tissues in this 
location. Thus, the local inflammatory milieu and resident cell 
types likely dictate organ-specific pathways that promote the 
formation of tertiary lymphoid tissues in each non-lymphoid 
organ.

ROLe OF iBALT iN PULMONARY iMMUNe 
ReSPONSeS TO iNFeCTiON

Given that iBALT structurally resembles conventional sec-
ondary lymphoid organs, one might assume that it performs 
similar functions, i.e., promoting encounters between naive 
lymphocytes that are recruited from the blood and antigen-
presenting cells that have migrated from the lumen of the 
airways. However, this hypothesis is difficult to demonstrate 
experimentally. We and others have used LT-deficient mice, 
which lack conventional secondary lymphoid organs (173), to 
show that immune responses to a variety of antigens can be initi-
ated directly in the lung (23, 174, 175). For example, LT-deficient 
mice generate nearly normal primary B and T cell responses to 
a pulmonary infection with influenza virus (23, 174). Similarly, 
LT-deficient mice are capable of generating primary immune 
responses following pulmonary exposure to allergens (176) 
and Mycobacterium tuberculosis (175, 177). Thus, conventional 
secondary lymphoid organs are not necessary for generating 
immune responses to the pulmonary antigens and pathogens 
that have been tested.

Despite their ability to generate primary immune responses, 
LT-deficient mice are not entirely immunocompetent. In par-
ticular, the DCs in LT-deficient mice have defects in survival and 
migration (178), in part due to poor expression of homeostatic 
chemokines. As a result, LT-deficient mice succumb to lower 
doses of influenza and fare worse than their normal counterparts, 
even though they do make primary immune responses. The gen-
eration of bone marrow chimeras (in which WT bone marrow 
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is transferred into LT-deficient mice) circumvents the problems 
associated with LT deficiency, but does not restore lymph nodes 
or Peyer’s patches. Thus, upon the removal of the spleen, these 
mice lack all conventional secondary lymphoid organs and are 
known as Spleen, Lymph node and Peyer’s patch-deficient (SLP) 
mice. Importantly, SLP mice generate primary immune responses 
to influenza without any delay (23). Immune responses in SLP 
mice are initiated in the lung, in well-organized areas of iBALT. 
Moreover, germinal center responses are observed in the lungs 
of SLP mice and germinal enters can be observed in the B cell 
follicles of iBALT (69, 155, 179). In addition, influenza-specific 
memory T cells are generated and maintained in SLP mice, as 
are long-lived antibody-secreting cells (180). Most surprisingly, 
influenza-infected SLP mice fare better than WT mice, even in 
the absence of conventional secondary lymphoid organs (23). 
This result is likely due to slightly reduced T cell responses in 
SLP mice, which leads to reduced production of inflammatory 
cytokines, like TNF and IL-6, both of which contribute to weight 
loss and morbidity. Thus, iBALT areas in the lung are capable of 
generating primary immune responses, maintaining memory 
cells, and reducing morbidity and mortality associated with 
pulmonary infections.

Once iBALT is formed, it is maintained in the lungs for 
months, often in the absence of the original stimulus that trig-
gered its formation (78). Moreover, once iBALT is formed, it 
acts like any other lymphoid organ and can recruit naive B and 
T cells and support their activation in response to antigens that 
are unrelated to the antigens that triggered iBALT formation. 
For instance, iBALT generated in response to Mycobacterium 
tuberculosis infection can recruit naive OVA-specific CD4 
T cells and support their activation upon subsequent pulmo-
nary exposure to OVA, without contributions from conven-
tional secondary lymphoid organs (175, 177). Moreover, the 
transfer of DCs loaded with OVA peptide to mice in which 
iBALT was induced following pulmonary infection with MVA 
primes naive OVA-specific CD8 T cells in the lung (23, 65). 
Together, these data suggest that the specificity of naive T cell 
priming can be different from the antigenic stimulation that 
initially induced iBALT.

The presence of iBALT in normal mice also has dramatic 
consequences on the resulting immune response and clinical 
outcomes. For example, mice that have iBALT induced by 
pulmonary instillation of protein nanoparticles clear virus 
more rapidly and lose less weight following influenza infection 
(67, 181). In these mice, the kinetics of influenza-specific CD4+ 
T cells in the lymph node parallels that in the lung, suggesting 
that they are being primed in both locations simultaneously 
(67). The presence of iBALT also provides a beneficial effect 
with SARS-coronavirus and pneumovirus, which are cleared 
more rapidly in mice with iBALT by an accelerated antibody 
response (181). Similarly, mice that have iBALT induced as a 
result of neonatal LPS exposure lose less weight and clear pneu-
movirus faster than mice without iBALT (82). Importantly, the 
CD4 T cell response to pneumovirus is accelerated in mice with 
iBALT (82) suggesting that the presence of iBALT in the lung 
leads to faster, more efficient pulmonary immune responses 
that promote rapid viral clearance and reduce morbidity after 

infection. Thus, iBALT is beneficial in the context of respiratory 
virus infection.

The presence of iBALT is also protective in the context of 
bacterial infections. For example, intranasal vaccination with 
LPS and recombinant porin B from Francisella tulerensis induces 
highly organized iBALT structures (182) and confers improved 
survival and more efficient bacterial control upon challenge 
with the Francisella tulerensis vaccine strain (182). Similarly, 
iBALT induced with nanoparticles confers protection against 
subsequent challenge with Coxiella burnetii (181).

In addition to its role in resolving acute bacterial infections 
in the lung, iBALT also helps control chronic pulmonary infec-
tion with Mycobacteria tuberculosis (MTB). A hallmark of MTB 
infection is the formation of granulomas, clusters of lymphocytes 
that surround MTB-infected macrophages and contain infection 
(183). Granulomas exhibit many of the features of iBALT and 
B cell follicles containing germinal centers, and FDCs are often 
observed in MTB granulomas in mice (87, 184–186), humans 
(187), and monkeys (186, 188). Monkeys with latent MTB infec-
tion maintain large, well-organized areas of iBALT surrounding 
granulomas (186), whereas monkeys with active disease have 
fewer and less organized areas of iBALT. Thus, the maintenance 
of good iBALT structures seems to be important for the control 
of MTB. In fact, the activity of iBALT is sufficient to prime MTB-
specific IFNγ-producing CD4 T cells and control infection, 
without contributions from conventional secondary lymphoid 
organs (175).

In fact, chronic pulmonary infection with MTB progressively 
leads to iBALT development, with progressive increases in the 
expression of both CCL19 and CXCL13 (87, 185). Importantly, 
the loss of these chemokines in CXCL13−/− mice or plt/plt mice 
(lacking both CCL19 and CCL21) leads to disrupted iBALT archi-
tecture and delayed granuloma formation (185). CXCL13 seems 
to be most important for generating proper granulomas and for 
recruiting CXCR5-expressing T cells to the lungs (185), whereas 
granuloma formation is relatively normal in plt/plt mice, but the 
Th1 response is delayed (185). Consistent with the poor immune 
response in these mice, the titers of MTB are higher in the lungs 
of both CXCL13−/− mice and in plt/plt mice and are even higher 
in the lungs of CXCL13−/− x plt/plt mice.

Given that CXCL13 expression depends on IL-17 during pul-
monary inflammatory conditions, it is not surprising that IL-17 
is important in immunity to MTB following vaccination (184). 
In fact, intranasal vaccination of mice with MTB in combination 
with type II heat labile enterotoxin, elicits MTB-specific Th17 
cells (100). Upon subsequent challenge with MTB, the memory 
Th17 cells elicit pulmonary expression of CXCL13, which 
recruits CXCR5-expressing T cells to the granuloma (100, 186). 
Consequently, MTB-specific Th1 cells activate macrophages and 
control infection.

Although iBALT seems consistently beneficial in the context 
of experimental models of infection, children and young adults 
with chronic or recurrent pneumonia develop iBALT areas in 
their lungs that are associated with bronchiolar damage (189), 
indicating that iBALT may contribute to bronchial pathol-
ogy. Moreover, it is described in rabbits that collagens in the 
deeper layers of the bronchial wall are disrupted when iBALT 
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is present (75), again supporting an association in pathologic 
context. However, the actual function of iBALT in these cases 
is difficult to assess.

iBALT iN CHRONiC PULMONARY 
DiSeASeS

Patients with chronic pulmonary diseases often develop areas 
of iBALT. For example, patients with Chronic Obstructive 
Pulmonary Disease (COPD) develop areas of iBALT adjacent 
to their small airways (190). In fact, the Global Initiative for 
Chronic Obstructive Lung Disease (GOLD) has classified COPD 
patients into five-stages based on airflow limitation (191), and 
there is a strong correlation between the patients in GOLD stages 
3 and 4 (severe and very severe) with the percentage of iBALT 
follicles in the airway and lymphocyte infiltration, compared 
to GOLD stages 1 and 2 (mild and moderate) patients (192). 
These studies also show a positive correlation between CXCL13 
expression and lymphoid follicle density (192), suggesting that B 
cells accumulate in iBALT-like areas via a CXCL13-dependent 
mechanism. Interestingly, B cells in the iBALT areas of COPD 
patients may be capable of making their own CXCL13 (190). 
However, inflammatory chemokine receptors, such as CXCR3, 
are also found on B cells of COPD patients (193), suggesting a 
role of both inflammatory and homeostatic recruitment of B 
cells. As suggested in other studies, LT is also important for the 
formation of iBALT in the context of COPD (194, 195). Cytokines 
like BAFF are also important for the activation or survival of B 
cells in COPD lungs (196). B cells not only make antibodies but 
also activate macrophages in the context of COPD (197), which 
contributes to disease pathology. Similarly, Langerin-expressing 
DCs are found surrounding iBALT areas in COPD patients (198, 
199) and their numbers positively correlate with the severity of 
COPD (199, 200). Consistent with these observations, mouse 
models of chronic cigarette smoke-induced COPD also identify 
iBALT areas in the lungs (89), and the numbers of iBALT areas 
are greater in mice exposed for longer periods.

Given that iBALT is associated with the most severe forms 
of COPD (192, 201), one could argue that iBALT contributes to 
pathology and is detrimental for the host. Conversely, one could 
argue that the elevated inflammation and lung damage in patients 
with more severe COPD promote iBALT formation. Consistent 
with this idea, patients with COPD often have elevated expression 
of thrombin in their airways (202, 203), which is associated with 
pulmonary inflammation and damage (204, 205). Interestingly, 
mice lacking the Serine Protease Inhibitor, SERPINE2, spon-
taneously develop chronic pulmonary inflammation and form 
iBALT-like structures in their lungs (119). Thus, pathways of 
damage and inflammation in chronic lung disease may promote 
iBALT. Finally, patients with COPD often develop bacterial infec-
tions in their lung, which exacerbates disease (206). Thus, iBALT 
may form as a consequence of infection and, based on studies in 
mice, may actually be providing a benefit to the patient, despite 
the severity of disease.

The development of iBALT is also associated with another 
chronic lung condition, hypersensitivity pneumonitis. Hyper-
sensitivity pneumonitis is caused by a chronic exposure to 

environmental organic dusts or molds, resulting in immune-
driven inflammation (207). Often referred to as “farmer’s lung” 
hypersensitivity pneumonitis is typically the result of repeated 
exposure to a particular pulmonary antigen, such as moldy hay. 
Thus, iBALT structures in the lungs of hypersensitivity pneu-
monitis patients are often very reactive and contain enormous 
germinal centers (208, 209).

Given the dramatic enlargement of iBALT areas in an 
antigen-driven disease like hypersensitivity pneumonitis, one 
might expect that patients with allergen-driven asthma would 
also develop extensive areas of iBALT. In fact, the appearance of 
iBALT-like structures (isolated aggregations of lymphoid cells or 
IALC) is observed in asthmatic patients and is greater in number 
and size compared to those in non-asthmatics (210). In addition, 
the appearance of iBALT-like areas in asthmatics correlates with 
airway wall thickening and increases in eosinophil infiltration. 
Furthermore, the progressive organization of iBALT positively 
correlates with the severity of asthma symptoms, suggesting 
that iBALT may be responding to external antigens and exac-
erbating pulmonary pathology. Similarly, patients with allergic 
bronchopulmonary aspergillosis also develop iBALT areas, some 
of which have allergen-specific IgE-expressing B cells in the ger-
minal centers (211), again suggesting an involvement of iBALT in 
pathology. These observations can be mimicked in mice by sen-
sitization and pulmonary challenge with OVA, which promotes 
the differentiation of OVA-specific, IgE-secreting plasma cells in 
iBALT structures in the lungs and increases airway hyperrespon-
siveness (90). However, the presence of iBALT does not always 
correlate with the development or progression of allergy or 
asthma, as a study of cross-country skiers finds iBALT at a similar 
frequency in normal and asthmatic individuals (independent of 
smoking status) and does not correlate iBALT with either respira-
tory allergy or airway hyperresponsiveness (212). Thus, the causal 
relationship between iBALT and pulmonary allergies or asthma 
remains enigmatic.

Well-developed iBALT is also commonly found in patients 
with pulmonary complications of rheumatoid arthritis (RA) 
(208). These structures are highly reactive, with polarized 
germinal centers that nearly fill the B cell follicles. Plasma cells 
secreting antibodies specific for citrullinated proteins are found 
surrounding the iBALT areas. Given that antibodies against 
citrullinated proteins are highly specific for RA (213) and are 
known to be pathologic (214), these data suggest that iBALT 
areas are contributing to autoimmune disease. Similar structures 
are observed in a subset of patients with pulmonary manifesta-
tions of Sjogren’s syndrome (SS) (208). SS is also an autoimmune 
disease that is characterized with an autoantibody production 
(215). Interestingly, the lungs of both RA and SS patients with 
pulmonary disease have extraordinary increases in the expres-
sion of the chemokines, CXCL13 and CXCL12 (216), which likely 
contribute to the recruitment of lymphocytes and the formation 
of iBALT areas in the lung, comparable to what is observed in the 
salivary glands of SS patients (217). Again, these data suggest that 
iBALT contributes to the local production of autoantibodies and 
correlates with local pathology.

Immune responses against transplanted organs are similar to 
autoimmune responses in that alloantigens, like autoantigens, 
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persist forever – sometimes promoting the development of 
ectopic lymphoid tissues like iBALT (218). For instance, iBALT 
is observed around small airways in a rat model of orthotopic 
lung transplantation (219) and, given the local immune reactiv-
ity, is thought to contribute to the rejection of the transplanted 
lungs. Similarly transplanted hearts and kidneys also develop 
ectopic lymphoid tissues that are associated with the production 
of antibodies directed against donor MHC-I molecules (220). 
Interestingly, treatment of heart allograft recipients with LTβR–Ig 
fusion protein abolished the formation of tertiary lymphoid tis-
sues, attenuated the autoantibody response, and prevented graft 
rejection (221), suggesting again that local lymphoid tissues play a 
role in local immune reactivity. However, the long-term acceptance 
of lung allografts is also associated with the formation of iBALT 
(222). In this case, the acceptance of the graft is dependent on the 
accumulation of Foxp3+ Tregs that accumulate in iBALT areas. 
Thus, the formation of iBALT can promote tolerance (222) as well 
as immune reactivity and understanding how it might perform 
these functions will be important for future studies to determine.

Local immune reactivity and the formation of ectopic lym-
phoid tissues are also important for immunity against tumors 
(223). For example, some patients with non-small-cell lung 
cancer (NSCLC) develop lymphocyte clusters, called tumor-
induced BALT (Ti-BALT) (224), which are associated with more 
favorable clinical outcomes. Presumably, DCs within Ti-BALT 
present tumor-associated antigens to T cells and enhance the 
efficiency of the immune response. In addition, ILC3 that express 
natural cytotoxicity receptors (NCRs) accumulate in Ti-BALT, 
and their frequency positively correlates with Ti-BALT forma-
tion and negatively correlates with tumor growth (225). Thus, in 
this context, the presence of iBALT is associated with productive 
immunity rather than tolerance.

HOw DOeS BALT DO iT?

There is little doubt that iBALT promotes productive immunity 
to a wide variety of infectious agents. It also correlates with 
inflammatory lung diseases, immunity against lung tumors, and 
transplant rejection. These data might suggest that the presence 
of iBALT leads to bigger and faster immune responses, which 
would be “good” for immunity against infection and “bad” for 
autoimmunity and chronic inflammation. However, there are 
clear instances in which iBALT correlates with tolerance against 
allografts and may even reduce inflammation associated with 
inflammatory diseases like asthma. Thus, the function(s) of 
iBALT are much more complex than initially thought.

How might iBALT accelerate immune responses and 
simultaneously suppress inflammatory responses? One pos-
sible mechanism involves the formation of additional lymphatic 
vessels around the iBALT follicles (64, 208), which by efficiently 
gathering pulmonary DCs, might accelerate immune responses 
and concentrate the local inflammatory response in the areas of 
iBALT – away from the remainder of the lung parenchyma. One 
can envision this process as sequestering antigens, pathogens, 
and cells in iBALT areas in order to control inflammation and 
pathology and also to efficiently eliminate or contain pathogens, 
like MTB. In fact, static imaging shows that inhaled antigens and 

particulates, such as diesel exhaust (88) or silica (226) accumulate 
in iBALT areas, effectively sequestering them and potentially 
reducing their ability to trigger inflammation.

A similar mechanism may be acting in CCR7−/− mice, which 
spontaneously develop iBALT in the context of rheumatoid lung 
disease (127, 195), but are simultaneously protected from devel-
oping bleomycin-induced pulmonary fibrosis (227). In addition, 
mice that develop iBALT as a consequence of autoimmunity 
are also protected from bleomycin-induced fibrosis (228). One 
possible explanation for these results is that following bleomycin 
administration, the iBALT areas rapidly sequester the drug or 
efficiently drain it out of the lung via lymphatics, thereby reducing 
its ability to trigger a fibrotic response.

One can extend this idea to antigens and allergens that are 
taken up by phagocytic cells in the lung. The areas of iBALT 
may efficiently collect antigen-bearing DCs or macrophages via 
lymphatics or other mechanisms, promoting their concentra-
tion in areas devoted to T and B cell priming, and simultaneously 
depleting them from the rest of the lung. In fact, plasmacytoid 
DCs (pDCs) in patients with asthma and in patients with mild 
moderate COPD are found concentrated in iBALT areas of the 
lung (229) where they may promote the local differentiation 
of Tregs (230, 231). In addition, lymphatic vessels in iBALT 
provide a survival niche for memory CD4 T cells by providing 
IL-7. Interestingly, lymphatic endothelial cells also produce 
cytokines like IL-33 as well as chemokines like CCL21 (68), all 
of which may contribute to trafficking, activation, and survival 
of lymphocytes. These possibilities highlight the potential 
regulatory function of iBALT in the context of inflammatory 
diseases.

CONCLUDiNG ReMARKS

The delicate mucosal surface of the lung is constantly exposed to 
pathogens and environmental antigens, but in most cases man-
ages to generate immune responses that are sufficient to clear 
pathogens without causing undue damage. The presence of iBALT 
clearly plays a role in this process by modulating local immune 
responses in a way that accelerates immunity to pathogens and, in 
some cases, ameliorating chronic inflammation. One might argue 
that iBALT achieves both these effects by sequestering antigens 
and cells in small areas of lymphoid tissue in the lung. However, 
the factors that control the activity of iBALT are unclear and will 
undoubtedly be the focus of future studies. Once we understand 
the pathways that control the development and function of iBALT, 
we may be able to target therapies that promote or inhibit these 
activities, depending on the context.
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