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Abstract 
Changes in the transcription factor (TF) expression are critical for brain development, and they may also underlie neurode-
velopmental disorders. Indeed, T-box brain1 (Tbr1) is a TF crucial for the formation of neocortical layer VI, and mutations 
and microdeletions in that gene are associated with malformations in the human cerebral cortex, alterations that accompany 
autism spectrum disorder (ASD). Interestingly, Tbr1 upregulation has also been related to the occurrence of ASD-like symp-
toms, although limited studies have addressed the effect of increased Tbr1 levels during neocortical development. Here, we 
analysed the impact of Tbr1 misexpression in mouse neural progenitor cells (NPCs) at embryonic day 14.5 (E14.5), when 
they mainly generate neuronal layers II–IV. By E18.5, cells accumulated in the intermediate zone and in the deep cortical 
layers, whereas they became less abundant in the upper cortical layers. In accordance with this, the proportion of  Sox5+ 
cells in layers V–VI increased, while that of  Cux1+ cells in layers II–IV decreased. On postnatal day 7, fewer defects in 
migration were evident, although a higher proportion of  Sox5+ cells were seen in the upper and deep layers. The abnormal 
neuronal migration could be partially due to the altered multipolar-bipolar neuron morphologies induced by Tbr1 misexpres-
sion, which also reduced dendrite growth and branching, and disrupted the corpus callosum. Our results indicate that Tbr1 
misexpression in cortical NPCs delays or disrupts neuronal migration, neuronal specification, dendrite development and the 
formation of the callosal tract. Hence, genetic changes that provoke ectopic Tbr1 upregulation during development could 
provoke cortical brain malformations.
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Introduction  

The cerebral cortex is a multi-layer structure that com-
prised glutamatergic projection neurons and GABAergic 
interneurons. Projection neurons of the cortical plate (CP) 
are generated from radial glial progenitors (RGPs) or from 
intermediate progenitors (IPs), which are commonly char-
acterized by the expression of Pax6 and Tbr2, respectively, 
along with other molecular markers [1–4]. Once generated, 
immature neocortical projection neurons migrate from the 
ventricular and subventricular zones (VZ and SVZ), through 
the intermediate zone (IZ), which is where they first adopt 
a multipolar morphology with multiple neurite extensions. 
Subsequently, these neurons acquire a bipolar morphology, 
and they begin to migrate radially along the radial glia. Neu-
rons reach the CP in an “inside-outside” order, first forming 
the deep cortical layers VI and V and then progressively 
seeding the upper cortical layers II–IV [4–7]. Corticofugal 
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neurons remain largely confined to layers VI and V of the 
cortex, and their production decreases rapidly from E14.5 
when the generation of upper layer neurons commences. 
Importantly, it is these neurons that extend intra- and inter-
hemispheric projections, such as those that form the corpus 
callosum [8, 9].

All these processes are tightly controlled during develop-
ment by transcription factors (TFs) like T-box brain 1 (Tbr1 
or TES-56), which is expressed strongly in the developing 
dorsal telencephalon (neocortex, hippocampus and olfac-
tory bulb (OB)). Tbr1 is expressed by newborn neocortical 
neurons, specifically Cajal-Retzius cells, subplate cells and 
layer VI glutamatergic neurons, as well as the cells in the 
developing hippocampus and OB [10–22]. Moreover, Tbr1 
has also been detected in dividing NPCs, giving rise to OB 
mitral neurons [23, 24]

Tbr1 is necessary for the differentiation of the preplate 
and layer VI neurons, for axon pathfinding and for the cor-
rect acquisition of the regional and laminar identity of pro-
jection neurons [12, 25–29]. Tbr1 is part of a glutamatergic 
neurogenic TF cascade [1, 20], and several factors repress 
its expression and regulate its activity, including CTIP1 and 
Fezf2 in layer V neurons [27, 28, 30]. By contrast, Tbr1 can 
also be activated by other TFs like Satb2 [31]. Tbr1 binds to 
its coactivator CASK1 to induce the transcription of genes 
involved in ASD, including Reelin, Nmdar2b/Grin2b, Auts2, 
Foxp2 and Wnt7b [26, 32–35].

De novo TBR1 mutations, microdeletions and variants 
causing loss-of-function of this TF are found recurrently in 
individuals with brain malformations that accompany ASD 
and intellectual disability [33, 36–51]. More recently, TBR1 
upregulation was detected in the cerebral cortex of knock-in 
mice carrying the TBR1-K228E mutation [52], a mutation 
previously identified in ASD [37, 42]. Synaptic transmis-
sion is altered in these mice, which also present ASD-like 
deficits [52]. Moreover, TBR1 upregulation has also been 
demonstrated in neurons derived from induced pluripotent 
stem cells (iPSCs) obtained from a 13-year-old male with 
savant syndrome [53], a condition where prodigious talent 
can occur in conjunction with ASD [54]. Similarly, TBR1 
upregulation has been reported in neurons derived from 
human embryonic stem cells (hESCs) carrying the CHD7 
intronic variant identified in ASD individuals [55]. Accord-
ingly, not only TBR1 loss-of-function but also abnormally 
increased TBR1 expression could potentially provoke brain 
malformations and functional deficits.

Accordingly, we studied here the impact of Tbr1 mis-
expression on NPC proliferation, neuronal migration, layer 
formation and neuronal morphology during embryonic and 
postnatal development of the mouse cerebral cortex. Our 
results show that ectopic Tbr1 overexpression produces an 
accumulation of neurons in the IZ and deep layers of the cer-
ebral cortex in vivo, impairing and delaying cell migration 

to the upper layers, altering neuronal specification and dis-
rupting the development of dendrites and the callosal axon 
tract. Our findings suggest that Tbr1 levels must be tightly 
regulated during cerebral cortex development to prevent the 
occurrence of neurodevelopmental disorders.

Materials and Methods

Cloning of a Plasmid Expressing Human Tbr1

Stable Tbr1 expression was achieved using a modified Molo-
ney murine leukaemia virus-based retroviral vector [23] car-
rying a CAG promoter and a WPRE sequence. The result-
ing construct pCAG-Tbr1-IRES-EGFP-WPRE (hereafter 
pCAG-Tbr1-EGFP) was used in parallel with the control 
pCAG-IRES-EGFP-WPRE vector (hereafter pCAG-EGFP). 
The CAG promoter was removed from the pCAGGS plas-
mid (kindly provided by Dr. Jun-ichi-Miyazaki, Osaka Uni-
versity, Ibaraki, Osaka, Japan [56], with the SalI and XhoI 
restriction enzymes, and then cloned upstream of the human 
Tbr1 ORF or of IRES into the pRV-hTbr1-IRES-EGFP and 
pRV-IRES-EGFP plasmids, respectively [23], previously 
digested with XhoI. The WPRE region was cloned from 
a pLV-IRES-EGFP-WPRE vector (a kind gift of Dr. Pan-
telis Tsoulfas, The Miami Project to Cure Paralysis, Miami, 
FL, USA) by digesting it with SalI and EcoRI, and it was 
inserted into the plasmids pCAG-Tbr1-IRES-EGFP and 
pCAG-IRES-EGFP previously digested with SalI. After 
transforming bacteria (Escherichia coli) with the corre-
sponding plasmids and extracting the DNA, a Tbr1 clone 
was selected free of mutations in the Tbr1 coding region. 
The two plasmids (pCAG-Tbr1-EGFP and pCAG-EGFP) 
were transfected into 293THEK cells to confirm the expres-
sion of both Tbr1 and EGFP, and these plasmids were used 
in the electroporation experiments.

In Vivo Electroporation of the pCAG‑Tbr1‑EGFP 
and pCAG‑EGFP Plasmids

For in utero electroporation, embryonic day (E) 14.5 preg-
nant CD1 mice were anaesthetized with isofluorane (Isoba 
vet, Schering-Plough/Merck) and placed on a thermal plate. 
The skin and the abdominal cavity were opened through a 
midline incision, and the uterine horns were exposed. The 
pCAG-Tbr1-EGFP and pCAG-EGFP plasmids (1 µg/µl) 
were mixed with 0.01% Fastgreen, and 2–5 µl of either solu-
tion was injected into the lateral ventricle of each embryo 
using a pulled glass micropipette. For electroporation, the 
head of the embryos was placed between 3-mm tweezer-
type platinum disk electrodes (NEPAGENE, Japan), and 
five 33-V pulses of 50 ms were administered at 950-ms 
intervals using a NEPA21 electroporator (NEPA GENE, 
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Chiba, Japan). The region electroporated was the ventric-
ular zone in the dorso-lateral area of the cerebral cortex, 
which at E14.5 is enriched in NPCs committed to generate 
layer II–IV neurons [2, 4–7]. After injection, the uterus was 
repositioned, the cavity of the pregnant mother was sutured 
and the embryos were allowed to continue developing until 
E15.5, E18.5, or postnatal-day (P) 7. In all experiments, 
electroporation of pCAG-EGFP and pCAG-Tbr1-EGFP was 
performed in parallel, as was the analysis of the mice.

IdU and CIdU Labelling

To study the effect of Tbr1 misexpression on NPC prolif-
eration, pregnant mothers were injected intraperitoneally 
(i.p.) with IdU (57.65 mg/kg) 3 h after electroporation and 
with CIdU (42.75 mg/kg) 24 h after electroporation, and the 
embryos were then analysed at E18.5.

Tissue Collection and Immunohistochemistry

Pregnant mice were anaesthetized by injection (i.p.) of keta-
mine/xylazine, and each embryo was then perfused tran-
scardially with 0.9% NaCl and 4% paraformaldehyde (PFA), 
before removing their brain and post-fixing it in the same 
fixative solution for 2 days. E18.5 embryos were anaesthe-
tized by placing them on ice prior to perfusion. Their brain 
was embedded in 3% agarose, and the coronal or sagittal 
vibratome Sects. (50 µm) were obtained and stored at 4 °C in 
phosphate-buffered saline (PBS) containing 0.02% sodium 
azide until use. P7 mice were anaesthetized by injection of 
ketamine/xylazine (i.p.) and perfused, and their brains were 
removed and processed as indicated above.

Sections containing the neocortex were immunostained 
with antibodies against the following: GFP (1:1000, rat: 
Nacalai Tesque Cat# 04,404–84, RRID:AB_10013361; 
1:1000, rabbit, Molecular Probes Cat# A-6455, 
RRID:AB_221570), CDP/Cux1 (1:500, rabbit: Santa Cruz 
Cat# sc-13024, RRID:AB_2261231), CIdU (1:500, rat: 
Accuratechemicals Cat# OBT0030, RRID:AB_2313756: 
kindly shared with us by Dr J.L. Trejo, Instituto Cajal-CSIC, 
Madrid, Spain), cleaved Caspase-3 (1:300, rabbit: Cell sign-
aling Cat# 9661, RRID:AB_2341188), CTIP2 (1:500, rat: 
Abcam Cat# ab18465, RRID:AB_2064130), IdU (1:500, 
mouse: BD Biosciences Cat# 347,580, RRID:AB_400326: 
kindly shared with us by Dr J.L. Trejo, Instituto Cajal-CSIC, 
Madrid, Spain), Ki67 (1:500, rabbit: Thermo Scientific 
Cat# RM-9106-S0, RRID:AB_2341197), neuronal nuclei 
antigen (NeuN, 1:50; mouse, Millipore Cat# MAB377, 
RRID:AB_2298772), Pax6 (1:300; rabbit, Covance Cat# 
PRB-278-P, RRID:AB_291612), RC2 (1:100, mouse: 
Developmental Studies Hybridoma Bank), Sox5 (1:500, rab-
bit: a kind gift from Dr. A.V. Morales, Instituto Cajal-CSIC, 
Madrid, Spain), Tbr1 (1:6000, rabbit: Abcam Cat# ab31940, 

RRID:AB_2200219) and Tbr2 (1:300, rabbit: Abcam Cat# 
ab23345, RRID:AB_778267).

The secondary antibodies used were Alexa-488-, Alexa-
594- and Alexa-647-conjugated affinity-purified antibodies 
against rabbit, rat or mouse IgGs (1:1000: Invitrogen/Fisher 
and Molecular Probes) or biotin-conjugated anti-rabbit IgG 
(1:1200: Jackson ImmunoResearch), visualized with perox-
idase-conjugated streptavidin (1:1200: Jackson ImmunoRe-
search) and tyramide (1:150: Cell Signaling). Finally, the 
sections were washed, exposed to Hoechst (1 µg/ml: Sigma) 
and mounted on glass microscope slides in Mowiol. The sec-
tions were co-stained with a GFP antibody to allow unam-
biguous visualization and examination of the EGFP-labelled 
cells. Controls were performed to confirm the specificity of 
the primary and secondary antibodies.

Cell counting and Morphological and Statistical 
analysis

Confocal images of individual Z-planes from five different 
rostro-caudal rectangular areas were taken with × 20, × 40 
or × 63 objectives encompassing the whole ventro-dorsal 
cerebral cortex at a resolution of 1024 × 1024. Cells in 
the entire Z-stack from each area were counted manually 
to calculate the number of  GFP+ cells, and co-localization 
of specific markers with GFP was analysed in each indi-
vidual Z-plane using the ImageJ software (NIH, Bethesda, 
MD). The results in Figs. 1D and 6K are shown as the mean 
(± SEM) of the  GFP+ cells found in a particular cortical 
zone or layer (counted as mentioned above) relative to the 
total number of  GFP+ cells. Similarly, the mean (± SEM) 
number of multipolar, radial bipolar and non-radial bipolar 
 GFP+ cells relative to the total number of  GFP+ cells was 
recorded (Fig. 3). In all the experiments, 3–5 sections from 
3–5 animals (n) per condition were examined for each immu-
nostaining, except for Supplementary Fig. S1.

In addition, we counted the number of dendrites on  GFP+ 
neurons to analyse the effect of Tbr1 overexpression on 
neuronal morphology in 63 × images from 15 neurons per 
condition. We also measured the length of the dendrites, 
and the length and thickness of the callosal axon fibres in 
the sections from E18.5 animals using the ImageJ software 
(NIH, Bethesda, MD, USA). Thresholds were established 
above the green background levels with the Image-Adjust-
Threshold setting.

The length of dendrites and the area they occupied in 
sections from P7 animals were measured using the Imaris 
8.4 software (Bitplane, Zurich, Switzerland). The dendrite 
area (A) is defined as the sum of the areas of all the den-
drite segment edges. The area of an edge is defined as a 
surface area of a frustum (truncated cone), where A = Σ 
A(i), i = 0,…n − 1, n and n = number of edges of a seg-
ment. An unpaired two-tailed Student’s t test was used 
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to compare the mean ± SEM values from the two experi-
mental conditions. Welch’s correction was applied when 

the variances of both groups were significantly different, 
as indicated by the F test. Statistical significance was set 

Fig. 1  Tbr1 misexpression 
alters the distribution and 
positioning of migrating  GFP+ 
cells in the cerebral cortex. A 
Scheme of the constructs used 
in the experiments. Mouse 
embryos were electroporated 
in utero at E14.5, their brain 
was collected at E18.5 and the 
vibratome sections were ana-
lysed by immunohistochemistry. 
A general view of the  GFP+ 
cells in the sagittal sections 
from the cerebral cortex of 
embryos electroporated with the 
pCAG-EGFP (B) or pCAG-
Tbr1-EGFP plasmid (C). D 
Quantification of the percentage 
of  GFP+ cells in each zone and 
layer of the neocortex relative 
to the total number of  GFP+ 
cells. E–G Dual GFP and Tbr1 
immunohistochemistry of the 
coronal sections shows nearly 
100% double-positive cells in 
the pCAG-Tbr1-EGFP elec-
troporated brains compared to a 
very low number of these cells 
in the pCAG-EGFP animals 
(***P < 0.001; Student’s t test, 
n = 3 animals per condition). 
H, I Dual GFP and CTIP2 
immunohistochemistry allows 
the percentage of  GFP+ cells 
in layers VI, V and II–IV to 
be quantified accurately. Tbr1 
misexpression produced a sig-
nificant accumulation of  GFP+ 
cells in the IZ and in layers VI 
and V, as well as a significant 
decrease of cells in layers II–IV. 
J The percentage of cleaved 
caspase 3.+ cells was very low, 
around 1% in both conditions 
(n = 3 animals per condition). 
The data in D and I are the 
mean ± S.E.M (n = 6–7 animals 
per condition): *P < 0.05, 
**P < 0.01, ***P < 0.001 (Stu-
dent’s t test). Scale bar, 500 μm 
(B, C), 100 μm (E, F, H). VZ, 
ventricular zone; SVZ, subven-
tricular zone; IZ, Intermediate 
zone; SP, subplate
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at P < 0.05, and GraphPad Prism 5.0 was used for all the 
statistical analyses.

Results

Tbr1 Misexpression Alters the Distribution of GFP.+ 
Cells in the Embryonic Cerebral Cortex Without 
Affecting Neural Progenitor Cell Number

Tbr1 regulates neuronal differentiation, axonal pathfinding 
and laminar and regional identities in the cerebral cortex [12, 
20, 29]. While de novo mutations and variants that cause 
TBR1 loss-of-function are found in individuals with ASD 
[36, 37, 42, 44] and TBR1 upregulation has also recently 
been implicated in this disorder, little is known about the 
mechanisms underlying such changes [52, 53, 55]. To study 
the effect of Tbr1 misexpression on NPCs largely prede-
termined to generate layer II–IV neurons, we performed in 
utero electroporation in E14.5 embryos and analysed the 
neocortex at E18.5 (Fig. 1A–J). Following electroporation 
of a bicistronic plasmid carrying the human Tbr1 cDNA 
(pCAG-Tbr1-EGFP), nearly 100% of  GFP+ cells expressed 
Tbr1, whereas Tbr1-GFP+ cells were barely detected in 
embryos electroporated with the control pCAG-EGFP 
construct (Fig. 1E–G, P = 0.0001). The efficiency of elec-
troporation of the two plasmids was similar, as evident 
in the number of  EGFP+ cells detected (pCAG-EGFP, 
144.41 ± 11.53; pCAG-Tbr1-EGFP, 179.27 ± 24.19). The 
 GFP+ cells identified were distributed from the VZ and SVZ 
across to the upper cortical layers (Fig. 1B–D). However, 
Tbr1 overexpression produced a significant 2.3-fold increase 
(233%, P = 0.0317) in the percentage of cells located in the 
IZ in the GFP-immunostained sections, concomitant with a 
significant decrease (34.5%; P = 0.022) of the cells in layers 
II–IV (Fig. 1D).

As the number of  GFP+ cells in layers VI and V could 
not be accurately counted, we determined the cell dis-
tribution in those layers (and in layers II–IV) using dual 
immunohistochemistry with antibodies against GFP and 
CTIP2, a marker of layer V neurons, which is also slightly 
expressed in layer VI neurons [30, 57] (Fig. 1H, I). Misex-
pression of Tbr1 at E14.5 significantly affected cell migra-
tion, with an accumulation of  GFP+ cells in the deep layers 
at E18.5 (layer VI—14.0% ± 3.26 in the control animals, 
28.0% ± 9.38 following Tbr1 overexpression, P = 0.030; 
layer V—17.5% ± 2.64 in control animals, 35.0% ± 5.71 
following Tbr1 overexpression, P = 0.001) and fewer cells 
in the upper layers (layers II–IV—68.8% ± 5.79 in control 
animals, 37.5% ± 10.72 in Tbr1 animals, P = 0.002). By con-
trast, cell death was negligible and similar in both condi-
tions (Fig. 1J). Together, these findings suggest that Tbr1 

misexpression during embryonic development alters the 
migration and final position of the neurons derived from 
NPCs.

We then used a marker of the cell cycle, an antibody 
against Ki67, to check whether Tbr1 misexpression affects 
the number of actively cycling NPCs [58, 59]. No difference 
in the proportion of  Ki67+ cells was observed when elec-
troporation was performed at E14.5, and the embryos were 
analysed at E18.5 (data not shown). Indeed, when this assay 
was performed over a narrower time window, analysing the 
cerebral cortex of E14.5 electroporated embryos 24 h later 
(E15.5 embryos),  GFP+ cells were detected in both condi-
tions (Fig. 2). Moreover, in the embryos that received the 
pCAG-Tbr1-EGFP construct, nearly 100% of these  GFP+ 
cells also expressed Tbr1 whereas  GFP+-Tbr1+ cells were 
not found in the control condition (Fig. 2A´, B, G). Sections 
from these E15.5 embryos were then immunostained with 
antibodies against Ki67 and Tbr2, a TF widely expressed 
by IPs in the developing cerebral cortex [1, 60]. No sig-
nificant differences in the percentages of  GFP+ cells posi-
tive for Ki67 (P = 0.807: Fig. 2C´, D) or Tbr2 were evident 
between the two conditions (P = 0.553: Fig. 2E´, F). Thus, 
it appears that Tbr1 overexpression does not affect the num-
ber of cycling progenitors nor that of the IPs. To further 
explore whether proliferation is altered, pregnant moth-
ers received IdU 3 h after electroporation and CIdU 24 h 
after electroporation. At E18.5, the percentages of double-
labelled  GFP+IdU+ and  GFP+CIdU+ cells, as well as that of 
triple-labelled  GFP+IdU+CIdU+ cells, were similar in both 
conditions, although only a small number of animals could 
be analysed (Supplementary Fig. S1); hence, Tbr1 misex-
pression appears not to alter the number of cells in S-phase 
nor that of cells staying in cell cycle from E14.5 to E18.5. 
In addition, Tbr1 misexpression did not significantly change 
the percentage of  GFP+TuJ1+/GFP+ cells at E18.5 (data not 
shown) and almost 100% of  GFP+ cells were  NeuN+ at P7, 
both under control and Tbr1 misexpression conditions (Sup-
plementary Fig. S2). These data suggest that neurogenesis 
was not affected by Tbr1 misexpression.

Tbr1 Plays a Role Regulating Neuronal Polarization 
and Radial Cell Migration

Since Tbr1 misexpression alters the distribution of neurons 
in the developing neocortex (Fig. 1), an ectopic increase 
in Tbr1 levels is likely to inhibit the migration of newly 
formed neurons. As such, we analysed neuronal polariza-
tion, given that immature projection neurons modify their 
morphology from multipolar to bipolar when crossing the 
IZ, becoming radially orientated [5–7, 61, 62]. Tbr1 misex-
pression significantly increased the proportion of multipolar 
neurons in the IZ (15.93% ± 1.17 in control, 26.60% ± 0.21 
in Tbr1 overexpressing mice, P = 0.009) and in layers V–VI 
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(0.62% ± 0.26 in control, 2.31% ± 0.68 in Tbr1 overexpress-
ing mice, P = 0.032 (Fig. 3A–F, I). Furthermore, it increased 
the percentage of non-radial bipolar neurons in layers V–VI 
(1.34% ± 0.43 in control, 4.50% ± 0.65 in Tbr1 overex-
pressing mice, P = 0.002: Fig. 3G, J) and decreased the 

percentage of radial bipolar neurons (98.03% ± 0.56 in con-
trol, 93.17% ± 0.97 in Tbr1 overexpressing mice, P = 0.001: 
Fig. 3H, K). These data suggest that sustained Tbr1 expres-
sion in part disrupted neuronal migration by altering the 
correct transition from a multipolar to a radial bipolar state, 

Fig. 2  Neither cycling cells nor the intermediate progenitor (IP) pop-
ulation is affected by the Tbr1 misexpression. Mouse embryos were 
electroporated in utero at E14.5, their brain was collected at E15.5 
and the coronal vibratome sections were analysed by dual immuno-
histochemistry. A´, A´´, A, B´, B´´, B, G The efficiency of Tbr1 over-
expression was nearly 100% in  GFP+ cells from pCAG-Tbr1-EGFP 
electroporated mice, whereas no GFP and Tbr1 double-labelled cells 

were detected in pCAG-EGFP electroporated mice. Tbr1 overexpres-
sion did not alter the percentage of  GFP+Ki67+ cycling cells (C´, C´´, 
C, D´, D´´, D, H) nor that of  GFP+Tbr2.+ IPs (E´, E´´, E, F´, F´´, F, 
I). Examples of the double labelled cells are shown in the rectangles 
and boxes, and the data are the mean ± S.E.M (n = 3–4 animals per 
condition). Scale bar, 20 μm
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which could slow their migration along radial glia. However, 
Tbr1 misexpression did not appear to change the radial glia 
scaffold (Supplementary Fig. S3) when it was analysed by 
immunostaining with an RC2 antibody that is a marker of 
radial glial [63].

Tbr1 Misexpression Alters Neuron Subtype 
Specification in the Neocortex

In addition to producing defects in cell migration, Tbr1 
misexpression might also affect the molecular identity of 
relevant neuronal subtypes. To assess this, we analysed the 
embryos electroporated at E14.5 and then immunostained 
at the E18.5 sections with antibodies against the following: 
Cux1, a marker of layer II–IV neurons [64]; CTIP2, a marker 
of layer V neurons [30, 57]; and Sox5, a marker of layer 

VI–V neurons [65] (Fig. 4A´–F´, A´´–F´´, A–F). Of the three 
neuronal subtypes studied here,  Cux1+ neurons were those 
generated most abundantly between days E14.5 and E18.5 
in the embryos electroporated with the control pCAG-EGFP 
construct (31.86% as opposed to 5.38%  CTIP2+ cells and 
4.99%  Sox5+ cells (Fig. 4G–I). However, Tbr1 misexpres-
sion significantly decreased the proportion of  Cux1+-GFP+ 
cells in layers II–IV (1.7-fold or 41.4%, P = 0.006: Fig. 4A´, 
B, G) and that of  CTIP2+-GFP+ cells in layer V (2.4-fold 
or 58.0%, P = 0.031: Fig. 4C´, D, H), resulting in 18.74% 
 Cux1+ and 2.24%  CTIP2+ cells. By contrast, Tbr1 misex-
pression increased the percentage of  Sox5+-GFP+ cells in 
layers V–VI (5.2-fold or 520%, P = 0.010: Fig. 4E´, F, I), 
resulting in 25.95%  Sox5+ cells. The overall proportion of 
 GFP+ cells expressing these three markers was 42.23% in the 
controls and 46.93% following Tbr1 overexpression. Hence, 

Fig. 3  The effect of Tbr1 
misexpression on the mor-
phology and orientation of 
migrating neurons. The images 
show migrating neurons in the 
cortex of E18.5 animals that 
were electroporated with the 
pCAG-EGFP (A, E) or pCAG-
Tbr1-EGFP plasmid (B, F). 
The high-magnification images 
show representative examples 
of multipolar (I), non-radial 
bipolar (J), and radial bipolar 
(K) GFP.+ immature neurons 
from the IZ and layers V–VI 
of embryos electroporated 
with the pCAG-Tbr1-EGFP 
plasmid (neurons are indicated 
by rectangles in B and F). The 
vibratome sections were immu-
nostained with an anti-GFP 
antibody, and the quantifica-
tion of the results is presented 
in the graphs. C Multipolar 
neurons in the IZ. D Multipo-
lar neurons in layers V–VI. G 
Non-radial bipolar neurons in 
layers V–VI. H Radial bipolar 
neurons in layers V–VI. Note 
the significant increase in the 
percentages of multipolar and 
non-radial bipolar neurons after 
Tbr1 overexpression. The data 
are the mean ± S.E.M (n = 3 
animals): *P < 0.05, **P < 0.01, 
***P < 0.001 (Student’s t test). 
Scale bar, 20 μm
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Fig. 4  Tbr1 misexpression alters the neuronal specification and lami-
nation. The coronal sections from E18.5 embryos electroporated with 
the pCAG-EGFP or pCAG-Tbr1-EGFP plasmid were dual immu-
nostained with specific antibodies against GFP and Cux1 (A´, A´´, 
A, B´, B´´, B), CTIP2 (C´, C´´, C, D´, D´´, D), or Sox5 (E´, E´´, E, 
F´, F´´, F). The cells marked by arrows are shown at a higher mag-

nification in the insets. Tbr1 overexpression significantly reduced 
the percentage of  Cux1+ cells and  CTIP+ cells in layers II–IV and V, 
respectively, while it increased the percentage of Sox5.+ cells in lay-
ers VI–V (G–I). The data are the mean ± S.E.M (n = 3–5 animals): 
*P < 0.05, **P < 0.01 (Student’s t test). Scale bar, 100 μm (A, B, D, 
E, G, H), 20 μm (insets)
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an increase in Tbr1 expression at these embryonic stages 
alters the neuronal subtype specification and cerebral cortex 
lamination.

Dendrite and Axon Growth Is Also Affected by Tbr1 
Misexpression

We next studied whether ectopic Tbr1 overexpression affects 
dendrite and axon development in the neocortex. As such, 
we electroporated embryos at E14.5 and analysed the den-
drite length and number at E18.5, as well as the callosal 
axon tract. We first observed that Tbr1 misexpression signifi-
cantly decreased the length and the number of dendrites on 
layer II–III neurons (28.4%, P = 0.001 and 59.2%, P = 0.001, 
respectively: Fig. 5A–D). When the corpus callosum was 

analysed, the Tbr1 overexpression significantly reduced the 
callosal axon fibre length (44.07%, P = 0.008: Fig. 5E–G) 
and thickness (58.06%, P = 0.003: Fig. 5H), even though 
the total number of GFP electroporated cells was similar 
in both groups (P = 0.248; Fig. 5I). Thus, sustained Tbr1 
misexpression impairs dendritogenesis, as well as callosal 
axon growth and guidance.

Effect of Tbr1 Misexpression in Postnatal 
Neocortical Development

We next asked if the phenotypic alterations observed in 
Tbr1 electroporated embryos were maintained in postnatal 
animals, analysing P7 animals that were electroporated at 
E14.5. While at the developmental stages studied previously 

Fig. 5  Tbr1 misexpression 
impairs dendrite and cal-
losal axon development. The 
coronal vibratome sections from 
electroporated embryos were 
immunostained at E18.5 with a 
GFP antibody, and Hoechst was 
used to label the nuclei. Note 
that the complexity of neurons 
located in layers II–III (A, B) 
was markedly reduced in the 
embryos electroporated with 
pCAG-Tbr1-GFP, as indi-
cated by the smaller dendrite 
length (P < 0.001; C) and the 
number of dendrites per neuron 
(P < 0.001; D); Student’s t test, 
n = 15 neurons per condition). 
E, F The images show axons 
forming the corpus callosum 
(CC) that cross to the con-
tralateral hemisphere in the 
pCAG-EGFP electroporated 
animals, whereas this was 
markedly impaired follow-
ing Tbr1 misexpression. The 
length and thickness of callosal 
fibres decreased significantly 
in the pCAG-Tbr1-EGFP elec-
troporated animals (P < 0.01; 
Student’s t test; G, H). The 
total number of GFP.+ cells in 
the sections did not change (I). 
The data are the mean ± S.E.M 
(n = 3 animals per condition). 
Scale bar, 100 μm
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Fig. 6  The altered dendrite 
morphology produced by Tbr1 
misexpression is maintained 
in postnatal animals. Mouse 
embryos were electroporated 
in utero at E14.5, their brain 
was collected at P7 and the 
vibratome sections were immu-
nostained. A–C Dual GFP and 
Tbr1 immunohistochemistry 
revealed nearly 100% of double-
positive cells following pCAG-
Tbr1-EGFP electroporation 
compared to the small number 
of these cells in the pCAG-
EGFP electroporated animals 
(***P < 0.001; Student’s t test; 
n = 3 animals per condition). 
D–H Tbr1 overexpression 
significantly reduced the com-
plexity of layer II–IV neurons 
in terms of the number of basal 
dendrites (P < 0.001; F), den-
drite length (P < 0.05; G) and 
the area occupied by the den-
drites (P < 0.05; H). The data 
in F–H are the mean ± S.E.M 
(n = 15 neurons per condition, 
Student’s t test). Scale bar, 
100 μm. I–K To visualize the 
distribution of cells in the corti-
cal layers, the P7 sections were 
immunostained with antibodies 
against GFP and Cux1 (I, J). 
K As seen in the graph, the 
percentages of  GFP+Cux1+ 
cells were similar in control and 
Tbr1 overexpressing animals. 
L Almost 100% (98.8%) of the 
 GFP+ cells were found in layers 
II–IV in the control animals 
whereas in the pCAG-Tbr1-
EGFP electroporated animals, 
82.5% and 13.3% of the GFP.+ 
cells were located in layers 
II–IV and V–VI, respectively. 
However, these differences did 
not achieve statistical signifi-
cance. Scale bar, 200 μm
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(E15.5 and E18.5) the proportion of  GFP+-Tbr1+ cells rel-
ative to the  GFP+ cells was close to 100% in P7 pCAG-
Tbr1-EGFP electroporated mice, very few double-labelled 
cells were detected in the control (pCAG-EGFP) animals 
(P = 0.0001: Fig. 6A–C). It is important to note that at P7 
Tbr1 expression it is not restricted to layer VI and layer V 
neurons, but it is also mildly expressed in the upper-layer 
neurons (Supplementary Fig. S4). We studied the impact 
of sustained Tbr1 expression on dendrites and found that 
it produced a significant reduction in the number of basal 
dendrites (including dendrite branches) per neuron in layers 
II–III (44.8%, P = 0.0001: Fig. 6D–F), as well as a reduction 
in dendrite length (53.3%, P = 0.015: Fig. 6G) and in the 
area occupied by the dendrites (53.22%, P = 0.015: Fig. 6H). 
These results indicate that Tbr1 misexpression alters the 
dendrite growth and number and that this effect persists in 
postnatal animals.

To determine the distribution of  GFP+ cells in the differ-
ent layers of the cortex, the P7 sections were stained with 
antibodies to Cux1 in order to clearly distinguish  GFP+ 
cells in layer I, from the upper (II–IV) and deep layers 
(V–VI: Fig. 6I, J). By P7, the vast majority of  GFP+ cells 
were located in upper layers II–IV, and the labelled neu-
rons were virtually absent from layers V–VI in the control 
mice. However, following Tbr1 overexpression 78% and 
10% of  GFP+ cells were detected in layers II–IV and layers 
V–VI, respectively, although these changes were not statisti-
cally significant (Fig. 6L). The percentages of  GFP+Cux1+ 
cells were similar in both conditions (94.97% ± 0.7219 and 
91.43% ± 2.554 in control and Tbr1 overexpressing ani-
mals, respectively) (Fig. 6K). By contrast, when cells that 
were immunostained with GFP and Sox5 antibodies were 
counted in sections from P7 mice, there were significantly 
higher proportions of  GFP+Sox5+ cells in layers II–III 
(70%, P = 0.013, Fig. 7A–C) and in layers IV–V (76.6%, 
P = 0.0095) and a higher proportion of double-positive cells 
in layer VI (37%, P = 0.050, Fig. 7A, B, E) following Tbr1 
misexpression. All these findings suggest that the defects in 
migration provoked by Tbr1 misexpression were not evident 
in P7 animals, although the alterations to the specification 
of Sox5 expressing neurons persisted. In addition, orienta-
tion defects in the targeted neurons that overexpress Tbr1 in 
lower layers can be observed in Figs. 6J and 7B´, B.

Discussion

Loss-of-function studies have shown that Tbr1 is critical 
for the differentiation of Cajal-Retzius, subplate and layer 
VI neurons and for both neuron and laminar specification, 
as well as axon pathfinding [12, 25–31]. However, there is 
little evidence of the effects of ectopic Tbr1 overexpression, 
a fact that could be relevant to understand the aetiopathology 

of some ASD cases [52]. Here, we tested the impact of Tbr1 
misexpression on NPCs and found defects in the develop-
ment of glutamatergic projection neurons in the neocortex.

From previous studies [2, 6, 8] and following the elec-
troporation of our control pCAG-EGFP plasmid, at E14.5, 
the vast majority of layer V  (CTIP+) and layer VI  (Tbr1+ and 
 Sox5+) neurons have already been born, whereas layer II–IV 
neurons are still being generated. Thus, here, Tbr1 was mis-
expressed in NPCs that are mostly destined to produce layer 
II–IV projection neurons, which disturbed the correct pat-
tern of neuronal migration, neuron subtype specification and 
dendrite development and that of the callosal axon tract. By 
contrast, cycling cells, the number of  Tbr2+ progenitors and 
cell death were not significantly affected by Tbr1 misexpres-
sion in this manner. Tbr1 overexpressing cells accumulate 
in the IZ, and in layers VI and V, such that fewer neurons 
reach layers II–IV at E18.5. This defect in neuron migra-
tion to superficial layers under our conditions is somewhat 
similar to that reported for parvalbumin interneurons in a 
mutant mouse expressing higher levels of Tbr1 in the brain, 
although this effect could be secondary to changes that also 
affect projection neurons [52, 53, 55].

Our findings indicate significant increases in the pro-
portion of immature multipolar neurons in both the IZ and 
layers V–VI, and that of non-radial bipolar neurons in lay-
ers V–VI, while the proportion of radial bipolar neurons 
decreases. These changes potentially explain the delay in 
neuronal migration caused by Tbr1 misexpression, best illus-
trated by the reduction of  Cux1+ neurons in layers II–IV at 
E18.5 that it is not observed at P7. In fact, the transition from 
a multipolar to radial morphology of migrating neocortical 
neurons is critical for their migration along radial glial fibres 
in order to reach the cortical plate [5, 6, 61]. Although not 
studied here, it is tempting to speculate that Tbr1 misexpres-
sion could alter its association with CASK, which fulfils an 
important role during neuronal migration and morphologi-
cal differentiation, partially due to the activation of reelin 
transcription by Tbr1 [12, 33, 34, 42, 66, 67]. Furthermore, 
our results show that the morphological alterations caused 
by Tbr1 misexpression not only affect migrating neurons 
but also they are observed in dendrites of neurons reach-
ing layers II–III, as well as in callosal axons. These latter 
results suggest that Tbr1 upregulation could affect neu-
ronal morphology, possibly by acting on genes that regulate 
cytoskeletal dynamics, neurite outgrowth and fasciculation 
[32, 35, 68]. The smaller number of neurons reaching layers 
II–IV might also explain the reduced thickness and length 
of the callosal axon tract in E18.5 brains following Tbr1 
misexpression. The disturbance of migration at E18.5 is 
not significant at P7, suggesting a dampening of the effect 
of Tbr1, although dendrite morphology is still affected at 
this stage P7 such that some effects of Tbr1 misexpression 
appear to persist. Thus, the alterations to dendrites could 
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have a negative effect on the connectivity of mature neurons, 
consequently affecting cortical networks.

The changes in neuronal lamination triggered by Tbr1 
misexpression coincide with a decrease in the proportion 
of cells expressing molecular markers typical of layers 
II–IV (Cux1) and layer V (CTIP) and with an increase 
in the percentage of  Sox5+ cells in layers VI–V at E18.5. 
Our results fit well with the phenotype found in the devel-
oping neocortex of Tbr1 null mutant mice in which the 

expression of layer II–IV markers increases, while that 
of layer VI markers diminishes [26–28]. Interestingly, 
our results are also consistent with the callosal defects 
reported in the Tbr1 null E18.5 mouse [12], and they sup-
port the concept that Tbr1 levels must be tightly regulated, 
both temporally and spatially, for the correct development 
of the cerebral cortex layers and the corpus callosum. The 
increase in the percentage of cells that accumulate in layer 
V when Tbr1 levels are sustained, concomitant with a 

Fig. 7  Tbr1 misexpression increases the proportion of Sox5 cells 
in the upper and deep layers of the neocortex. The coronal sec-
tions from P7 animals electroporated with the pCAG-EGFP or 
pCAG-Tbr1-EGFP plasmid were dual immunostained with specific 
antibodies against GFP and Sox5 (A´, A´´, A, B´, B´´, B). Exam-
ples of  GFP+Sox5+ double-labelled cells are indicated with white 
arrows (A´, A´´, A, B´, B´´, B and top insets) whereas an example 
of  GFP+Sox5− cell is indicated with yellow arrows (A´, A´´, A and 
lower insets). As there were very few  GFP+ cells from pCAG-EGFP 

electroporated mice in layer VI, these are not shown (see Fig.  6K). 
The cells marked by arrows in layers II–III are shown at a higher 
magnification in the insets. The pictures were composed of several 
images stitched together using the ImageJ software. Tbr1 overex-
pression increased the percentage of Sox5.+ cells in layers II–III (C, 
70%, *P < 0.05 Student’s t test), layers IV–V (D, 77%, **P < 0.05 
Student’s t test), and layer VI (E, 37%, P = 0.05). The data are the 
mean ± S.E.M (n = 3 animals per condition). Scale bar (shown in A´), 
50 μm, 34.8 μm (insets)
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decrease in the proportion of  CTIP+ neurons, suggests that 
Tbr1 might partially repress CTIP, as reported previously 
[27, 30]. However, the increase in the number of  Sox5+ 
neurons at P7 in the upper layers, when the defects in 
migration are less prominent, indicates that disruptions to 
the specification of these neurons are probably permanent. 
If so, the cortical upper layer will contain an imbalance 
in neuronal subtypes, as indicated by the similar numbers 
of  Cux1+ cells and the larger number of  Sox5+ cells at 
P7. Notably, it has been proposed that the dysregulation 
of specific genes in the upper-layer projection neurons, 
including SOX5, correlates with the clinical severity of 
ASD [77].

As mentioned above, mutations and microdeletions 
that cause TBR1 loss-of-function in humans are associ-
ated with cerebral cortex malformations that are accom-
panied by ASD and intellectual disability [33, 36, 44, 
47, 48, 50, 51, 69]. This emphasizes the importance of 
TBR1 in human brain development and function. Indeed, 
Tbr1+/− heterozygous mice display autism-like pheno-
types, such as impaired social interactions, abnormal 
ultrasonic vocalization and defects in associative memory 
and cognitive flexibility [68, 70]. However, increased 
brain TBR1 levels have also recently been associated 
with altered synaptic transmission, ASD-like deficits and 
savant syndrome [52, 53, 55]. Importantly, neurons carry-
ing the CHD7 intronic variant identified in ASD individu-
als displayed morphological defects that were rescued by 
downregulating TBR1, suggesting a causal effect of TBR1 
upregulation in the defects reported [53]. Nonetheless, it 
will be necessary to perform additional studies to elucidate 
whether the deficits reported in these recent studies are a 
direct consequence of TBR1 upregulation.

Although our experimental strategy does not reproduce 
a genetic mutation that mimics the patient’s genome, our 
findings suggest that Tbr1 misexpression either delays or 
permanently disrupts neocortical neuronal migration, sub-
type specification, dendrite morphology and callosal axon 
formation. In fact, the abnormalities in neuron migration 
and in the development of callosal neuron processes in 
the upper-layer neurons detected here are compatible with 
the cortical-cortical connectivity failures observed in ASD 
individuals [33, 47, 71–75]. Moreover, our finding that 
neurons accumulate in the IZ is also compatible with the 
subcortical heterotopia characteristic of ASD brains [76].

In conclusion, together with previous results, our find-
ings support the concept that Tbr1 levels must be finely 
regulated, both temporally and spatially, to prevent the 
occurrence of brain malformations that underlie ASD and 
intellectual disability.
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