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Periodic arrangements 
of tetrahedra having 
appearances similar to that of the 
Boerdijk–Coxeter helix
Susumu Onaka 

The Boerdijk–Coxeter helix (BC helix or tetrahelix) is a linear stacking of regular tetrahedra. Although 
the BC helix exhibits an aperiodic nature, structures resembling the BC helix with periodicity are found 
in materials. To understand such structures, we considered a modification of the BC helix to introduce 
periodicity. By adjusting the relative rotation of adjacent tetrahedra, we demonstrated that periodic 
arrangements consisting of 8, 11, and 14 tetrahedra have appearances similar to that of the BC helix.
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A well-known linear stacking of regular tetrahedra is the Boerdijk–Coxeter helix (BC helix or tetrahelix), where 
equilateral triangle faces coincide between adjacent tetrahedra1–7. The BC helix has two chiral forms depending 
on the direction of winding4–6, and the one illustrated in Fig. 1 is left-handed.

Interestingly, structures resembling the BC helix are found in materials4,5,7–13. For example, the structures of 
some helical biomolecules are described as derivatives of the BC helix4. The structure resembling the BC helix 
has also been identified in the structure of crystals of simple inorganic materials. Previous studies determined 
that the structure of the close-packed metallic β-Mn crystal is a primitive cubic lattice of such helix7–9. Addi-
tionally, high-resolution electron microscopy revealed that the BC helix is a suitable structural model for thin 
metal nanowires5,10,11.

The BC helix is known to exhibit an aperiodic nature, lacking rotational symmetry1–6. However, in crystalline 
solids, constituents are arranged periodically, and structures resembling the BC helix with periodicity have been 
reported5,7–9,12. To understand such structures, modifications of the BC helix to introduce periodicity have been 
considered. Sadler et al.6 explored these modified BC helices, where tetrahedra rejoin in the same orientation. 
They designated the modified BC helix with periodicity as the N-BC helix (N being the number of tetrahedra in 
the unit of periodicity)6. However, Sadler et al. only illustrated two modified BC helices: the 3- and 5-BC helices6. 
As noted by Read14, the appearances of the 3- and 5-BC helices are jagged and quite different from that of the 
original BC helix. In this study, we consider the appearances of the modified helix and show that 8-, 11- and 
14-BC helices have appearances similar to that of the BC helix. The present results provide basic knowledge to 
discuss structures resembling the BC helix in materials.

Crystallographic method of analysis to construct the BC helix
We construct the BC helix from a crystallographic perspective for materials with an FCC structure. Figure 2 
illustrates two grains with identical orientations depicted by two tetrahedra. To depict the tetrahedra, equations 
giving shapes of convex polyhedra derived by Onaka15 are used. The two tetrahedra in Fig. 2 possess {111} parallel 
planes with normal vectors pointing in opposite directions, such as [111] and 
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 . By rotating 
the right tetrahedron by π/3 about the [111] axis, it represents a twinned Σ3 orientation relative to the left parent 
orientation. This becomes a fundamental unit in the BC helix.

Repeated twinning under certain conditions forms the BC helix, and Fig. 3 shows the procedure for that with 
a left-handed arrangement. The green tetrahedra represent the parent grains (PGs). As the first step of repeated 
twinning, the red tetrahedra in Fig. 3 represent the first-order twin (T1), caused by a π/3 rotation about the 
[111] axis of the parent grains. For this case, (111) of PG is a coherent twin boundary (CTB) between PG and 
T1. As well as the first-order twinning where we chose (111) as CTB, there are three possible CTB between T1 
and the blue tetrahedra (T2). In Fig. 3, 

(

111
)

T1
 is selected as CTB and T2 is caused by a π/3 rotation about the 
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T1
 axis of the red tetrahedron (T1). This is the second step of repeated twinning. Following the first and 

second steps, (111)T2 of the blue tetrahedra (T2) is selected as CTB and T3 is caused by a π/3 rotation about the 
[111]T2 axis of the blue tetrahedron (T2). In Fig. 3, repeated twinning with CTBs of alternating (111) and 

(

111
)

 are 
represented by tetrahedra with different colors up to the sixth-order twinning. This is the procedure to construct 
the BC helix with a left-handed arrangement from a crystallographic perspective.

Here we describe the sequence of twinning shown in Fig. 3 by using rotation matrices. The rotation matrix 
N for the rotation around the unit vector v = (v1, v2, v3) by the angle θ is written as

Figure 1.   The Boerdijk-Coexester helix (BC helix) with a left-handed arrangement. Equilateral triangle faces 
coincide between adjacent tetrahedra. We made 3D images in this figure by using “Wolfram Mathematica, ver. 
13.1.0.0 (https://​www.​wolfr​am.​com/​mathe​matica/).
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Figure 2.   Two tetrahedra surrounded by {111} planes showing two grains with identical orientations. We 
made 3D images in this figure by using “Wolfram Mathematica, ver. 13.1.0.0 (https://​www.​wolfr​am.​com/​mathe​
matica/).
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Figure 3.   Repeated twinning to form the BC helix with a left-handed arrangement. The green tetrahedra 
represent the parent grains, and the red and blue tetrahedra represent the first-order (T1) and the second-order 
(T2) twins, respectively. Following higher-order twining is also shown. For the operations shown by Rm(m: 
integer), see text. We made 3D images in this figure by using “Wolfram Mathematica, ver. 13.1.0.0 (https://​www.​
wolfr​am.​com/​mathe​matica/).
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We define the rotation matrix Ra so that it gives the orientation of T1 with respect to PG. Then, Ra is written 
as N(v, θ) with va = (1, 1, 1)/

√
3 and θ = π/3 . We also define the rotation matrix Rb so that it gives the orienta-

tion of T2 with respect to T1. Then, Rb is written as N(v, θ) with vb = (1,−1, 1)/
√
3 and θ = π/3 . Using Eq. (1), 

these are respectively written as

and

The rotation matrix R1 to give the orientation of T1 with respect to PG is Ra itself and R1 = Ra , The rotation 
matrix R2 to give the orientation of T2 with respect to PG is R2 = R1Rb = RaRb . Then, the rotation matrix Rm

(m: natural number) to give the orientation of Tm with respect to PG is written as

The rotation matrix Rm corresponds to the �3m relations, which describes the orientation relationship in 
twin-related domain16. The concept of the �3m relations has been used in the field of metallurgy16. For Rm to 
form the BC helix, the correspondence between Rm and �3m for m ≤ 6 is written as shown below.

Alphabet after the � value such as b of �27b shows subtypes of the � relations and the above notation of 
subtypes follows that shown in the paper by Cayron16.

Using Rm , normal directions of CTBs within the BC helix are calculated. Figure 4 is a 100 standard stereo-
graphic projection (SP) with respect to PG. The small circular symbols represent normal directions of CTBs 
within the BC helix, originating from [111] direction of PG. First ten directions are denoted by close symbols 
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(4)
Rm = Ra when m = 1,

Rm = Rm−1Rb when m is even,

Rm = Rm−1Ra when m(> 1) is odd.

(5)R1 : �3, R2 : �9, R3 : �27b, R4 : �81b, R5 : �243g, R6 : �729m.
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Figure 4.   Stereographic projection showing the variation of normal directions of coherent twin boundaries 
(CTBs) within the BC helix with a left-handed arrangement. The small circular symbols represent the changes 
in the normal directions of CTBs, originating from [111] direction of the parent grain. First ten directions 
are denoted by close symbols connected by broken red lines, while the subsequent fifty-eight directions are 
represented by open symbols.
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connected by broken red lines, while the subsequent fifty-eight directions are represented by open symbols. No 
parallel CTBs exist because of the aperiodicity of the BC helix.

Figure 4 also illustrates that the normal directions of CTBs rotate around [201] direction of the parent grain3, 
with a rotation angle of −cos−1[−2/3] ≈ −131.81◦4–6. This angle is also a rotation angle of tetrahedra around 
[201] direction of the parent grain, and the [201] direction is an elongation direction of the BC helix3. The product 
Rp of the rotation matrices Ra and Rb given by Eqs. (2) and (3) is written as

The product Rp is considered to be a combination of the unit operations to construct the BC helix. The [201] 
direction of the BC helix is understood to be the eigenvector Ep = (2, 0, 1) of Rp . Actually, using the rotation 
angle φp = − cos−1 (−2/3) around the eigenvector Ep of Rp , Rp is rewritten from Eq. (1) as

where

is the unit vector parallel to Ep = (2, 0, 1) . The factor 2 in Eq. (7) in front of φp is needed since the rotation matrix 
Rp is that for two tetrahedra.

Modification of the BC helix
The rotation angle θ of tetrahedra around <111> to construct the BC helix is π/3 . We can modify the BC helix 
by changing θ from π/3 . Instead of Ra = N(va,π/3) , Rb = N(vb,π/3) and the product Rp = RaRb , we consider

and their product

The product RP(θ) is a function of θ and the eigenvector EP of RP(θ) is written as

The unit vector eU(θ) parallel to EU(θ) is written as

where

Figure 5 shows the changes of α and β as a function of θ . As shown by Fig. 5, we have

and

The rotation angle φP of tetrahedra around the direction EP(θ)//eP(θ) is also a function of θ . Using eP(θ) 
and φP , we have

Using this relationship and Eq. (1), we can calculate φP as a function of θ as shown by Fig. 6.

Appearances of the modified BC helices
For certain values of θ and φP , the modified BC helix has the periodicity. Figure 7 is a 100 stereographic projection 
with respect to PG, showing normal directions of boundaries between tetrahedra in the modified BC helix, when
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The value of d of (d, 0, 1) for this case is

The periodicity of this modified BC helix is N = 8 and this is shown by the figure made by connecting the 
normal directions in Fig. 7. The angle φP = −3π/4 causes the figure of a regular star polygon represented by 
{8/3} using the Schläfli symbol when (d, 0, 1) is located at the center of SP. Figure 8a shows the appearance of this 
8-BC helix. In Fig. 8a, eight colors are used to emphasize the periodicity N = 8 . The 8-BC helix has an appear-
ance very similar to that of the BC helix shown in Fig. 1.

When there is no restriction about N , there are many modified BC helices with periodicity. We hence focus 
on two other modified BC helices having both short periodicity and appearances similar to that of the original 
BC helix. One is the 11-BC helix and the other is the 14-BC helix. Their appearances are illustrated using 11 or 
14 colors in Fig. 8b and c, respectively. Details of the 8-, 11- and 14-BC helices such as values of θ and φP are 
tabulated in Table 1.

As described in Introduction, 3-BC and 5-BC helices are the modified helices shown by Salder et al.6. The 
3-BC and 5-BC helices have been reproduced by the present method of analysis, with their details and appear-
ances respectively shown in Table 1 and Fig. 8. Unlike the 8-, 11- and 14-BC helices reported in the present 
study, the 3-BC and 5-BC helices have jagged appearances compared to the BC helix, as shown in Fig. 8d and e.

(16)θ = tan−1
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39+ 48
√
2
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]

(

≈ 55.90◦
)

and φP = −3π/4(= −135◦).

(17)d =
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√
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2
√
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)

/2 ≈ 1.88.

Figure 5.   The variations of the components α and β of the eigenvector eP(θ) = (α, 0,β) as a function of the 
rotation angle θ of tetrahedron around < 111 >.
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Figure 6.   The relationship between the rotation angle θ of tetrahedron around 111 and the rotation angle φP of 
the tetrahedron around EP(θ) = (d, 0, 1)//eP(θ) = (α, 0,β).
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Structures resembling the BC helix are found in materials5,7–13 as mentioned in Introduction. In such struc-
tures, 8- and 11-unit of tetrahedra are frequently observed5,7–9,12. In the present paper, we modified the BC helix 
by considering the relative rotation of adjacent tetrahedra at boundaries and showed that periodic arrangements 
consisting of 8, 11, and 14 tetrahedra have appearances similar to that of the BC helix.

The present method of modification disrupts the edge-to-edge and vortex-to-vortex correspondence at 
boundaries of adjacent tetrahedral units within the helix. When a tetrahedral unit within the helix consists of 

111

d 01

P

Figure 7.   Stereographic projection showing the variation of normal directions of boundaries within the 
modified BC helix with the periodicity of N = 8 . The figure connecting the normal directions of boundaries of 
tetrahedra becomes a regular star polygon represented by {8/3} using the Schläfli symbol when (d, 0, 1) is located 
at the center of the stereographic projection.

Figure 8.   Appearances of (a) 8-BC, (b) 11-BC, (c) 14-BC, (d) 3-BC and (e) 5-BC helices. We made 3D images 
in this figure by using “Wolfram Mathematica, ver. 13.1.0.0 (https://​www.​wolfr​am.​com/​mathe​matica/).

https://www.wolfram.com/mathematica/
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several hundred atoms, as observed in nanowires, relaxation mechanisms such as the generation of crystal defects 
or diffusion may occur near the boundaries. However, the crystal structure inside the tetrahedral units remains 
intact. On the other hand, in materials such as β-Mn and certain organic compounds, which exhibit structures 
similar to the BC helix with periodicity, tetrahedral units consist of vertex-bound atoms7–9,12. While experimental 
data on atomic arrangements in such helices are available7–9,12, our study is theoretical in nature, employing a 
continuum approximation and geometrical analysis. Although specific crystallographic details such as atomic 
coordinates are not given by the present study, we believe our approach of modifying the BC helix by consider-
ing relative tetrahedral rotations is valuable for exploring structures resembling the BC helix with periodicity.

Conclusions
The Boerdijk–Coxeter helix (BC helix or tetrahelix) is a linear stacking of regular tetrahedra. Although the BC 
helix exhibits an aperiodic nature, structures resembling the BC helix with periodicity are found in real materi-
als. We have modified the BC helix by considering the relative rotation of adjacent tetrahedra, and shown that 
periodic arrangements consisting of 8, 11, and 14 tetrahedra have appearances similar to that of the BC helix.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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