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Abstract

Modern rice cultivars are adapted to a range of environmental conditions and human preferences. At the root of this diversity is a

marked genetic structure, owing to multiple foundation events. Admixture and recurrent introgression from wild sources have

played upon this base to produce the myriad adaptations existing today. Genome-wide studies bring support to this idea, but

understanding the history and nature of particular genetic adaptations requires the identification of specific patterns of genetic

exchange. In this study, we explore the patterns of haplotype similarity along the genomes of a subset of rice cultivars available in the

3,000 Rice Genomes data set. We begin by establishing a custom method of classification based on a combination of dimensionality

reduction and kernel density estimation. Through simulations, the behavior of this classifier is studied under scenarios of varying

genetic divergence, admixture, andalien introgression. Finally, themethod is applied to local haplotypesalong the genomeofaCore

set of Asian Landraces. Taking the Japonica, Indica, and cAus groups as references, we find evidence of reciprocal introgressions

covering 2.6% of reference genomes on average. Structured signals of introgression among reference accessions are discussed. We

extend the analysis to elucidate the genetic structure of the group circum-Basmati: we delimit regions of Japonica, cAus, and Indica

origin,aswell as regionsoutlier to thesegroups (13% onaverage). Finally, theapproachusedhighlights regionsofpartial tocomplete

loss of structure that can be attributed to selective pressures during domestication.
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Introduction

High throughput genotyping technologies provide at low cost

an increase of marker density and sampling sizes. They have

changed considerably the way we study the genetic structure

of populations. The benefits of discriminating between con-

trasting local signals across genomic locations were quickly

appreciated in association studies, where the correction for

population structure evolved to become locus specific (Diao

and Chen 2012; Park et al. 2015). In population genetics, this

increase in precision brought with it a realization of the per-

vasiveness of admixture in natural populations. Instead of pro-

viding coherent indicators of population membership, the

genomes of admixed individuals consist of fragmented con-

tributions from differentiated populations. The relation of tra-

ditional descriptors of genetic variation, such as Fst and

principal component analysis (PCA) (Slatkin 1991;

Novembre and Stephens 2008), to mean coalescent times

across markers, limits their utility in these cases. By focusing

on small enough regions of the genome, researchers now

have the possibility of analyzing these contrasting signals sep-

arately. As a result, the effects of migration are increasingly

captured as a by-product of the description of genetic struc-

ture in the form of local ancestry assignments of hybrid indi-

viduals (Gravel 2012; Henn et al. 2012). The literature on this

subject has grown rapidly in recent years, with multiple

approaches proposed (Gravel 2012; Geza et al. 2018). This

development is appreciated particularly in the study of species

of agronomic interest, where a fine genetic resolution is

needed for searching and combining favorable genes.

Since its domestication in Asia, rice has evolved a broad

range of diverse cultivars adapted to multiple environments

and regional food preferences (Khush 1997). The oldest
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systematic descriptions of rice diversity come from China,

where two major types were already recognized two millen-

nia ago, namely Hsien—or Xian, early-ripening rice—and

Keng—or Geng, late-ripening soft-cooking grained rice (Ho

1956; Oka 1988). Early classifications confirmed the promi-

nence of this scheme beyond China, and the two types were

renamed Indica and Japonica, respectively (Kato 1928;

Matsuo 1952). A third group, named Javanica, was tempo-

rarily used (Morinaga 1954) but was eventually recognized as

a tropical form of the Japonica (Glaszmann and Arraudeau

1986). A study with broader and more systematic ecologic

and geographic coverage using biochemical markers led to

the recognition of additional clusters, such as that containing

the Aus varieties from the Indian subcontinent and another

including the famous Basmati varieties (Glaszmann 1987).

Subsequent work with more markers confirmed these groups

and added subgroups within the Japonica (Garris et al. 2005).

The binary Indica–Japonica scheme remained a central feature

in the architecture of rice classification until recently, when a

study by Huang et al. (2012) placed Japonica as the original

domesticate and attributed the Indica group to the introgres-

sion of Japonica domestication alleles into other genetic back-

grounds. This scheme identified the Aus group as derived

from Indica and posited Basmati-similar varieties to be a direct

derivation of the Japonica. However, a recent reinterpretation

of the same data concluded on three sources of domestica-

tion, distributed across the Indica, Japonica, and Aus, and the

Basmati-like cluster to be a hybrid group between Aus and

Japonica (Civ�a�n et al. 2015). The same data were also used to

reveal massive gene flow between cultivated and wild rice,

posited to have led to the “feralization” of most wild rice

(Wang et al. 2005, 2017). The most recent large-scale analysis

(Wang et al. 2018), based on the sequences of over 3,000 rice

cultivars, revealed a structure featuring Indica and Japonica,

both with multiple subgroups with high geographical coher-

ence, and concluded that rice resulted from multiple domes-

tications, confirming the reality of circum-Aus (or cAus, the

group that includes the Aus ecotype) and circum-Basmati (or

cBasmati, the group that includes the Basmati types) as vari-

etal groups. Today it is clear that the diversity of rice rests on

more than one foundation event with profuse genetic

exchanges among cultivated forms and between them and

their wild relatives. It is likely that as data sets grow in size

additional sources of genetic diversity will be uncovered.

In this context, the genome of rice cultivars can be thought

of as a mosaic of segments with different origins and histories

related to both primitive domesticates and occasional wild

contributors. This interwoven state of different branches of

variation poses a serious challenge to the study of the history

of modern rice cultivars and is at the root of the controversy

among early studies based on global structure analyses. An

intuitive and informative description of this variation is thus

crucial for our understanding of rice history and the exploita-

tion of this data for agronomic purposes. We make use of the

3,000 Rice Genomes data set (3K RGP 2014; Wang et al.

2018) to study the patterns of exchange and overlap between

globally structuring elements of domesticated rice diversity

(Oryza sativa L.). This exploration was guided by four require-

ments: 1) the adoption of an initial reference scheme that best

reflects current views on the genetic foundation of modern

rice cultivars, 2) the identification of the most likely origin of

local haplotypes along the genome of a large sample of cul-

tivated rice, 3) the identification of exchanges of genetic ma-

terial among major varietal groups, and 4) the identification of

contributions to cultivated varieties from branches of variation

alien to those groups. Although the study of rice genetic

structure is facilitated by the near-complete homozygosity

of rice genomes, these requirements place the goal of our

analysis outside the scope of existing software of local ances-

try inference. We developed an approach tailored to this data

set and to our objectives.

Our presentation is structured as follows. We first describe

a method that allows us to place local haplotypes relative to

the distributions of reference populations reliably (throughout

the article, the terms global and local are used in a genomic

sense, not a geographic sense). Through simulations, the re-

sponse of this classifier to varying degrees of genetic structure

is explored. In order to highlight the need for a tailored ap-

proach, the performance under the same scenarios of the

most recent software developed for similar descriptions

(Dias-Alves et al. 2018) is also studied. Next is described the

application of the resulting custom classification method to

the 3,000 rice genome data set. Because the description of

genomic variation proposed is dependent on the choice of

reference populations, a mixture of genetic analysis and prior

knowledge was employed in order to select, from the over

3,000 rice cultivars in the 3K RG, a subset of landrace varieties.

This subset includes three Core Reference Groups (CRGs;

Indica, Japonica, and cAus) and samples to be more deeply

studied. Finally, the results of the application of the proposed

protocol to the curated rice data set are discussed in light of

their implications to rice history and breeding.

Materials and Methods

Materials

The 3K Rice Genomes is the largest plant genomics data set

available today. It includes over 3000 resequenced rice

genomes aligned to the reference genome of O. sativa ssp.

japonica cv. Nipponbare genome. This data set contains over

29 million biallelic markers. The unfiltered data set was down-

loaded from the SNP-Seek database during November 2016

(http://snp-seek.irri.org/; Mansueto et al. 2017).

We removed loci with over 0.1% missing data and over

5% heterozygous sites. The resulting data set includes

10,459,872 single nucleotide polymorphisms (SNPs). Mean

distance among SNPs is of 32 bp, with a standard deviation
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of 514 bp. We avoided minimum allele frequency and Linkage

Disequilibrium filtering. First, this would eliminate rare var-

iants, including possible exogenous contributions to infre-

quent but important varietal types such as the cBasmati, a

group that comprises <2% of the total data set. Second, it

would remove SNPs that contribute to the local regions that

our analyses are geared to discover.

We performed a global structure analysis using sNMF v. 1.2

(Frichot et al. 2014, supplementary fig. S1, Supplementary

Material online). At K¼ 4, we applied a threshold of 0.8 to

sNMF admixture proportions in order to draw the signaled

reference groups with rather stringent criteria. We identified

four major groups of rice diversity, corresponding to the

Japonica (GJ), Indica (Xien-Indica, XI), cAus, and cBasmati of

Wang et al. (2018).

We then selected accessions to form a sample of traditional

materials representative of initial crop diversity in Asia, that is,

after domestication but before global dispersion and modern

breeding. For each Asian country the selection included a

representation of the groups observed there (groups as in

Wang et al. [2018]) taking in priority landraces and excluding

improved materials, except a few well-known varieties such as

Nipponbare or IR64. When it was possible the quality of the

sequence, evaluated with the mapping rate, was used as an

additional criterion. The final material consisted of 948 acces-

sions, of which 654 were labeled “landraces” and eight were

labeled “improved,” the rest being unlabeled. It included 395

Indica, 320 Japonica, 65 cAus, and 168 admixed accessions,

among which 62 belonged to cBasmati (supplementary table

S1, Supplementary Material online). In line with the

three-pillar view of rice domestication (Civ�a�n et al. 2015),

we hereafter refer to these groups of Indica, Japonica, and

cAus materials as CRGs.

Development of a Method of Assignment

The characterization of local haplotype variation relative to

reference groups requires an accurate description of local ge-

netic distributions. In view of using PCA for analyzing local

genomic variation in a system as complex as rice, we began by

exploring the relationship between the genetic correlation of

population samples and the respective PCA feature space

distances. Population samples were generated using the

Beta distribution. Data sets were simulated using arbitrary

population numbers, random sampling and arbitrary genetic

distances between populations (supplementary Methods:

Simulations, Supplementary Material online). Haplotype diver-

sity was calculated for each population K at each locus as

HS ¼ 1� ðp2 þ q2Þ, with p and q the precomputed allele

frequencies at that locus. Between two populations, expected

heterozygosity HT was estimated at each locus as 2�p�q and Fst

values were calculated as HT� �HS

HT
. Average Fst was calculated

across loci between frequency vectors of simulated popula-

tions. Pairwise population Euclidian distances were calculated

between the centroids of the PCA projections of samples

generated for each population. Pairwise population Fst values

and centroid distances were pooled by sample length (sup-

plementary Methods: PCA and Genetic Distributions,

Supplementary Material online). We found that for a suffi-

cient number of principal components (PCs) and up to eight

populations the correlation between genetic and

feature space distances remains high across vector

lengths (Pearson’s r >¼ 0.98, supplementary fig. S2,

Supplementary Material online). Given this relationship, we

chose to estimate the probability density function of reference

haplotypes in feature space. We resorted to the kernel density

estimate (KDE) of reference samples in feature space.

Local Classification: Kernel Density Estimation in PCA
Feature Space

Kernel density estimation, a commonly used tool in classifica-

tion algorithms involving feature reduction (Silverman 1998;

Scott 2015), was used to classify local haplotypes into classes

corresponding to the CRGs. KDEs were extracted locally for

each reference group. KDE was run on the first five dimen-

sions of the projections of each CRG following PCA transfor-

mation of the Core data set. The function KernelDensity of

the python package sklearn.neighbors (Pedregosa et al. 2011)

was used with Gaussian kernels. For bandwidth estimation,

the function GridSearchCV of the python package sklearn

(Pedregosa et al. 2011) was used. The log-likelihood of each

observation was estimated. To ensure the comparability of

the scores derived from different KDEs—and the applicability

of a single outlier threshold, reference-specific Z scores were

calculated in log-space using the mean and standard devia-

tion of those accessions used for KDE only. Their lower-tail P

values were derived from this reference-specific distribution

under the assumption of normality.

This method presents several advantages: 1) density meas-

ures combine the proximity and number of labeled neighbors,

2) by choosing Gaussian kernels we impose only basic

assumptions on the nature of genetic differentiation, that of

a cluster specific binomial probability of mutation at each site,

and 3) by estimating kernel bandwidth from the distribution

of pairwise genetic differences, we are supplying the above

mentioned assumption with a data driven proxy of genetic

differentiation. Finally, the log-likelihoods of Gaussian KDEs

can be normalized, allowing for comparison and outlier iden-

tification (Aggarwal 2016).

In order to validate the application of a KDE-based classifier

to genetic data in the framework of the 3K Rice Genomes

data set, we first tested the capacity of this tool to discriminate

reference groups in feature space. Under stationary condi-

tions, the KDE of population samples in feature space was

used to derive an estimate of the degree to which different

populations can be distinguished, distribution overlap (supple-

mentary Methods: PCA and Genetic Distributions,
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Supplementary Material online), and the relation of this mea-

sure to genetic correlation was analyzed. We then explored

the application of the same concept and tool to derive an

association-informative classification of individual samples.

Lower-tail P values were derived from reference population

KDEs and samples assigned according to the maximum score.

The relation of classification accuracy and the overlap mea-

sure was studied in scenarios of symmetric and asymmetric

overlap of unimodal and multimodal distributions indepen-

dently of phylogeny (supplementary Methods: Genetic

Structure and Classification, Supplementary Material online).

Results were compared with those published for the WINPOP

method visually, and to the output of the software Loter (Dias-

Alves et al. 2018) on simulated data. Then, by establishing a

threshold on the comparison of local KDE-derived P values,

we studied the use of intermediate classes to act as buffers for

the drop in classification accuracy at lower genetic distances.

For the identification of alien material, we tested the relation-

ship between genetic distance and outlier classification using

a lower-tail P value threshold (supplementary Methods:

Outlier Identification, Supplementary Material online).

Having characterized the behavior of KDEs in a neutral

scenario, we set out to test its efficiency under the particular

conditions of rice data. To this end, we required a character-

ization of population samples in data sets of local genomic

data. We calculated allele frequencies on local clusters, esti-

mated using the unsupervised clustering algorithm mean shift

(Comaniciu and Meer 2002) at 1,000 random windows of

length 150. Allele frequencies were calculated at clusters of

over 35 individuals. We then calculated pairwise Fst values

between allele frequency vectors. Finally, we tested the accu-

racy of KDE under maximum likelihood, and the proportion of

haplotypes classified as intermediate and outlier when apply-

ing thresholds using pairs of vectors along a range of genetic

distances (see supplementary Methods, Supplementary

Material online).

Application to Rice Core Data Set

PCA was applied to the haplotypes of the 948 Asian tradi-

tional landraces at 137,691 windows of 150 SNPs along the

genome (mean physical size: 5,295.3 bp, sd ¼ 9,995.6), the

same length as used during simulations. Windows overlapped

over half their own size in terms of SNP number. For each data

set, the kernel density of each CRG (Japonica, Indica, and

cAus) was estimated in feature space and the respective

log-likelihoods extracted for each of the 948 accessions. In

each case, log-likelihoods were normalized by those of CRG

accessions and their respective lower-tail P values extracted

assuming normality.

For classification, we resorted to a lower P value threshold

for outlier assignment, and to a P value ratio to distinguish

between pure and intermediate assignments. The lower

threshold was set to 0.0001, locally assigning to the outlier

class any observation whose P value under the three KDEs fell

below this value. For the classification into pure and interme-

diate classes of nonoutlier observations, we studied the im-

pact of a range of thresholds on P value ratios on the final

output (supplementary fig. S3, Supplementary Material on-

line). For the statistics and ideograms reported here, this

threshold was set to 4, at which classification proportions

are observed to reach a plateau (see Results). Under a scenario

of three reference groups, this practice results in four inter-

mediate classes, one for each pairwise comparison and one

for three-way uncertainty. No smoothing across P values at

the individual level was attempted.

Following local classification of all windows, for ideogram

construction and physical summary statistics, windows were

compressed by individual: in order of increasing first SNP,

windows of the same classification were merged into single

blocks. A new block was created with every change in class.

Merged blocks range from the first SNP of the first window

merged to the first SNP of the next block minus one.

We analyzed distribution of P value overlap between the

three references across all windows covering genic regions.

Genic regions were first extracted from the MSU rice genome

annotation database v. 7 (Kawahara et al. 2013). Overlap was

measured at each window by summing the proportions of

minimum to maximum CRG-specific P values across pairwise

combinations for each individual. The median of this overlap

was taken across CRG accessions. Each gene was indexed to

every window overlapping with its IRGSP 1.0 coordinates.

Overlap values for gene specific windows were averaged.

MeanShift clustering was applied to the resulting vector of

gene overlap scores. Bandwidth was estimated from that vec-

tor and outliers were discarded.

We focused on regions surrounding some genes of interest

in the study of the domestication of rice —Bh4, qSH1, OsC1,

Rc, and Sh4—whose diversity has already been described ear-

lier, and which cover a range of distribution overlap scenarios,

to serve as an illustration of the mode of classification used.

For those foci, local diversity was summarized using Neighbor-

Joining as implemented in DARwin software v.6 (Perrier and

Jacquemout-Collet 2006), onto which the output of local

KDE-based classification was projected.

Results

Local Analysis and Classification

In preparation for the automated analysis of local genomic

windows, we began by exploring the relationship between

Euclidian distances in the feature space of PCA and the ge-

netic fixation index, Fst, under the varying constraints of pop-

ulation number, marker number and sampling bias (McVean

2009). Preliminary analyses show that using five PCs the trans-

formation of genetic distances between up to nine indepen-

dent populations into PCA feature space Euclidian distances is
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robust and independent of sampling bias (supplementary fig.

S2, Supplementary Material online). This result motivated the

use of the probability density function of reference samples in

feature space for assignment. The kernel density estimation of

population samples in feature space was used to derive

reference-specific lower-tail P values. Because KDE will adjust

to structured (multimodal) distributions, a measure of the de-

gree to which two populations can be distinguished (distribu-

tion overlap) in feature space was derived and related to Fst

and to the accuracy of the maximum-likelihood classification

of genetic samples into reference groups (supplementary fig.

S4, Supplementary Material online). Between two popula-

tions, the assignment of haplotypes using their maximum P

values was found to produce a decreasing error rate relative

to Fst and to be positively related to distribution overlap (sup-

plementary fig. S4, Supplementary Material online). This ef-

fect was reproduced when applying the software Loter to the

same data (supplementary fig. S5, Supplementary Material

online). Finally, the distribution overlap measure was used to

extend this observation to scenarios of structured, asymmetric

overlap (supplementary fig. S6, Supplementary Material on-

line). In this context, we explored the behavior, relative to Fst,

of the classification of samples based on a threshold on the

comparison of pairwise P values. Under thresholds of 2.0

through 6.0 and based on the comparison of normalized like-

lihood estimates, both the rate of miss-assignment and that of

classification into an intermediate class are proportional to the

degree of overlap between reference distributions (supple-

mentary fig. S7, Supplementary Material online). At a thresh-

old of 4.0, intermediate classification reaches a proportion of

0.95 when relative distribution overlap rises to 0.8 (supple-

mentary fig. S7A–C, Supplementary Material online). As a

consequence, the proportion of otherwise miss-classified

samples falling into this class reaches 1 at an overlap of 0.8

(supplementary fig. S7D–F, Supplementary Material online).

This entails a loss of information when genetic distance is low

(supplementary fig. S7G–I, Supplementary Material online)

but ensures a drop in miss-classification between reference

classes (supplementary fig. S7J–L, Supplementary Material

online).

The application of this custom method of classification into

pure and intermediate classes significantly reduces the rate of

miss-assignment and can provide information on the distribu-

tion of local patterns of genetic structure (supplementary figs.

S8 and S9, Supplementary Material online).

For the identification of outlier material, a lower threshold

of 0.0001 on maximum local P values derived from reference

KDEs was used to explore the relation between outlier classi-

fication and genetic distance. In the case of pure reference

populations this approach was found to consistently assign

haplotypes from sources distant by over 0.03 Fst to this class

(supplementary fig. S10, Supplementary Material online).

However, if material from a foreign source is represented in

reference samples by over a 3% margin, our results show that

it will be classified into that group and not as outlier (supple-

mentary fig. S11, Supplementary Material online). Despite

these limitations, the allowance for the local identification

of outliers provides an improvement over other reference

based methods that lack this option. The application of

Loter to the simulated data set of outlier introgressions among

admixed samples reveals how without the allowance for a

lower threshold, outlier material is constitutively assigned to

one of the reference groups (supplementary fig. S12,

Supplementary Material online).

Using locally estimated allele frequencies, we find the im-

pact of correlation on accuracy and on intermediate classifi-

cation proportions to be more stringent. Accuracy under

maximum likelihood and intermediate and outlier classifica-

tion proportions under the use of thresholds rise over 80%

below the threshold of 0.02 Fst (supplementary fig. S13,

Supplementary Material online). This increase in accuracy is

accompanied by a greater proportion of variance captured

within the first five PCs, which more closely resembles that

obtained on real data (supplementary fig. S14,

Supplementary Material online). Across real data sets and

data sets generated from observed frequency vectors, 89.4

and 84.3% of total variance is retained within the first five

PCs on average (7.6 and 15.9% sd, respectively). For compar-

ison, the proportion of total variance explained by the first five

PCs averages 24% (sd ¼ 7.6%, supplementary fig. S15,

Supplementary Material online) when using data sets of sam-

ples generated using the Beta distribution.

On this basis, the custom classifier provides a description of

the strength of local associations. Concerning its application

to local haplotype variation, to the point that recombination is

rendered negligible at this level, such that genetic correlation

is indicative of identity by descent, these associations should

represent the shared presence along true evolutionary

branches. However, because this approach does not rely on

the calculation of the ancestral nature of reference groups but

solely on an analysis of their local distributions, the origins of

ancient exchanges of genetic material will only be recognized

if they result in significant distribution overlap once having

reached fixation across subsets of separate reference popula-

tions. Concomitantly, introgressions of wild material today

prevalent among references will be classified accordingly. In

the context of rice, this limitation is accepted given the diffi-

culties in resolving the polyphyletic origins of modern cultivars

and the patchwork nature of their genomes.

Distribution of Differentiation along the O. sativa Genome

Overall, sufficient structure exists along the O. sativa genome

to discriminate between reference groups. On average,

46.2% of the genomes of Indica accessions are classed into

a single pure group or another, as are 57.2% of the cAus

genomes and 56.2% of the Japonica genomes (table 1). The

proportion of each genome assigned to intermediate classes
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varies across reference groups. Globally, genomic coverage of

intermediate cAus–Indica classifications (average 23% and

19.7% among Indica and cAus, respectively, 0.8% among

the Japonica) dominates over Japonica–cAus (average 9.4%

and 6.3% among the Japonica and cAus, respectively, 0.9%

among the Indica) and Japonica–Indica (average 11.6% and

13.9% among Indica and Japonica, respectively, 1.2%

among the cAus). Three-way intermediate classifications

cover on average 17.6%, 15.1%, and 18.6% of Indica,

cAus, and Japonica genomes, respectively.

Among pure classifications, a number of these contradict

the global classes of the accessions that carry them. An aver-

age of 1.2% and 2.1% of the genome of Indica accessions is

classified as Japonica and cAus, respectively, whereas 1.1% of

cAus genomes are classified as Japonica and 2.4% as Indica

and an average of 1.3% and 0.5% of Japonica genomes are

classified as Indica and cAus, respectively (table 1).

Assignment proportions across admixed accessions vary

widely, with pure Indica, cAus, and Japonica classification

covering as much as 36.6%, 45.3%, and 51.6% of some

of these genomes, and as little as 1.7%, 0.6%, and 0.3%

for others, respectively (table 1). The scenario is different

when considering cBasmati accessions alone, where assign-

ment patterns appear much more conserved. Among acces-

sions of this group, pure Japonica assignments cover an

average of 27.9% of the available genome, cAus assignments

11.7%, and Indica assignments 6.1%. Outlier assignments

are also particularly prominent and localized, comprising an

average of 12.7% of the genomes of these accessions.

Local classifications can be displayed, ordered by genomic

position and individual, in the form of chromosome specific

ideograms (fig. 1). Accessions are placed vertically in the fol-

lowing order: Indica, cAus, Japonica, and Admixed, with

cBasmati first, followed by other admixed. The ordering of

window-based classifications by genomic position reveals

the physical association between assignments to the same

class. Figure 1 displays several cases of contradictory combi-

nations of putative local genomic origin versus CRG

classification, which are often physically clustered and shared

among several accessions of the same group.

We analyzed the distribution of locally versus globally dis-

cordant assignments across genome-wide classifications

(fig. 2). The physical sizes of windows assigned to the same

class were summed by accession and the distribution of this

variable was grouped by class across the global groups and

subgroups described by Wang et al. (2018). Among Japonica

subgroups, we find the tropical Japonica to present the larg-

est mean total coverage of assignment to both Indica and

cAus classes, with the temperate Japonica at the bottom of

that distribution (fig. 2). Visual analysis of the ideograms high-

lights additional features such as specific introgressions of

cAus origin on chromosomes 1 and 10 among subtropical

GJ (Geng/Japonica) types in Bhutan (upper portion of the

GJ-sbtrp zone) (fig. 1) and specific introgressions of XI (Xian/

Indica) origin on chromosomes 1, 2, 4, and 10 among tropical

forms from China, Japan, and Korea only (lower portion of

the GJ-trp zone in fig. 1). Among Indica accessions, the XI-2

bear the largest proportion of pure discordant assignments

(median 25.4 million bp), followed by XI-1B and XI-admx (me-

dian 14.3 and 11.6 million bp, respectively) and far above the

other two major groups XI-1A and XI-3 (medians 6.9 and 6.2

million bp, respectively). This distribution is mostly dependent

on cAus assignments (fig. 2). The proportion of segmental

cAus genome in the XI-2 genome rises above 5%.

Concerning outlier classifications, the majority of those

found in CRGs are finely dispersed with no particular structure,

emulating the sporadic assignments observed during simula-

tions. However, beyond the CRGs, outlier assignments appear

concentrated in the cBasmati type, where they represent close

to 13% of the genome on average (min¼ 9%, max¼ 25%),

with large segments consistently assigned to the outlier class

(large segments of contiguous black windows, fig. 3).

We observe intermediate classifications to be nonrandomly

distributed along the genome (figs. 3 and 4). Some cases

clearly indicate full distribution overlap, presenting the same

topography as observed in the simulation of unimodal

Table 1

Mean Percentage of Genome Assigned by Class, Using Local, KDE-Based Classification and Core Reference Groups

Global Classification

Local, KDE-Based Classification Indica (%) cAus (%) Japonica (%) cBasmati (%) Other Admix (%)

Indica 42.9 (34.9–49.8) 2.4 (0.9–5.5) 1.3 (0.1–6.9) 6.1 (4.2–19.3) 17.1 (1.7–36.6)

cAus 2.1 (0.2–11.1) 53.7 (43.9–60.7) 0.5 (0.1–2.4) 11.7 (6.3–20.7) 13.4 (0.6–45.3)

Japonica 1.2 (0.2–7.1) 1.1 (0.2–6.7) 54.5 (40.5–59.2) 28.0 (15.5–34.2) 14.9 (0.3–51.6)

Jap-Ind 11.6 (8.6–13.9) 1.3 (0.3–3.0) 14 (12.0–16.0) 10.2 (8.2–11.2) 10.0 (2.6–16.1)

Ind-cAus 23.0 (19.6–25.9) 19.7 (11.0–23.9) 0.8 (0.1–3.4) 6.7 (4.9–13.1) 15.1 (1.6–24.6)

Jap-cAus 0.9 (0.6–2.4) 6.3 (3.8 - 9.0) 9.4 (5.5–11.1) 7.7 (5.1–9.1) 5.0 (1.0–22.9)

Jap-Ind-cAus 17.6 (15.6–21.7) 15.1 (12.8–18.0) 18.6 (17.5–21.1) 17.0 (13.7–18.9) 18.3 (14.2–22.9)

Outlier 0.7 (0.0–7.1) 0.5 (0.1–1.7) 1.0 (14.0) 12.7 (9.0–25.5) 6.2 (0.4–40.1)

Bold values indicate congruent global and local classifications.
NOTE.—To estimate physical region assignment by class, SNPs were assigned as described in Materials and Methods for summary statistics, and length of local blocks was

estimated as range between SNPs of different assignment. Length of local blocks was summed by class for every accession (min and max values in parentheses).
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distributions at low genetic distances (supplementary figs. S8

and S9, Supplementary Material online). Other cases are in-

dicative of partial overlap, revealing the multimodal nature of

CRG distributions (fig. 3).

The behavior of the KDE-based classification into outlier,

intermediate and pure classes can be illustrated when its out-

put is superimposed onto locally derived phylogenetic trees. A

reclassification of haplotypes at some loci of interest was

FIG. 1.—Complete genome ideogram of local classification across CORE Asian rice landraces. Patterns are organized per chromosome from left to right

and the 948 accessions are arranged from top to bottom, organized first by reference groups and subgroups, then by geographic region of origin (not

shown). Within the Admx, the accessions are arranged according to their classification in Wang et al. (2018).

FIG. 2.—Genome coverage of pure assignments discordant with global classifications across subgroups of Indica (A) and Japonica (B). For each

accession, the physical sizes of windows assigned to pure reference groups were summed across the genome. The distribution of total physical regions

assigned to pure classifications discordant with the global classification by Wang et al. (2018) is analyzed across Indica subgroups (upper panel) and Japonica

subgroups (lower panel). Sizes are given in millions of base pairs assigned (M).
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performed and plotted onto the corresponding neighbor join-

ing graphs (fig. 5, supplementary figs. S15, S17, S19, and

S21, Supplementary Material online). The output of the ge-

nome-wide analysis at those regions is displayed in figure 6C

and supplementary figs. S16, S18, S20, and S22,

Supplementary Material online.

Concerning the bh4 locus (LOC_Os04g38660), we find

that a major group of closely related haplotypes are consis-

tently classified to the three-way intermediate group (fig. 5).

However, local variation within that branch specific to a sub-

group of Indica varieties results in their classification to their

respective CRG. Pure cAus classification results from a

FIG. 3.—Extract of ideogram of local classification along chromosome 9 of Asian landrace rice accessions. White-filled arrow: example of local

assignment contradictory to accession-specific global assignment; red-filled arrows: extended regions of shared assignment to Indica among two

Japonica accessions MUANG TAY (IRGC 98382, GS 136100, Laos PDR) and MAK BOUAP (IRGC 30106, GS 132274, Laos PDR); black-filled arrows:

examples of regions of consistent assignment to the outlier class—possible signature of the introduction of cryptic material (accession ARC 18061

[IRGC 47650, GS 127034, India] and cBasmati accessions at the bottom); black lozenge: example where the distribution of intermediate classification

(Japonica–cAus in green) reveals the multimodal distribution of both CRGs; black triangle: example of a region of extended assignment to three-way

intermediate class.
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distance to other groups that is not appreciable through ideo-

gram analysis. Two distinct sources of outlier classification are

visible: A small branch of peripheral Japonica haplotypes that

are classified as outliers; a small group of cAus and cBasmati

haplotypes isolated from the main bodies of variation.

The qSH1 locus (LOC_Os01g62920) reveals a strong struc-

ture where the global classifications are well represented

(fig. 5). Two large clusters corresponding to Indica and

Japonica are clearly visible. Two other branches can be seen

associating Indica and cAus, either separated (two subbranches

of cAus and one of Indica), leading to their classification as pure

CRGs, or intermingled, leading to an intermediate local assign-

ment (orange group). Local Indica assignment puts together

groups of haplotypes that are likely to have a polyphyletic or-

igin. Finally, isolated and peripheral haplotypes can be observed

to fall into the outlier class. Among these we identify the

cBasmati, which connect at the origin of the main branch of

Japonica variation at this locus.

Reference Overlap across Rice Genes

A median overlap score was estimated for each gene in the

MSU7 database. Because of the way individual overlap scores

were calculated, by summing pairwise comparisons of

reference P values, values of 0 represent minimal ambiguity

between the three references, values closer to one indicate

the similarity between one pair of reference P values, and

values close to three that similar P values were obtained

from three reference distributions. The median was taken

across CRG accessions as a measure of the overall degree of

overlap at a given window, and averaged across windows

when more than one window was considered.

Mean Shift clustering (Comaniciu and Meer 2002) of me-

dian gene overlap scores across genes revealed three non-

overlapping groups with means 0.04 (55.4% of genes),

0.87 (32.7%), and 2.62 (12%), respectively (fig. 6A and B).

We searched these groups for genes whose structure has

been analyzed previously in the literature (fig. 6C). In the first

group (mean ¼ 0.04, no distribution overlap), we find the

genes qSH1 (LOC_Os01g62920, Zhang et al. 2009), a map-

based cloned gene involved in seed shattering, CHL1

(LOC_Os03g59640, Zhang et al. 2006) and CHL9

(LOC_Os03g36540, Zhang et al. 2006), both involved in chlo-

roplast development and photosynthesis. The first has been

described as possessing a Japonica allele preventing the for-

mation of the abscission layer and a consequent reduction

in seed shattering, the latter two can be considered

house-keeping genes in a photosynthetic organism. All three

FIG. 4.—Summary analysis of local classification patterns of cBasmati genomes along chromosome 12. Genome-wide classification of local haplotypes

into association-informative classes provides a platform for improved data analysis. Patterns of classification are explored for biological significance. (A)

Ideogram representation of classification of cBasmati genomes (Wang et al. 2018) across chromosome 12. (B) Density of intermediate classifications across

cBasmati accessions for Chr12.
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display allelic variation matching the global classification

scheme (fig. 6C-I). In the second group (mean ¼ 0.87, pair-

wise distribution overlap), we find genes rc

(LOC_Os07g11020, Sweeney et al. 2007), responsible for

the red pericarp of some accessions, and Waxy

(LOC_Os06g04200, Khush et al. 1984, see Sano et al.

1986), whose variation is responsible for the glutinous grain

of some varieties. Both these genes determine traits that are

easily assessed by humans and are subject to local preferen-

ces. Their classification into the second group is indicative of

partial loss of structure. The surrounding regions display a

predominance of two-way intermediate classifications

(fig. 6C-II). In the third group (mean ¼ 2.62) are found genes

Bh4 (LOC_Os04g38660, Zhu et al. 2011), responsible for the

black hull, OsC1 (LOC_Os06g10350, Saitoh et al. 2004), in-

volved in apiculus coloration of the rice seed, and sh4

(LOC_Os04g57530, Zhang et al. 2009), involved in grain shat-

tering. The former two bear color-associated alleles predom-

inant in wild rice and found only seldom in cultivated rice,

generally straw-white seeded, whereas the latter is

FIG. 5.—Core rice variation at Bh4 (LOC_Os04g38660) and qSH1 loci (LOC_Os01g62920) under global classification (left) and local, KDE-based

classification (right). Regions encompass 5-kb upstream and downstream of the gene. Trees were constructed through Neighbor-Joining using the software

DARWIN and a simple genetic dissimilarity index. (A) Bh4 locus, 195 polymorphic SNPs identified between positions 22964845 and 22975964 of chro-

mosome 4. (B) qSH1 locus, with 165 polymorphic SNPs identified between positions 36440019 and 36454951 of chromosome 1.
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FIG. 6.—Summed P value overlap and local genomic classification of genes in the MSU7 Rice Genome Annotation Data base. Overlap was measured by

summing the minimum to maximum proportion across pairwise combinations of CRG-specific P values for each individual. The median of this overlap was

taken across reference accessions. Each gene was indexed to every window overlapping with its MSU7 coordinates. Overlap values for gene specific

windows were averaged. (A) Distribution of median overlap across genes. (B) Boxplot of gene overlap values across groups identified through Mean Shift

clustering on all genes. (C) Ideograms of genes of interest selected from within each of the groups identified through Mean Shift. MSU7 gene coordinates

delimited by empty black rectangles.
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responsible for a trait, seed shattering, which is central in do-

mestication. Their classification into the third group is indica-

tive of near-complete loss of structure and is accompanied by

a predominance of three-way classifications in the surround-

ing regions (fig. 6C-III).

Discussion

We propose a representation of genomic diversity based

on the distribution of patterns of similarity among refer-

ence entities. The KDE-based assignment into pure, in-

termediate and outlier classes is shown to provide a

reliable summarization of the position of local haplo-

types relative to the distributions of known groups,

with intermediate classes functioning as indicators of

distribution overlap. The final output is made more infor-

mative by these indicators. Nonetheless, more than one

structure can lead to similar patterns of classification, a

fact to be taken into account when analyzing the distri-

bution of assignments across accessions.

Assignment Distributions

The simulation test of outlier identification showed that

branches of variation even marginally represented by refer-

ence groups (roughly 3%) will be assigned to that population

independently of genetic distance. In other words, assign-

ment to a given class is not the same as assignment to a given

evolutionary branch, but to the majority vote at any given

cluster. The classes regarded as pure (corresponding to the

three RGs) are not controlled so that they derive from any

particular and single foundation event—this can be clearly

appreciated in the overlay of classification over genetic dis-

tance at the qSH1 locus for example. This makes the choice of

reference accessions a key step in the analysis and is the rea-

son why a relatively high threshold was set for the extraction

of reference populations from the output of the global struc-

ture analysis (0.8, sNMF).

If these references are homogeneous and evenly differen-

tiated along the genome, the patterns will exhibit relatively

infrequent exceptions to the rule, illustrating limited and cir-

cumscribed exchanges. However, these references may be

“imperfect.” In the case of intrinsic heterogeneity (such as

polyphyly), this internal structure will not be evident from

the classification into pure classes. Concomitantly, if the refer-

ences used fail to include major branches of diversity in the

species (at an isolation threshold of 0.02 Fst from the nearest

branch), this will result in assignment into the outlier class of

nonreference accessions from those branches that may be

included in the analysis.

However, if they are not homogeneous due to significant

uneven exchanges along the genome, then this unevenness is

promising matter for the search of differentially patterned

genomic regions possibly bearing on evolutionary adaptation.

Here, the nature of intermediate assignments must be con-

sidered. Classification into intermediate classes is not the

product of specific evolutionary scenarios. The patterns re-

trieved by the current analysis alone do not conclusively iden-

tify genetic exchanges between reference groups, or the

origin of the shared material. For example, we observe that

local classification is reflected in our characterization of genes

according to local assignment overlap and in line with our

expectations regarding selection at those loci during domes-

tication. At the same time, large sections of intermediate clas-

sification surrounding centromeres are also evident,

suggesting hypervariability as the cause. Nonetheless, the dis-

crimination between these and other hypotheses regarding

reduced local structure should benefit from the accurate de-

limitation of these regions.

We believe this limitation to the interpretation of interme-

diate classifications is outweighed by the decrease in error rate

at lower Fst values. For both our approach and that of Loter

the shoulder of this distribution lay around an Fst of 0.03.

Although we did not test the WINPOP method on simulated

data, the relationship observed in our tests between accuracy

of the KDE-based classifier and local pairwise genetic distance

closely resembles that reported for that approach (Paşaniuc

et al. 2009). It should be noted here that these three results

reflect the “phase change phenomenon” observed by

Patterson et al. (2006)—the differentiation threshold below

which genetic structure is not noticeable. In this context, it is

notable that out of the 22 methods of local ancestry inference

reviewed by Geza et al. (2018), only four (WINPOP and LAMP,

Paşaniuc et al. 2009; PCAdmix, Brisbin et al. 2012;

SUPPORTMIX, Omberg et al. 2012) report estimates of accu-

racy versus local genetic distance between ancestral popula-

tions (although HAPAA is tested under a comprehensive

gradient of generational drift between ancestral sources,

Sundquist et al. 2008). In some cases, the global genetic dis-

tance between ancestral populations is discussed, but their

range is limited to that of Human populations in the HGDP

and HapMap data sets. In some other cases, genetic distance

is calculated between fragments and sources of assignment

only. All four cases where the relationship is described present

similar results. The fact that of these four two are LD-based

methods and two are not seems to indicate the limitation of

this complement in solving this problem. In the case of rice,

the importance of accounting for local genetic structure is

strikingly clear: Under our analysis, an average of 46% of

genomes of CRG accessions are assigned to one intermediate

class or another (for 20% none of the reference groups is

distinguishable).

In summary, the classification output provided here

represents a reduction of the genetic diversity in this

data set into an informed overview of local genomic

proximity. In the future, we hope the partitioning of

this variation will be used to parse local haplotypes for

more detailed analyses.

Fine Scale Genomic Signals of Admixture and Alien Introgression GBE

Genome Biol. Evol. 11(5):1358–1373 doi:10.1093/gbe/evz084 Advance Access publication April 16, 2019 1369



Intermediate Classification

Analysis of global ideogram plots reveals regions of interme-

diate assignment to be localized in the genome. The pattern

of classification into these classes among reference accessions

in some cases points to multimodal distributions where at

least one mode is shared by two or more reference groups.

Although we cannot presently conclude on the origin of these

shared structures, the higher estimated proportion of inter-

mediate cAus–Indica versus Japonica–cAus or Japonica–Indica

regions across the genomes of their respective accessions

supports previous observations regarding their relative prox-

imity (see Civ�a�n et al. 2015). The discussion has been on

whether these two modern populations were first sampled

from independent wild populations or the same one, differ-

entiating later. More recently, a study including 480 O. rufi-

pogon accessions widely sampled in South and East Asia has

shown their global structure to closely mirror that of modern

cultivated varieties (Wang et al. 2017). Given the pervasive-

ness of spontaneous gene flow from cultivated varieties to

their wild relatives, it is difficult to establish the cause of this

resemblance. Although our study confirms the more recent

common ancestry of cAus and Indica relative to Japonica

(now controlled for recent exchanges between these groups),

a more detailed, joint analysis of wild and domesticated rice

diversity is needed to understand the order in which these

events took place.

On a more general note, genetic structure at the subge-

nomic level can be impacted by selective pressures and various

degrees of exchanges of genetic material. In more compli-

cated scenarios—such as the present case study, one must

often accept modern populations as a patchwork of ancient

hybridizations, and thus to present varying evolutionary histo-

ries along the genome. In other words, regions of reduced

structure, and their impact on local admixture analysis, are to

be expected in such scenarios. The observations of the extent

and distribution of these regions along the genome of rice

should serve as a cautionary tale for future studies of local

admixture. Although we hope fine tuning the analysis could

reduce the size of these portions without loss of certainty,

their extent itself demands caution.

Inter-Subspecific Exchanges

Patterns indicative of inter-subspecific local exchanges of ge-

netic material are pervasive. Although in some cases these

appear isolated, specific to a given variety, similar patterns

of introgression are common among varieties of the same

groups. Those varieties mildly affected by such exchanges

are classified in the three principal groups, whereas those

that are more strongly affected fall into the “admixed” re-

mainder. They encompass the cBasmati varieties as well as

other diverse varieties. Altogether this class is concentrated

in the Indian Subcontinent, where all the cBasmati varieties

are localized and where the frequency of other admixed

varieties is about 5-fold higher than in the rest of Asia. The

distribution of introgression patterns could indicate selection

for introgressed phenotypes. Correlation with substructure

could indicate a significant contribution to the process of di-

vergence and isolation, if not explain it.

Genetic exchanges among the major centers of rice diver-

sity have been the subject of multiple studies to date (Sun

et al. 2002; Ishikawa et al. 2006; Sweeney and McCouch

2007). Even before a detailed quantification of their extent

was attempted these exchanges were expected given the

global nature of rice trade, the permeability of subspecies

genetic barriers, and the obvious benefit of the transfer of

population specific phenotypes of interest that has long

spurred large-scale breeding programs such as undertaken

by IRRI (Mackill and Khush 2018). Although the results of

the more successful pedigrees in rice breeding programs are

well known and have been propagated worldwide (Green

Revolution, IR 8, IR 36, IR 64), the nature and frequency of

contacts between modern genepools have never been fully

quantified (Khush 1997).

It is to be expected that successful combinations of existing

phenotypes would be selected. Those for which the extent of

introgressions was minimized by generations of back crossing

are found among our reference genepools. The remainder

comprise the modern pool of heavily admixed varieties. We

can see these to be a continuum of contributions from the

three major groups of rice, as well as some differentiated

material. Some coherence may exist among subsets of these

rice hybrids, inviting deeper analysis and characterization of

these varieties as potential key to understand rice reproductive

barriers and the application of these data to successful breed-

ing programs.

The Circum-Basmati

As subspecific hybridizations accumulate, it should come as

no surprise that some combinations, hitting on phenotypes of

wider economic interest, should spread and gain a more sig-

nificant presence among modern cultivars. Included in the 3K

Rice Genome data set were accessions pertaining to just such

a seemingly hybrid but cohesive group of rice diversity, the

cBasmati. Current knowledge places the cBasmati next to the

Japonica, Indica, and cAus, as the fourth major group of ge-

netically concordant cultivars (Glaszmann 1987; Garris et al.

2005). Their intermediate position relative to the Japonica and

cAus, followed by the identification within this genepool of

alleles private to both these populations had already led to the

initial proposal and subsequent confirmation of their status as

a hybrid group. Although supported by a smaller body of

evidence, it had also been proposed there to have been con-

tributions of Indica specific material to at least some individ-

uals of this population (Jain et al. 2004). Our analysis supports

a larger contribution of Japonica material to this genepool

(average ¼ 27.9%) and further highlights the contribution
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of cAus (11.7%) and Indica (6%), not taking account of

regions classified as intermediate.

In addition to the purported contributions from the three

major genetic groups of rice, initial analysis of the 3K Rice

Genomes data set by PCA showed the cBasmati to explain

the majority of variation along a fourth axis while representing

only around 2% of the total number of accessions (Wang

et al. 2018). Our analysis outlines large regions of conserved

assignment to the outlier class among accessions pertaining

to this group. Although the exact nature of this material

awaits a more detailed analysis, this narrows the possible lo-

calization of introgressed cryptic or wild material within

cBasmati genomes to these regions. Recent archaeological

findings (Bates et al. 2017) highlight the presence of domes-

ticated rice among Indus settlements in the North West of

India, then coexisting with wild forms of Oryza nivara species,

in a period that started as early as about 3000 BCE, long

before the arrival of the introduced Japonica forms around

2000 BCE. This region is notable for traditionally growing no

Indica varieties, but only cAus, cBasmati, and Japonica varie-

ties (Glaszmann 1988), thus pointing at the possibility of spe-

cific domesticates in the western part of the Himalayan

foothills. On the eastern fringe of its distribution, in

Myanmar, this group is known to form a specific subgroup

which displays specific alleles at microsatellite loci as well as

for BADH2 (Myint et al. 2012), the gene for aroma (Bradbury

et al. 2008). Considering also the minute groups of deepwa-

ter/floating rices from Bangladesh and Northeast India

(Glaszmann 1987; Bin Rahman and Zhang 2013), the

Himalayan foothills appear as a swarm rich in hybrid forms

between local domesticates, exogenous cultivars and possibly

a series of local wild forms.

The Dynamics of Diversity

We have confirmed the global structure described since the

advent of molecular markers and the finer structure recently

revealed in the first analysis of the data set we have been

using (Wang et al. 2018). We have provided a global estimate

of the overlap among the major elements of this structure and

highlighted genomic regions of specific interest for their ho-

mogeneity among all or some of the groups. These can be

further analyzed in terms of gene content and selection sig-

nals in search for adaptation factors. Also in line with the

analyses carried out earlier on these data, the patterns ob-

served around genes known to bear variation connected to

the process of domestication reflect phenomena of allele dis-

semination across varietal groups but also show the existence

of group-specific alleles expected in diffuse domestication

circumstances. We have also highlighted specific large ge-

nome segments in specific germplasm compartments that

are obvious traces of recent introgression. Finally, with the

example of the cBasmati varieties, we observe that variation

that departs from the simplest model with a few foundation

pillars can be very clearly exposed and taken as threads to

unravel additional dimensions of the rice crop diversity.

On a more general line, should the process of genetic basis

augmentation by occasional introgression be common rather

than an exception, the pattern of diversity of the rice crop is

likely to host many other genome segments of alien origin

incorporated to the derivatives of initial domestication foun-

dation pillars. Such segments would appear as outliers if the

core reference sample were modified, thus calling for addi-

tional rounds of analysis at finer diversity scales beyond the

work reported here. This novel vision justifies our initial meth-

odological choice to focus first on patterns of structure before

designing evolutionary model-based scenarios aimed at phy-

logenetic interpretation.

Conclusion

The history of a major crop such as rice, with its ancient origin

and the evidence of profuse germplasm movements across

the Asian continent, is undoubtedly complex and features

numerous episodes of genetic exchange between diverse

branches of a reticulate expansion. Retrospectively, current

diversity patterns are first the result of recent admixture events

among differentiated forms likely to still exist as such. Our

approach provides a shallow analysis of the past, depicting

traces of recent admixture and circumscribed introgression.

This departs from a phylogenetic description, because this

classification is not based on the absolute level of divergence

but on the respective specificity—the relative prevalence of

specific variation among distinct CRGs. In other words, we

have developed a distribution-related assignment that is not

immediately indicative of an actual phylogenetic origin.

Although a complete depiction of the evolution of the species

remains elusive, this first step gives access to a range of recent

punctual exchanges with potential adaptive significance and

provides possible keys for determining more finely which

germplasm compartments, subgroups and geographic origins

have been involved in these exchanges. Our approach also

highlights the existence of outlier haplotypes to those that are

found in the CRGs, and allows us to delimit those that can

tentatively be considered to be of alien origin. Their distribu-

tion within the germplasm and along the genome can help

determine new groups that could serve as additional referen-

ces or localized contributions from exotic germplasm to be

searched for among wild relatives. The example of the

cBasmati varieties is illustrative of this case. These varieties

exhibit genome portions that can be related to all the

CRGs, yet about 13% of their genome appears to be com-

posed of completely unique haplotypes. This explains why

they appear as a distinct group in some studies and as an

admixed population in others. This first step also enables us

to “clean” diverse genomes from the direct consequences of

recent exchanges. Pursuing this deconvolution will reveal

deeper patterns that can then be analyzed, as indicative of

Fine Scale Genomic Signals of Admixture and Alien Introgression GBE
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lineages that may have been lost or are underrepresented in

current modern germplasm surveys.

Data Availability

All SNP genotyping data were obtained through the Rice SNP-

Seek Database at http://snp-seek.irri.org/ (Mansueto et al.

2017). Raw P value estimates are stored in the figshare repos-

itory https://doi.org/10.6084/m9.figshare.7345991.v3.

Complete ideogram representations of local classifications

used for summary analyses are available in the figshare repos-

itory https://doi.org/10.6084/m9.figshare.7347053.v2. All

scripts and summary analyses are accessible at the GitHub

repository https://doi.org/10.5281/zenodo.2587930.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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