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Analysis and prediction in SCR experiments using GPT-4
with an effective chain-of-thought prompting strategy

Muyu Lu,1 Fengyu Gao,1 Xiaolong Tang,1,* and Linjiang Chen2,3,4,*
SUMMARY

This study explores the use of large language models (LLMs) in interpreting and predicting experimental
outcomes based on given experimental variables, leveraging the human-like reasoning and inference ca-
pabilities of LLMs, using selective catalytic reduction of NOx with NH3 as a case study. We implement the
chain of thought (CoT) concept to formulate logical steps for uncovering connections within the
data, introducing an ‘‘Ordered-and-Structured’’ CoT (OSCoT) prompting strategy. We compare the OS-
CoT strategy with the more conventional ‘‘One-Pot’’ CoT (OPCoT) approach and with human experts.
We demonstrate that GPT-4, equipped with this new OSCoT prompting strategy, outperforms the other
two settings and accurately predicts experimental outcomes and provides intuitive reasoning for its
predictions.

INTRODUCTION

The emergence of the latest large language models (LLMs), notably GPT-3 and GPT-4,1,2 is transforming the landscape of human-com-

puter interaction, revolutionizing a wide range of personal and professional tasks through advanced artificial intelligence (AI) capabil-

ities.3,4 These LLMs, trained on vast amounts of text data, are capable of generating human-like text, answering common-sense

questions, and even performing tasks that require understanding and reasoning.5,6 LLMs can provide textual content creation and offer

personalized interactions and recommendations.7 Their proficiency extends to tasks that require inferential reasoning, such as

answering questions, solving mathematical problems,8 and even passing bar examinations.9 Moreover, the impact of LLMs is evident

in the realm of academic research. LLMs, like GPT-4, have the potential to streamline the literature review process by efficiently sum-

marizing vast academic resources, extracting insights from the literature, and facilitating the generation of innovative research ideas.10

By enabling the analysis of extensive textual data, these models may uncover overlooked themes or patterns, offering fresh perspectives

on existing research.11

LLMs have started showing the potential to revolutionize chemistry by accelerating research and discovery in collaboration with hu-

man chemists. For instance, GPT-4 has been used in the discovery of new metal–organic frameworks (MOFs) through a cooperative

workflow with human experts. This synergy enabled the discovery of a series of MOFs, each synthesized using unique strategies

and conditions.12 In the broader landscape, LLM-empowered AI tools and agents are making strides in organic synthesis, drug discov-

ery, and materials design. ChemCrow,13 a GPT-4-based chemistry tool, exemplifies this. It streamlines reasoning for various

chemical tasks, from drug design to synthesis. By sequentially prompting GPT-4, ChemCrow guides the model through the task,

aligning actions with the end goal. This tool not only aids expert chemists but also simplifies access to chemical knowledge for

novices. Moreover, task-specific fine-tuning of GPT-3 has been shown to yield highly effective and predictive models for a range of

chemistry machine-learning (ML) tasks, often surpassing the performance of dedicated ML models specifically developed for these

tasks.14

In this study, we hypothesize that GPT-4’s language understanding capabilities, when combined with its strengths in pattern recognition

and inferential reasoning, might enable effective analysis and interpretation of knowledge specific to a research topic or scientific domain.

Our focus is on structured data rather than texts directly presented in scientific publications; in essence, we are not evaluating GPT-4’s

text mining capabilities. Instead, we aim to assess GPT-4’s proficiency in recognizing patterns within structured data, which allows it to discern

and capitalize on underlying trends. Such pattern recognition is invaluable when analyzing experimental variables and their associated out-

comes. Furthermore, we seek to determine if GPT-4’s ability for inferential reasoning enables it to make well-founded predictions based on

the provided information and to assess the robustness of its rationale behind those predictions.
1School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
2School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK
3Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
4Lead contact
*Correspondence: txiaolong@126.com (X.T.), l.j.chen@bham.ac.uk (L.C.)
https://doi.org/10.1016/j.isci.2024.109451

iScience 27, 109451, April 19, 2024 ª 2024 The Author(s).
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:txiaolong@126.com
mailto:l.j.chen@bham.ac.uk
https://doi.org/10.1016/j.isci.2024.109451
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.109451&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Comparison of the three CoT-GPT combinations in predicting experimental NOx conversion outcomes for the six binary CeM1 composites

samples

For all composite types (A–F), five independent runs were conducted, each using one of the five batches of 48 samples for training. Prediction accuracies were

evaluated using 50 samples randomly selected from the dataset, which were distinct from the training samples. The average, maximum, andminimum prediction

accuracy values for each composite type were determined across the five runs.
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RESULTS

Binary CeM1 metal-oxide composites

To prepare representative training data, rational selection by custom search (Table S2) from the dataset was conducted five runs, each

generating a batch of 48 samples that covered six types of binary CeM1 metal-oxide catalysts (M1 = Ti, Mn, W, Sn, Mo, or Fe). The selected

samples were then integrated into UM1 and UM2, respectively, to generate OP-and OS-CoT, using both GPT-3.5 and GPT-4. We evalu-

ated the effectiveness of UM1 and UM2 in generating CoTs from GPT-3.5 and GPT-4 against three common metrics for assessing the per-

formance of LLMs: ‘disobedience’, ‘helpfulness’, and ‘honesty’. Detailed analyses are shown in Figures S4 and S5. Notably, we observed

that GPT-3.5 malfunctioned when using UM2 in trying to generate OPCoT, leading to its exclusion from comparison. We examined the

optimal number of input tokens for GPT-3.5-turbo-16k, as illustrated in Figure S6, revealing that it began to malfunction when burdened

with more than 3,000 tokens in the OP approach. Finally, three combinations—OPCoT-GPT4, OSCoT-GPT4, and OSCoT-GPT3.5—were

incorporated into UM3 to infer the experimental performance of CeM1 metal-oxide composites samples in five runs.

OP-andOS-CoTs were used to guideGPT-3.5 andGPT-4 to infer the experimental performance of each of the CeM1 samples. As depicted

in Figures 1A–1F, the average prediction accuracies of OSCoT-GPT4 for the six different binary composites reached 71.6%, 74%, 64.2%, 60%,

67.6%, and 65.6%, respectively. The maximum prediction accuracies for them reached 82%, 85%, 69%, 67%, 71%, and 73%, respectively.

OSCoT-GPT4 consistently outperformed both OPCoT-GPT4 and OSCoT-GPT3.5 with the only exceptions of the maximum and average ac-

curacy values for CeFe, for which other two combinations were more effective. Notably, the minimum accuracy values of OSCoT-GPT4 were

the higher than the other two CoT-GPT combinations for all six CeM1 samples.

Predicting catalysis outcomes poses a significant challenge due to the complexity and multi-step nature of the process. The reasoning

route, generated by theOSprompting strategy (Figures 2 and 3), is particularly valuable in this context as it facilitates structuredproblem-solv-

ing. Bybreakingdown the intricate taskof catalysisprediction into smaller, logical steps,OSCoTmimicshuman reasoning, leading to improved

understanding and interpretation of theproblem. This structured reasoningnot onlymakes theGPT-4’s thought processmore transparent but

also enhances trust in its outputs. Additionally, implementing OSCoT-GPT4 in predicting catalysis can serve as an enhanced form of training,

encouraging models to develop a deeper level of understanding and process information in a more nuanced, human-like manner.

Extrapolation to ternary CeM1M2 metal-oxide composites

Next, we assessed the performance of the GPT-4, using OSCoT, in predicting outcomes for ternary composites of metal oxides by learning

from experiments involving only binary composites. Specifically, we trained a GPT-4 on experiments involving CeM1 and CeM2 (M1, M2 = Ti,

Mn, W, Sn, Mo, or Fe; M1 s M2), following the same OSCoT-GPT4 training procedure as described above. We then evaluated this GPT-4’s

prediction performance for experiments involving the corresponding ternary CeM1M2 composites. This process was independently repeated

five times, each instance yielding a uniqueOSCoT-GPT4. Each time was trained with a distinct batch of 48 experiments for CeM1 and another

for CeM2, both batches being rationally selected.

We can partially attribute the observed extrapolation performance of theGPT-4 Assistant to its use of associations between specificmetals

and experimental variables in making predictions. Specifically, the GPT-4 Assistant appears to have constructed a knowledge graph from the
2 iScience 27, 109451, April 19, 2024



Figure 2. Illustration of CoT generation using the ‘‘One-Pot’’ and ‘‘Ordered-and-Structured’’ approaches

In the OP method, all data points from the table are simultaneously processed to form a single CoT (termed OPCoT). Conversely, in the OS method, table data

points are batched according to feature rank hierarchy, with each batch sequentially giving rise to intermediate CoTs. Each CoT incrementally builds upon the

logic of the preceding one, representing a progressive development of understanding. The OSCoT materializes through iterative processing of all data point

batches. The small chain icon represents the integration of messages, indicating, for example, that a connection between user_message and data points,

along with the intermediate OSCoT, integrates these elements into the corresponding user message, thereby solidifying the foundation for subsequent

OSCoT iterations. Table S1 details the full names of the abbreviations.
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binary training data, linking certain combinations of input variables to either high or low catalytic performances. Whenmaking predictions for

ternary metal-oxide composites, it considered such associations. However, what remains unclear from the current data and results is the way

the GPT-4 Assistant prioritizes these associations, particularly when they conflict. This uncertainty might partly account for the GPT-4 Assis-

tant’s reduced predictive performancewith ternary systems, where little is known about the interplay and interactions among variousmetals—

other than individual metals each with Ce—as represented on the knowledge graph derived from binary systems. To gain some interpret-

ability, one could consider methods related to information geometry, which offer a structured and mathematical framework to comprehend

how information is processed and represented within AI models.

Figure 4 presents results for eight ternary CeM1M2 composites, divided into two groups: CeMnM2 (M2 = W, Ti, Sn, or Fe) and CeTiM2

(M2 = W, Sn, Mo, or Fe). We focused on these eight, out of the 15 possible permutations of CeM1M2, considering the prevalence of their

corresponding binary counterparts in the dataset. For each specific CeM1M2 composite, 50 experiments involving it were used to evaluate

the prediction performance of the GPT-4 trained on the corresponding binary systems. Stoichiometry, as the molar ratio between the metal

oxides (binary or ternary), was a variable in all cases.

Figure 4A shows the results of the five independent runs for each of the eight ternary systems. Notably, the GPT-4, all using the OSCoT

prompting strategy, exhibited significantly different levels of prediction performance for the various ternary systems. For CeMnFe, CeMnTi,

and CeTiFe, the OSCoT-GPT4 consistently yielded high prediction accuracies for the 50 ternary systems, after analyzing only the correspond-

ing binary counterparts (48 CeM1 + 48 CeM2). In contrast, theOSCoTs-GPT4 intended for predicting CeTiSn and CeTiModemonstrated poor

performance. For CeMnW, they generated in the five independent runs showedmarkedly varied prediction performances. Figure 4B provides

a statistical summary of the run-specific accuracies for each ternary system. Upon detailed analysis of the various OSCoTs-GPT4 with respect

to the systems in Figure 4A, we could attribute the differing levels of prediction performance for the ternary systems to the varying

prediction performances of the OSCoTs-GPT4 for the binary systems they were trained to analyze. For instance, the OSCoTs-GPT4 intended

for CeMnFe exhibited high prediction performances for CeMn and CeFe, while the ones for CeTiMo demonstrated poor performance for

CeTi and CeMo.

Comparison with human experts

To gauge the performance of the various combinations of CoTs-GPT, as described in the preceding sections, we conducted a survey

involving four human experts to assess their performance on the same prediction tasks. All four experts were postgraduate research stu-

dents specializing in NH3-SCR catalysis and had experience in synthesizing metal-oxide composites and measuring their performances for

NH3-SCR catalysis. First, we asked Experts 1–3 to predict experimental outcomes—i.e., whether the NOx conversion would be above (Pos-

itive) or below (Negative) 95%—for 50 experiments involving binary metal-oxide composites; in Figure 5A, these results are designated as

‘Without Training’. In these 50 experiments, the type of CeM1, its stoichiometry, synthesis conditions, and catalysis reaction conditions

were all variables, though certain experiments shared the same values for certain variables. Expert 1 performed the best, attaining a
iScience 27, 109451, April 19, 2024 3



Figure 3. Illustration of structured prompting tactics used to direct the reasoning process for OSCoT generation within user message 1 (UM1)

I: Establishing the persona of the expert expected to analyze the data; II: Providing detailed instructions for input data, including the format and specific

observations to note; III: Emphasizing the importance of focusing on relevant details; IV: Dictating the desired output, its structure, and word limit.

(A and B) Decomposing the complex task into general, manageable tasks, and splitting and reinforcing them to ensure thorough analysis.

(C) Putting the analyzed datapoints in the rear of the messages. In Python, the f-string format employs curly braces {} to insert the content within variables into the

string. Here, we use angle brackets <> as separators for generated sentences or paragraphs. Additionally, the variable delimiter adopted here is ‘‘##’’.
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prediction accuracy of 66%, while Experts 2 and 3 attained prediction accuracies of 51% and 56%, respectively, only marginally better than

random guess.

Subsequently, after providing Experts 1–3 with the correct answers for these 50 experiments, they were given another set of 50 different

experiments to predict. Their performances, denoted as ‘After Training’ in Figure 5A, interestingly showed no gains; in fact, Expert 1’s perfor-

mance appreciably worsened. Post-prediction, Experts 1–3 were interviewed and asked to summarize their rationales. As shown in Figure 5C,

all three Experts applied relatively simple rules, considering nomore than a couple of experimental variables. Their strategies were as follows:

(1) focusingona small set of experiments to identify correlationsbetween theexperimental variables and theoutcomesor (2) trying to identify a

few key experimental variables that significantly influenced the outcomes when altered. While both strategies appear sensible and intuitive,

they highlight the challenges humans encounter when analyzing multi-variable problems in sizable datasets. Specifically, correlations signif-

icant for a small dataset may not apply to a larger dataset. Similarly, factors that seem significant across the entire dataset may not aid in in-

dividual predictions, as the combination and balance of different factors can play an equally, or even more, important role.

Similar observations and conclusions were drawn when Experts 1–3 were asked to make predictions for experiments involving ternary

metal-oxide composites (Figure 5B). The variation in prediction performances among the different Experts, as well as the differences in their

performance across the various tasks, seem to suggest a strong element of guessing. This is not entirely unexpected, considering the chal-

lenge of retaining and processing information from tens of experiments and then applying any discerned rules and correlations to an entirely

new set of experiments. An additional expert, Expert 4, who possessed similar experience in the research topic as Experts 1–3, was explicitly

instructed to consider multiple experimental variables when approaching the prediction tasks (Figure 5C). Expert 4 was provided with the

same sets of experiments for training, as well as the same sets for prediction, as were given to Experts 1–3. Among the four experts, Expert

4 performed the most poorly for both binary and ternary systems.

All four experts’ performances were inferior to those of the GPT-4 using OSCoT, as discussed above (Figures 1 and 4). There are several

factors that could have contributed to this. The sampling of just four human experts is far from adequate for establishing a comprehensive

baseline of human performance on the prediction tasks. Nonetheless, LLMs like GPT-4 may outperform humans in predicting outcomes for

complex,multi-variable chemistry experiments for several reasons. First, LLMs possess remarkable data processing capacity, allowing them to

analyze and utilize information from lots of experiments simultaneously, a task that is challenging for humans. Second, LLMs consistently apply

rules and patterns across datasets without experiencing cognitive fatigue or bias, in contrast to humans who might get overwhelmed by the

volume or complexity of the data. Furthermore, LLMs are not susceptible to cognitive biases that can affect human analysis and conclusions.

Their ability to detect subtle patterns in diverse and extensive datasets enables them tomakemore accurate predictions in intricate scenarios.

Finally, LLMs benefit from rapid iterative learning, adapting and improving at a pace faster than the typical learning curve of human experts.

Overall, the immense data processing capabilities, consistent and objective analysis, and rapid learning and pattern detection of LLMs make

them well-equipped for complex tasks such as predicting outcomes in NH3-SCR catalysis experiments.

DISCUSSION

This study reveals that, by employing an effective OSCoT prompting strategy, GPT-4 achieved notable prediction accuracies regarding the

performance of binary CeM1 metal-oxide composite samples. The average prediction accuracies ranged from 60% to 74%, with peaks
4 iScience 27, 109451, April 19, 2024



Figure 4. Prediction accuracies for different ternary CeM1M2 composites byGPTAssistants after analyzing only the corresponding binary counterparts

(A) Run-specific accuracy results from five independent runs for each ternary case.

(B) Statistical summaries of the corresponding results in (A), with bars indicating the average of the accuracy values from the five runs and error bars representing

the standard deviation of these accuracy values.
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reaching up to 85%, outperforming human experts. These results weremade possible by the OSCoT strategy’s ability to break down intricate

problems into sequential, manageable steps, enhancing the model’s understanding and interpretation of complex tabular data. Extending

the generated OSCoT by the binary CeM1 samples to reason the performance of ternary CeM1M2 samples, we observed a varied predictive

performance, with some composites like CeMnFe and CeTiFe showing high accuracy, illustratingGPT-4’s ability to extrapolate frombinary to

ternary systems. These findings demonstrate the intricate relationship between variables and causal outcomes in our curated dataset, solid-

ifying the deductive connections implied by our table data through the application of a reasoning CoT.

The comparative analysis with human experts has further highlighted the advantages of employing LLMs in chemistry research. In contrast

to human capabilities, LLMs likeGPT-4, despite facing context length limitations, are significantly less affected by cognitive biases and are not

easily overwhelmed by the immense volume and intricacy of tabular data. They demonstrate exceptional data processing prowess, reflecting

some level of reasoning ability, a task that poses a considerable challenge for human experts. Moreover, their uniform application of rules and

identification of patterns within table data, combined with their rapid learning and adaptability, equip them to discern subtle correlations

amidst varied datasets. This leads to more precise predictions in complex research scenarios.

In this study, we investigated the application of GPT-4, coupled with our proposed OSCoT prompting strategy, to analyze experimental

data concerning the variables and outcomes of a specific catalysis. We illustrated GPT-4’s adeptness at unraveling intricate, multi-variable

correlations within the catalysis. Broadly speaking, an experimental workflow may include several stages: synthesis, characterization, testing,

data analysis, iteration of these processes, and/or others. Recent literature examples of human-LLM collaboration in chemical research have

underscored the potential of AI to assist and enhance various facets of experimental chemistry research.12,15–19

Looking ahead, advanced LLM techniques like Retrieval Augmented Generation (RAG)20 will continue to enhance human-LLM collab-

oration on user-defined tasks. For instance, RAG facilitates the seamless incorporation of user-specified datasets, allowing for efficient

access to knowledge relevant to the user’s queries. LLM implementation frameworks, such as LangChain, simplify the development of

RAG-based chatbots.21 These enabling techniques and their ongoing improvements will promote broader, more effective, and deeper

integration of LLMs into chemistry research. They hold the promise of transforming various research tasks, including, but not limited to,

the automation of labor-intensive activities like literature mining, interpretation of experimental results, and directing robotic operations.

Limitations of the study

This study investigated the capabilities of LLMs in analyzing experimental data andmaking predictions on related experiments, in comparison

with human chemists during the post-analysis phase of chemical research. Specifically, it introduced an efficient prompt engineering tech-

nique named OSCoT for tabular data. Despite its contributions, the study has certain limitations. The method was evaluated using the

state-of-the-art GPT-series models and has not been extended to other less advancedmodels. Furthermore, the concept of chain of thought

was utilized to aid in the interpretation of tabular data. However, there remains scope for development in this area, as tabular data are inher-

ently more complex to understand than plain text.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE
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Figure 5. Prediction performances of human experts

(A and B) Prediction of experimental outcomes—specifically, NOx conversion rates above (positive) or below (negative) 95%—of experiments involving binary

(A) or ternary (B) metal-oxide composites.

(C) Summary of the experts’ rationales for making their predictions.
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METHODS DETAILS

The chemistry context and a case study of NH3-SCR catalysis

Specifically, we assess the effectiveness of promptingGPT-4 to analyze and interpret experimental tabular data pertaining to a clearly defined

chemistry problem. This knowledge involves variables from experiments—such as conditions and parameters—and their corresponding out-

comes, all derived from the existing body of literature. The structured experimental data, akin to a JSON format, characterised by keys with

corresponding values in either text or numerical form, is rendered to GPT-4. GPT-4 is then prompted to interpret this data, predict the ex-

pected experimental outcome based on specified features sets, and explain its prediction. This is informed by our recent success in discov-

ering Ce-based metal-oxide composites for selective catalytic reduction of nitrogen oxides with ammonia,22 facilitated by interpretable

machine learning (ML). In that investigation, utilizing SHapley Additive exPlanations (SHAP)methods to interpret the ExtremeGradient Boost-

ing (XGB) ensemble model trained by 5654 samples detailed various aspects and corresponding NOx conversion collected from literature

brings underscoring influence of variables like reaction temperature and metal elements. The feature importance of these features can be

seen as orders of analysis on features, thus embodying deductive relationship in the reasonings paths.

For this purpose, we curated a dataset from existing literature, comprising 1838 unique experiments on NH3-SCR using Ce-based metal-

oxide composites. This dataset encompasses experimental variables such as the catalyst composition (binary and ternary Ce-based metal-

oxide composites, CeM1 and CeM1M2 (M1, M2 =metal element; M1sM2), synthesis parameters, reaction conditions, and experimental NOx

conversion outcomes. We adopted a threshold of 95% NOx conversion to categorize outcomes as ‘‘Positive’’ or ‘‘Negative’’. We designed to

evolve variables in the tabular data within the dataset curated here in the reasoning chain to verify whether theGPT-4 can better interpret data

andmake predictions. In specific, we engagedGPT-4 with the tabular data usingChain-of-Thought (CoT) in an ordered and batchwise and at-

once manner. The context length of memory of GPT-4 is much longer than human and therefore we evaluated CoT prompting strategies

against the performances of human chemists in predicting for the same experiments. These were critically assessed against our domain

expertise and the prevailing consensus in the subject field, offering a comprehensive evaluation of GPT-4’s and the chemists’ predictive

and reasoning capabilities.
Background knowledge of chain-of-thought (CoT) prompting

LLMs are adept at conducting "zero-shot" learning, leveraging knowledge from their extensive training datasets to respond to queries

without needing specific prior examples. However, these models often encounter challenges in complex tasks that require advanced

reasoning and planning. To overcome these hurdles, various strategies such as "few-shot" prompting and other advanced techniques

have been introduced to bolster their capabilities.23 The "Chain of Thought" (CoT) strategy,5 in particular, has demonstrated potential in
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enabling LLMs to process complex tasks through rational and logical reasoning. It breaks down intricate tasks into manageable, sequential

steps. Few-shot CoTs can be used to assist LLMs in tasks that demand a consistent and logical progression, such as common-sense reasoning.

In the realm of zero-shot learning, heuristic prompts like "Let’s think step by step" have been shown to effectively encourage LLMs to ’think

aloud’, thereby enhancing their problem-solving capabilities.23 Further advancements include Automatic CoT (Auto-CoT)24 and self-consis-

tency.25 Auto-CoT simplifies the process of generating question sampling or reasoning paths, while self-consistency aims to improve the reli-

ability and coherence of LLM outputs. These advancements mark significant progress in enhancing the performance and practicality of LLMs.

The application of CoT lies in the interpreted feature importance in the tabular data that embodies clear deductive relationships between

experimental parameters and causal catalytic performance. GPT-4-powered analysis is expected to reveal patterns that signify the varying

levels of influence of different experimental factors in NH3-SCR catalysis. In this analysis, each inference step within the CoT reasoning paths

is analogized to the evaluation of a specific experimental variable in catalysis, providing a structured approach to understanding the data. The

results of this analysis are presented as CoTs, making the reasoning process and conclusions transparent. Our aim is to develop targeted

prompting strategies for GPT-4 to enhance its ability to recognize patterns in structured data and produce outputs formatted as CoTs. These

strategies are designed to guide GPT-4 in systematically identifying and interpreting the statistical relationship in the tabular data.

One-pot vs. ordered-and-structured CoT prompting

LLMs often strugglewith processing excessive context, necessitating careful planning in the provision of context for enhancedperformance.26

Additionally, systematic review or self-reflection can significantly contribute to overall effectiveness.27 Bearing these considerations in mind,

the full features of experiments in tabular form was divided into batches. In this study, the categorization process is determined by feature

importance derived frommachine learning interpretation. Indeed, the sequence of batch input can also be influenced by feature importance,

as identified through heuristic knowledge or statistical techniques such as correlation analysis. The goal was to ensure that, within each batch,

only one experimental parameter varied significantly, while all other parameters remained nearly constant across the samples. For example, in

batch X, all data points (i.e., experiments) featured almost identical synthesis and catalysis conditions but varied in the compositions of the

catalysts. These batches, each emphasizing a single varying experimental parameter, were then sequentially presented to GPT-4. This

approach augmented GPT-4’s analysis depth for individual experimental parameters, ultimately facilitating the generation of more optimal

CoTs.

The batchwise, sequential approach is hereafter termed the ‘‘Ordered-and-Structured’’ (OS)-CoT prompting strategy. It was compared

with a ‘‘One-Pot’’ (OP) prompting strategy, where all data points were inputted simultaneously. The implementation of both CoT prompting

strategies is depicted in Figure 2. The OPCoT approach creates a single CoT in at once by using all available data points. In contrast, the

OSCoT approach sequentially generates multiple CoTs. As each new batch of data points is introduced, a fresh CoT is created, incorporating

the reasoning from the precedingCoT developed in the previous batch. Consequently, theCoTs formedby theOSCoT approach, each build-

ing upon the insights of the last.

Prompts for the generation and application of CoTs

In the web-based ChatGPT user interface, chat sessions are facilitated through user-initiated messages. In this study, we focused not on the

ChatGPT interface but rather on using OpenAI’s application programming interface (API). In the context of the API, it is necessary to format

messages as dialogues involving typically two participant roles: the User (or the API Client) and the Assistant (the AI Model). The User is the

entity, either a person or another system, that sends requests to the API. These requests, or user inputs, are what the AI model responds to.

The Assistant, on the other hand, is the role played by the AI, such as GPT-4, generating responses based on the User’s input. Here, we eval-

uate and compare the performances of both GPT-4 and GPT-3.5 (GPT-3.5-turbo-16k). Notably, we have set the ’’temperature’’ hyperpara-

meter, which influences the model’s prediction randomness, to zero to ensure the most consistent output as possible for the same input.

The effectiveness of LLM-generated responses heavily relies on the quality of task-directive prompts within in-context learning acrossmul-

tiple conversations. Our approach involves integrating various tactics to generate querying prompts. Figure 3 illustrates the user messages

designated asUM1, whichwere used forOSCoTgeneration. Figure S1 depicts the usermessages forOPCoTgeneration, designated asUM2.

Figures S2 and S3 demonstrate the utilization of CoTs to predict the experimental performance of CeM1 and CeM1M2 samples, respectively,

with user messages designated as UM3 and UM4. Additionally, given the token limitations inherent in GPT models, where both assistant

(i.e., GPT) and user messages contribute to the token input capacity, careful selection of data samples is crucial. The protocol for the rational

selection process and the computation of token utilization are detailed in the Supporting Information.

Before eliciting CoTs, careful configuration of in-context content is necessary to guide the cognitive processes of LLMs. The initial inter-

action with UM1, as shown in Figure 3, demonstrates the use of distinct tactics for establishing this setup, identical to those employed for

OPCoT generation using UM2, as presented in Figure S1. Tactics I-IV were utilized for the prompts providing ‘‘Clear Instructions.’’ GPT-4,

initially agnostic to roles, can adopt a specific role when prompted. Consequently, we assigned the role of an NH3-SCR catalysis expert to

GPT-4 for target-oriented tasks using the ’persona’ tactic (I). This was followed by clarifying the input content to enhance GPT-4’s focus

on data points (II). Subsequently, we emphasized generating CoTs with consistent, generalized, and quantitative characteristics to establish

a foundation for subsequent inferences (III). Next, we eliminated unnecessary information and requested reformatted output to streamline

the process and enhance output quality (IV).

Tactics a-c serve the role of ‘‘Decomposing Complex Tasks.’’ In particular, we outlined the overall task (a) and then broke it down into

several simpler component parts to facilitate the generation of CoTs (b). The subsequent user message implemented the ’head-tail’ tactic
iScience 27, 109451, April 19, 2024 9
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(c), placing the most crucial prompts at the beginning and end of the message. This tactic was employed to append data points at the end

during each iteration of CoT generation, as LLMs tend to ’lose focus in the middle’ with lengthy contextual input.28

For using CoTs to infer experimental performance, the initial interaction of UM3 orUM4 (as depicted in Figures S2 and S3, respectively) in

the front-user message for context-aware adaptation employed tactics I, II, IV, and a. These tactics were used to establish the role of the NH3-

SCR expert, specify input material, define output’s structure and format, and outline the general objective. Data points and CoTs were placed

at the end of messages as part of tactic c. Additionally, we employed a cautious tactic termed ‘‘allocating thinking’’ (d), crucial for conducting

comprehensive analysis prior to making decisions. This tactic enhances the use of ‘‘loud thinking,’’ considering all reasoning paths of CoTs. It

also moderates the pace of text completion and prevents exceeding the rate limits, which could lead to execution errors if the server is

queried too quickly.
10 iScience 27, 109451, April 19, 2024
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