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Deep neural networks, inspired by information processing in the brain, can achieve
human-like performance for various tasks. However, research efforts to use these
networks as models of the brain have primarily focused on modeling healthy brain
function so far. In this work, we propose a paradigm for modeling neural diseases
in silico with deep learning and demonstrate its use in modeling posterior cortical
atrophy (PCA), an atypical form of Alzheimer’s disease affecting the visual cortex. We
simulated PCA in deep convolutional neural networks (DCNNs) trained for visual object
recognition by randomly injuring connections between artificial neurons. Results showed
that injured networks progressively lost their object recognition capability. Simulated
PCA impacted learned representations hierarchically, as networks lost object-level
representations before category-level representations. Incorporating this paradigm in
computational neuroscience will be essential for developing in silico models of the brain
and neurological diseases. The paradigm can be expanded to incorporate elements
of neural plasticity and to other cognitive domains such as motor control, auditory
cognition, language processing, and decision making.

Keywords: deep neural networks (DNN), posterior cortical atrophy (PCA), neurodegenerative diseases,
Alzheimer’s disease, in silico simulation, visual object recognition, visual object agnosia, cognitive computational
neuroscience

INTRODUCTION

By mimicking information processing and cognition in the human and primate brain
(Kriegeskorte, 2015; Yamins and DiCarlo, 2016; Richards et al., 2019), deep neural networks have
been shown to be capable of outperforming conventional machine learning methods for various
classification and regression tasks, such as visual object recognition (LeCun et al., 2015; Vercio
et al., 2020). Cognitive neuroscience continues to influence and advance the development of
more biologically informed deep neural networks to further improve classification performance
and achieve more human-like results (Kriegeskorte and Douglas, 2018). However, the potential
for using deep neural networks as computational models of the human brain to advance our
understanding of neurological diseases, such as Alzheimer’s disease, has been largely neglected
(Khatami et al., 2020).
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In this work, we propose a paradigm using deep neural
networks as in silico models of neurodegeneration (Figure 1A).
Within this context, in silico refers to employing computer
models to improve our understanding of normal and pathological
processes in the living organism. To date, in the context of
using deep neural networks as models of normal cognitive
function, this has been mostly studied using deep convolutional
neural networks (DCNNs) with a focus on visual cognition
(Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Yamins et al., 2014; Hong et al., 2016; Kheradpisheh et al., 2016;
Horikawa and Kamitani, 2017; Wen et al., 2018; Grossman et al.,
2019; Horikawa et al., 2019). The connectivity and hierarchical
organization of DCNNs are inspired by the mammalian visual
cortex, which make them promising biomimetic models for this
purpose (Kriegeskorte, 2015; Yamins and DiCarlo, 2016; Peters
and Kriegeskorte, 2021). DCNNs are state-of-the-art models for
the prediction of neural responses of the ventral visual stream,
particularly in higher order regions such as visual area V4
and inferior temporal cortex, during visual object recognition
(Cadieu et al., 2014; Yamins et al., 2014). Additionally, it has
been shown that the internal representation of objects (Cadieu
et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014) and faces
(Grossman et al., 2019) in DCNNs are similar to the internal
representations in humans. Consequently, current efforts aim
to quantify the similarity of different DCNN architectures to
the human brain through integrative benchmarking, such as the
Brain-Score (Schrimpf et al., 2020).

Prior work in modeling neurological diseases have primarily
explored computational models of cellular processes focusing
on pathological changes such as excitotoxicity or abnormal
bioenergetics (Le Masson et al., 2014; Muddapu et al., 2019),
or connectome models based on structural or functional
connectivity in the brain (Hof et al., 1997; Raj et al.,
2012; Zhou et al., 2012; Ortiz et al., 2015; Peraza-Goicolea
et al., 2020; Vanasse et al., 2021). Early work investigating
structural or functional connectomes primarily focused on
modeling specific aspects of disease progression, such as diffusive
spread of misfolded tau and beta amyloids (Raj et al., 2012)
or changes in network connectivity contributing to disease
vulnerability or diagnosis (Zhou et al., 2012; Ortiz et al.,
2015). More recent work has begun using the connectome
to simulate disease states in silico, for example by modifying
connection weights in a simulated functional connectome to
predict changes in functional activation and connectivity in
the brain (Peraza-Goicolea et al., 2020). A meta-analysis of
the relationship between structural pathology and behavioral
pathology supported the notion that network degeneration
is a contributing factor to disease pathology (Vanasse et al.,
2021). However, none of the aforementioned approaches used
models that can perform tasks at near-human levels (LeCun
et al., 2015; Vercio et al., 2020). Doing so would enable the
simulation of changes in model behavior with disease progression
in silico.

Deep neural network-based approaches have largely focused
on data-driven analysis (Khatami et al., 2020), such as disease
diagnosis or progression prediction (Lee et al., 2019; Martinez-
Murcia et al., 2019). One notable exception is the work by
Lusch et al. (2018) who used a DCNN to model traumatic

brain injury (TBI) as focal axonal swellings that cause spike
train blockage. In these analyses, TBI was simulated by
ablating DCNN weights. The work by Lusch et al. (2018)
focused primarily on abruptly injuring the DCNN, with a very
limited investigation of cumulative network injury, and did
not quantify changes in artificial neuron activation patterns or
representations. Additionally, the similarity of the DCNNs used
in the study to biological neural networks, and thus their validity
as brain-like models of visual cognition, were not investigated
(Schrimpf et al., 2020).

In this study, we used DCNNs trained for visual object
recognition to model posterior cortical atrophy (PCA), an
atypical form of Alzheimer’s marked by lesions in the visual
cortex and attendant visual cognition deficits such as visual
agnosia (Tang-Wai et al., 2004; Crutch et al., 2012; Migliaccio
et al., 2016; Silva et al., 2017). Specifically, we trained
the VGG-19 DCNN (Simonyan and Zisserman, 2014) to
perform visual object recognition on the CIFAR-100 dataset
(Krizhevsky, 2009). VGG-19 has one of the highest similarities
to biological neural networks amongst feed-forward DCNNs as
measured by the Brain-Score (Schrimpf et al., 2020). Trained
networks underwent neurodegeneration, where connections
between artificial neurons, mimicking biological synapses, were
progressively lesioned. At each stage of simulated PCA we
evaluated the respective changes in the injured network’s object
classification performance and activation patterns of its neurons.

MATERIALS AND METHODS

Dataset and Model Training
We trained the VGG-19 DCNN (Simonyan and Zisserman,
2014) to perform visual object recognition on the CIFAR-100
dataset (Krizhevsky, 2009). CIFAR-100 is a publicly available
natural images dataset which contains 50,000 training and 10,000
testing images (32 × 32 pixels) of objects from 100 classes (e.g.,
roses, butterflies, and bicycles) organized into 20 categorical
superclasses (e.g., flowers, insects, and vehicles).

The VGG-19 DCNN has 16 convolutional layers followed
by two fully-connected dense layers with 1,000 neurons each
(Figure 1B). The network’s output layer has 100 neurons and
classifies the input image into one of the 100 classes using the
softmax function. The convolutional layers were initialized with
weights pretrained on ImageNet (Deng et al., 2009) in order
to make use of the convolutional kernel features learned on
this much larger database. Input images were upscaled 4× to
128 × 128 pixels and the fully-connected dense and output layers
were randomly initialized.

Dropout regularization (30%) was used after each fully-
connected dense layer (“Dense 1” and “Dense 2,” Figure 1B).
This regularization technique helps reduce network overfitting to
the training data and improve generalization performance of the
uninjured baseline networks (Srivastava et al., 2014). Briefly, in
each training round, 30% of the neurons and associated weights
in the fully-connected dense layers were temporarily removed
during training. The neurons and associated weights are restored
after the training round and in the final, fully-trained, baseline
uninjured model.
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FIGURE 1 | Deep learning can be used as in silico models of brain injury. (A) Changes in internal patterns of activity between neurons and in external behavior can
be studied in trained networks before and after a simulated neural injury, such as for posterior cortical atrophy (PCA) as shown here. (B) VGG 19 networks trained for
visual object recognition on the CIFAR-100 dataset were used for PCA simulation experiments.

Training parameters resulting in the best network
performance were optimized for the final model in preliminary
investigations. More precisely, a fixed learning rate of 3 × 10−5

was used with the RMSprop optimizer for 40 training epochs. The
network was trained end-to-end, such that both the pretrained
convolutional layers and the randomly initialized fully-connected
dense and output layers were updated during training. This
training was repeated with different random initializations of
the fully-connected dense and output classification layers to
produce 25 unique uninjured networks for use in subsequent
experiments on simulating PCA injury. The uninjured networks
produced at the end of training were used in these experiments
regardless of training performances. Though no exclusion
criterion was applied to uninjured networks after training, the
use of 25 unique networks reduces potential bias from single
outliers. The uninjured networks achieved an average test set
performance of 76.48% (standard deviation: 0.53%). Importantly,
the networks were only given the class labels during training and
no information about an object’s superclass.

Simulating Posterior Cortical Atrophy
The trained networks underwent simulated PCA injury by
randomly setting x% of the network weights to zero, effectively
severing the connections between artificial neurons. This was
done for trained weights between all layers in a network, i.e., the
weights between all the convolutional layers, dense layers and

output layer (Figure 1B). We simulated the visual agnosia seen
in PCA by repeatedly injuring each network at 0.1% increments
such that the damage was cumulative. In other words, for each
incremental injury, the previous injured connections remained at
zero and an additional set of randomly selected connections are
set to zero. The selection of weights to injure was random for each
of the 25 trained networks, such that the course of degeneration
was unique for each of the 25 networks.

Quantifying Changes in Network
Behavior
After each injury, networks’ accuracy in visual object recognition
was measured on the set of test images. Random chance
performance on visual object recognition was determined by
calculating the probability of randomly selecting the correct class
out of the 100 classes. As the number of test examples in each class
is equal (100), the random chance performance is 1%.

The network errors were further analyzed by evaluating
the percentage of misclassified examples that were in the
correct superclass, e.g., misidentifying a rose as another type
of flower such as a tulip. This analysis was done on the
test examples that the network made an incorrect prediction
on. The incorrectly predicted class label was converted to the
corresponding superclass label. This converted superclass label
is an indirectly predicted superclass label, as the networks were
never given information about the class-superclass structure of
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the data. The converted superclass label is compared to the
true superclass label to determine if the network’s incorrectly
predicted class was within the correct superclass. This was
calculated over all test set examples to obtain the percentage
of errors that were within the correct superclass. The average
level of errors within the correct superclass for the 25 baseline
uninjured networks was 39.37% (standard deviation: 0.75%).
Random chance for network errors within the correct superclass
was calculated based on the probability of selecting the correct
superclass out of the 20 superclasses. As the number of test
examples in each superclass is equal (500), the random chance
performance is 5%.

Representational similarity analysis (Kriegeskorte et al.,
2008) was used to quantify changes in the learned internal
representations of visual objects over the course of simulated
PCA. Activations from neurons in a network’s penultimate layer
(“Dense 2,” Figure 1B) were compared for pairs of test set
visual stimuli using 1 – Pearson’s correlation. This was done
over all possible pairs of stimuli in the test set to create the
representational dissimilarity matrices (RDMs), which provides
an overview of a network’s learned representation (Kriegeskorte
et al., 2008; Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014). The changes in a network’s internal representation
with injury was calculated by comparing the correlation of an
injured network’s RDM to the same model’s uninjured RDM
using Kendall’s τA correlation coefficient. Random noise levels
for Kendall’s τA correlation coefficient were calculated as the
Kendall’s τA of an uninjured network’s RDM compared to a
scrambled version of the same uninjured network’s RDM. This
was averaged across the uninjured RDMs for the 25 trained
uninjured networks to obtain the random noise level of 0.005%
for Kendall’s τA.

Statistical Analysis
Object recognition performances, RDMs, and Kendall’s τA
correlation coefficients were averaged across the 25 trained
networks. Results were analyzed using PRISM (GraphPad,
v9.0). Statistical significance was reported when P < 0.01 and
was determined using one-way repeated measures ANOVA or
two-way ANOVA and Bonferroni’s post hoc test for multiple
comparisons, as appropriate.

RESULTS

Object recognition performance was already impaired by
simulated PCA injury of just 0.2% of connections (Figure 2A).
By 30% injury, the network performance was reduced to chance
level (1%). RDMs, used to analyze object representations within
degenerating networks, showed that representations became
more homogenous with injury (Figure 2B). Though object-level
representations deteriorated markedly with injury, the networks
retained some structured internal representations (Figure 2C).
Even when networks lost all object recognition capability after
30% injury, the deteriorated internal representations retained
correlation with the representations of uninjured networks and
remained above the level of random noise (0.005%).

Next, we investigated whether simulated PCA impacted the
networks’ representational capacity at all levels of semantic
hierarchy equally by analyzing superclass-level RDMs.
The corresponding results showed that trained networks
were generally able to infer the existence of the categorical
superclasses in the CIFAR-100 dataset, despite never have been
given this information explicitly (Figure 3A). The internal
representations of categorical superclass and broader image
categories, such as animate vs. inanimate or natural vs. artificial,
were better retained with injury compared to object-level
representations (Figures 3A,B). This increased stability of
superclass representation was also reflected in the manner in
which networks made mistakes at the initial stages of simulated
PCA, as objects were misclassified for another object within the
same superclass (e.g., a rose is misclassified as another type of
flower) at the same rate as uninjured networks until 1.3% injury;
thereafter, the networks made more random errors (Figure 3C).

DISCUSSION

Deep learning is a powerful biomimetic paradigm for modeling
cognitive processes and information processing in the brain
(Richards et al., 2019). Efforts thus far on using deep learning
to study the human brain have primarily focused on modeling
normal function (Cadieu et al., 2014; Khaligh-Razavi and
Kriegeskorte, 2014; Yamins et al., 2014; Hong et al., 2016;
Kheradpisheh et al., 2016; Horikawa and Kamitani, 2017; Kell
et al., 2018; Pandarinath et al., 2018; Wen et al., 2018; Grossman
et al., 2019; Horikawa et al., 2019; Botvinick et al., 2020;
Hashemzadeh et al., 2020; Caucheteux et al., 2021). In this
paper, we present an important new direction, namely using deep
learning for modeling brain dysfunction in silico. As deep neural
networks incorporate neurally mechanistic features to increase
their biological plausibility, it will be important to investigate how
well they model both normal function and disease if they are to
become truly brain-like (Kriegeskorte, 2015; Yamins and DiCarlo,
2016; Kriegeskorte and Douglas, 2018; Richards et al., 2019).

Based on the simulated PCA in a DCNN, it was shown
that increasing functional deficits were associated with greater
levels of injury in our artificial neural networks, parallel to
increased visual agnosia with greater atrophy (Hof et al., 1997;
Fox et al., 1999; Zarei et al., 2013; Silva et al., 2017). At the
initial stages of simulated PCA, the injured networks tended to
misclassify objects as another similar item, akin to misidentifying
a fork as a knife by patients with visual agnosia (Milner
et al., 1991). Simulated neurodegeneration affected object-
level representations more severely than broader categorical-
representations, similar to the loss of object-specific knowledge
occurring prior to object category knowledge loss in patients with
semantic dementia (Hodges et al., 1995).

This study is a first step in investigating the use of deep neural
networks as in silico models of neural injury. As such, limitations
on the current work and avenues for future investigations must
be highlighted. Notably, the in silico model was more sensitive
to injury compared to the human brain, showing measurable
impairments after just 0.2% injury. In contrast, cognitive
impairments do not typically manifest until much greater
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FIGURE 2 | Trained VGG-19 networks underwent progressive neurodegeneration. (A) Object recognition performance of injured VGG-19 models on the CIFAR-100
dataset with simulated PCA. (B) Internal activity of artificial neurons in the model’s penultimate layer visualized with representational similarity analysis. The RDMs
visualized are the average of the 25 trained networks. (C) Changes in internal activity patterns relative to uninjured control models measured using Kendall’s τA

correlation coefficient. Data are shown as mean + SD, n = 25 models, **P < 0.01 with one-way repeated measures ANOVA with Bonferroni’s correction for multiple
comparisons.

levels of cortical atrophy (Fox et al., 1999; Zarei et al., 2013).
However, this must also take into consideration that clinical
detection of PCA often occurs late in the disease course. PCA
is easily misdiagnosed, with visual impairment interpreted as
ophthalmologic or refractive problems, and cortical dysfunction
considered only when cognitive impairment is more overt,
resulting in accurate assessment and treatment (Crutch et al.,
2012). Although a disease time course for PCA is not available,
Lehmann et al. (2011) reported a 10–20% decrease of cortical
thickness in the occipitoparietal and occipitotemporal regions
of patients diagnosed with PCA (Lehmann et al., 2011), with
gray matter loss of approximately 2% of whole brain volume
per year (Lehmann et al., 2012). PCA patients show a range of
cognitive deficits, with one study reporting a 40–50% decrease
in visual task performance compared to controls (McMonagle
et al., 2006). This magnitude of deficit is comparable with the
decrease in performance with 10–20% injury in our model,
though more rigorous comparison between deficits in clinical and
simulated PCA are needed.

Another limitation is that our simulation assumed a static
system that does not change its connectivity over the course
of PCA. In contrast, the brain is a dynamic system that
undergoes synaptic plasticity and functional connectivity changes
in response to the insult itself, as well as to rehabilitative and
pharmacologic interventions (Voss et al., 2017). This plasticity
could be added to our in silico model by retraining the damaged
DCNNs in between inflicting injuries. While this is outside
the scope of this preliminary study, research efforts on DCNN
pruning may provide some insight on injured network retraining.
Pruning is often undertaken to compress networks by selectively
removing weights to reduce the size and computational demand
of the networks, for example by removing low magnitude
weights (Han et al., 2015). However, with sufficient pruning, the
networks will eventually suffer large declines in performance.
To mitigate this, the networks can be retrained, such as after

pruning or over the course of progressive pruning (Mittal et al.,
2019; Marcin and Maciej, 2020). It has been shown that this
retraining allows the removal of a substantially larger number of
connections while retaining comparable performance. Applying
these retraining algorithms to the injured networks may provide
a way to mimic neuroplasticity in silico, which will be essential to
capturing the complexities of neural injury in more biologically
plausible models.

Moreover, the current study used weight ablation to simulate
progressive neurodegeneration in a DCNN. However, it remains
to be seen if alternative injury types may be more appropriate
for simulating PCA or other neurodegenerative diseases. The
network weight ablation injury used here simulates synaptic
injury, whereas cortical atrophy seen in PCA affects both neurons
and synapses (Lehmann et al., 2011, 2012). Thus, alternative
approaches to modeling could include network node ablation
to simulate neuronal injury, or a combination of weight and
network node ablation to simulate a combination of synaptic and
neuronal injury. Furthermore, alternative network modifications,
such as randomly rewiring network nodes or setting network
weights to random values instead of zero (Gaier and Ha,
2019; Xie et al., 2019), may also be studied to determine their
appropriateness for modeling PCA or other types of dysfunction
seen in neurodegenerative and neurological diseases.

Alternative courses of simulating the progressive injury
seen in PCA and other neurodegenerative diseases may also
be explored. For example, the current study used a sudden
ablation injury of randomly selected weights across the entire
network, with progressive injury simulated by increasing the
number of ablated weights. An alternative approach could
be to progressively decrease injured synapses to zero or add
increasing noise to the weights. However, it remains to be
seen whether this better recapitulates the slower manifestation
of cognitive deficits seen clinically (Fox et al., 1999; Zarei
et al., 2013). In contrast to random weight ablation, ablation
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FIGURE 3 | Degenerating neural networks retained generalized information better than specific details. (A) Representational similarity of objects within a categorical
superclass. The RDMs visualized are the average of the 25 trained networks. (B) Changes in internal activity patterns, relative to uninjured control models, at the
object and superclass-level measured using Kendall’s τA correlation coefficient. (C) Percentage of misclassified objects that were within the correct categorical
superclass. Data are shown as mean + SD, n = 25 models, **P < 0.01 using two-way ANOVA (B) or one-way repeated measures ANOVA (C) with Bonferroni’s
correction for multiple comparisons.

of connections based on their strengths such as in network
pruning (Han et al., 2015; Mittal et al., 2019; Marcin and Maciej,
2020), or specifically targeting excitatory (positive) or inhibitory
(negative) connections (Song et al., 2016; Mackwood et al., 2021)
may be instructive.

Future work may also investigate more biologically informed
methods for modeling disease. One possibility may be to model
the diffusive spread of disease-causing agents such as misfolded

tau and beta amyloids across artificial neurons and synapses in
the deep neural network (Raj et al., 2012; Vogel et al., 2021).
Another approach may be to injure individual DCNN layers
based on their correspondence to regions of the ventral visual
stream such as V4 and inferior temporal cortex (Cadieu et al.,
2014; Yamins et al., 2014). This layer-wise injury could be
informed by neuroimaging, such as patterns of atrophy in PCA
(Whitwell et al., 2007; Lehmann et al., 2011, 2012).
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Finally, this paradigm of simulating neural injury can be
extended to deep neural networks in other cognitive domains
such as motor control (Pandarinath et al., 2018), auditory
cognition (Kell et al., 2018), language processing (Hashemzadeh
et al., 2020; Caucheteux et al., 2021), memory (Schapiro et al.,
2017), and decision making (Botvinick et al., 2020). This may
enable the development of in silico models of other neurological
diseases, such as Parkinson’s disease, and the study of their impact
on multiple cognitive systems.

In conclusion, our results show that deep neural networks may
serve as in silico models of neurodegeneration, as the injured
network’s behavior is similar to that seen clinically. Future work
will need to study this correspondence with clinical data in more
detail. Marrying in silico disease modeling with clinical data may
enable the creation of patient-specific computational models, and
may be integral to precision medicine for neurological diseases.
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