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Most studies using adult stem cells (ASCs) and progenitor

cells as potential therapeutics for kidney disorders have been

conducted in models of acute kidney injury, where the

damage mainly affects the tubulointerstitium. The results are

promising, whereas the underlying mechanisms are still

being discussed controversially. Glomerular diseases have

not received as much attention. Likely reasons include the

often insidious onset, rendering the choice of optimal

treatment timing difficult, and the fact that chronic diseases

may require long-term therapy. In this mini review, we

summarize current strategies in adult stem cell-based

therapies for glomerular diseases. In addition, we focus on

possible side effects of stem cell administration that have

been reported recently, that is, profibrotic actions and

maldifferentiation of mesenchymal stem cells.
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DIFFERENT APPROACHES TO STEM CELL-BASED RENAL
THERAPIES

Several investigators have described distinct types of appa-
rently endogenous, resident renal stem/progenitor cells.1–11

Others have investigated strategies to mobilize exogenous
adult stem cells (ASCs) and enhance their engraftment
in renal disease.12–17 Another approach is to isolate ASCs
from extrarenal tissues, expand them in vitro, and inject
them into the recipient, an approach that will be further
elucidated in this review. Finally, given recent evidence that
beneficial effects of ASCs are mostly paracrine,18–25 some
investigators have tested whether the administration of a cell-
free ‘cocktail’ of factors secreted by ASCs, that is, cell culture
supernatants, might be equally effective as whole ASCs.26,27

One of the mechanisms herein has been suggested to be
secreted microparticles enriched in pre-microRNAs, facilitat-
ing miRNA-mediated intercellular communication.28

BONE MARROW IS A RESERVOIR OF REGENERATIVE CELLS
FOR RENAL REPAIR

Bone marrow-derived (stem) cells contribute to cell turnover
and repair in various tissues, including the kidneys.29,30 For
example, differentiation of mouse and rat bone marrow cells
into glomerular cell phenotypes was described in normal and
diseased glomeruli.31–34 Cell culture experiments confirmed
the ability of bone marrow cells to convert into mesangial-
like cells on administration of platelet-derived growth
factor-BB in the presence of type IV collagen.35 Two recent
studies in chronic renal failure obtained promising results
in ameliorating glomerulosclerosis and proteinuria by
administering lineage-negative bone marrow cells 15 days
after 5/6 nephrectomy36 or dedifferentiated fat cells with
characteristics similar to mesenchymal stem cells (MSCs) in
tenascin-C knockout mice with habu snake venom-induced
nephritis.37

Of the three major marrow-derived lineages, MSCs hold
special promise for renal repair because nephrons are largely
of mesenchymal origin. In a model of cisplatin-induced acute
kidney injury (AKI), MSCs were more efficacious than
hematopoietic stem cells in repairing damage.38 In athymic
nude mice with glomerular injury, injected human MSCs
localized to glomeruli and differentiated into mesangial-like
cells.39 One recent publication reports on the protective
effects of MSCs on coculture with adriamycin-treated
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podocytes in vitro (reduction of apoptosis), but injection of
MSCs in vivo did not show regenerative effects in the
adriamycin model of nephropathy.40

CHARACTERIZATION OF MSCs AND THEIR MAIN PROPERTIES

MSCs, or ‘multipotent mesenchymal stromal cell(s)’,41 have
to fulfil consensus criteria regarding their phenotype and
biological behavior.42 Although undisputable criteria defin-
ing MSCs are still not available,43,44 the emerging data render
them strong candidates for human therapies. Potentially
more specific markers for human MSCs have been
described.45–47

MSCs can be cultured without significant ethical concerns
from adult bone marrow aspirates, adipose tissue, or umbi-
lical cord blood,48 and can be expanded under inexpensive
conditions in vitro. Their phenotypic stability is superior to
that of embryonic stem cells, although cytogenetic aberra-
tions in mouse MSCs after several passages in vitro and
sarcoma formation of transduced MSCs in recipient mice
have been observed.49 Others have found human MSCs to
be very resistant against cytogenetic aberrations, probably
because of their increased senescence and thus reduced
proliferation rate under culture conditions.50

Another appealing aspect is that syngeneic MSCs can be
obtained from a patient before a calculated medical risk, that
is, major surgery, and later be re-administered in the case of
organ failure (that is, AKI). In experimental AKI, MSC
injection shortly after disease induction ameliorated the
course of the disease.21,25,26,38,51–55 Even allogeneic transplan-
tation of MSCs seems feasible given their tolerance-inducing
effects and their ability to escape T-cell recognition (reviewed
in McTaggart and Atkinson56). Several preclinical and clinical
studies using MSCs are currently ongoing (reviewed in
Giordano et al.57).

Older studies on MSCs focussed mainly on their ability to
adopt non-mesenchymal phenotypes, that is, neural pre-
cursors and cardiomyocytes. However, methods used to
verify transdifferentiation of MSCs (and ASCs in general)
into other phenotypes in vivo are technically problematic and
prone to misinterpretation.6,25,58–60 In addition, naturally
occurring, but rare, fusion events of ASCs with injured
kidney cells have been observed.61 More recent studies
suggest that MSCs exert most of their effects through
paracrine mechanisms.21,62–64

MSC INJECTION ENHANCES GLOMERULAR HEALING IN A
MODEL OF ACUTE GLOMERULONEPHRITIS

Rat MSCs injected directly into a renal artery can accelerate
recovery from mesangiolytic damage and prevent transient
AKI in a rat model of mesangioproliferative glomerulone-
phritis.63 In contrast, MSC injection into a tail vein was
ineffective, which may be due to MSCs losing their homing
capacity after in vitro culture.65 In inbred Lewis rats, anti-
Thy1.1 nephritis follows an aggravated course with transient
AKI. Again, AKI and mesangiolysis were ameliorated by
syngeneic MSCs. MSCs largely failed to differentiate into

endothelial, mesangial, or monocyte/macrophage-like cells.
Rather, we found that MSCs secreted high amounts of
vascular endothelial growth factor and transforming growth
factor-b1, suggesting that MSCs likely exerted beneficial
effects in glomeruli by paracrine effects.

TRANSPLANTATION OF FULL BONE MARROW OR MSCs CAN
AMELIORATE A MODEL OF CHRONIC GLOMERULONEPHRITIS

Anti-Thy 1.1 nephritis induced in uninephrectomized rats
results in progressive renal failure.66 In this model, bone
marrow contributes mainly to glomerular endothelial cell
regeneration in the weeks following disease induction.67 In
addition, infused bone marrow prevented death of the
nephritic animals.68 Using the same progressive anti-Thy 1.1
nephritis, we investigated the long-term effects of early
administration of syngeneic MSCs into the renal artery in
chronic renal failure.69 Again, MSCs ameliorated early AKI
and reduced glomerular adhesions. After 50 days, proteinuria
had progressed in controls, but stayed low in MSC-treated
animals. Renal function on day 60 in the MSC group was
better than that in medium controls, more glomeruli had
recovered from the initial injury and tubulointerstitial
fibrosis was reduced.

MALDIFFERENTIATION OF MSCs DURING LONG-TERM
FOLLOW-UP OF CHRONIC GLOMERULONEPHRITIS

In the above study,69 at day 60, about 20% of the glomeruli of
MSC rats contained adipocytes apparently derived from the
injected MSCs using various lines of evidence.69 Both adipo-
cytes and their pronounced surrounding fibrosis severely
distorted the normal glomerular morphology (Figure 1).

Despite the maldifferentiation of glomerular MSCs into
adipocytes and the fibrotic response surrounding them,
renal function was better preserved than in controls. This is
likely the consequence of two counteracting effects of MSC
treatment; that is, improved early preservation of glomeruli
during mesangiolysis on one hand versus maldifferentiation
and fibrosis on the other hand. However, the morpho-
logical aspect of glomeruli containing adipocytes strongly
suggests that these glomeruli should exhibit a marked
functional impairment and ultimately develop global
glomerulosclerosis.

Other unwanted stem cell-associated phenomena include
findings in murine lungs, where injected MSCs were trapped,
and, similar to our findings in glomeruli, formed ‘cysts’ with
adjacent collagen deposition, resulting in severe lung
damage.70 Mouse MSC transplantation into infarcted hearts
resulted in extensive bone formation in the myocardium.71

Earlier, less well-documented reports of such unwanted
phenomena include bone marrow transplantation, leading to
the formation of new bone in ‘inappropriate’ locations.72

At present, our novel observation of ‘orthodox MSC
differentiation’ in an ‘unorthodox location’ raises consider-
able concerns about the safety of MSC-based cell thera-
pies. Resolving these concerns will require extensive tests
to evaluate how to prevent such unwanted differentiation.
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So far, no unwanted differentiation of MSCs has been
observed in animals with AKI at 3 months after systemic
MSC injection.54 However, in that study, the MSCs did not
localize to the kidney, but rather migrated to the bone
marrow.

Nevertheless, a recent case report on a patient with severe
lupus nephritis, who had received percutaneous intrarenal
injections of autologous peripheral stem cell preparations in
a private clinic, seems to confirm the possibility of stem cell
maldifferentiation in humans: The cell injections apparently
led to formation of solid renal (and extrarenal) masses
showing angiomyeloproliferative and myeloproliferative
components.73

MSCs IN GENETIC RENAL DISEASES: EXPERIENCES FROM
ALPORT MICE

When mice deficient of the collagen a3(IV)-chain
(‘Alport mice’) were lethally irradiated and then transplanted
with allogeneic unfractionated bone marrow from LacZ-mice
with normal collagen production, or from another Alport
mouse,74,75 only the normal allogeneic bone marrow
improved renal function and diminished fibrosis. LacZ-
positive cells constituted about 10% of the glomerular cells
and were found in podocyte and mesangial cell locations. In a
third study,64 weekly injections of MSCs in the Alport mice
prevented loss of peritubular capillaries and reduced inter-
stitial fibrosis. However, irradiation alone also increases
survival of Alport mice,76 which has sparked a debate on the
role of stem cells in the above studies. Interestingly, even
transfusion of unfractionated wild-type blood into non-
irradiated Alport mice improved both renal phenotype and
survival, as shown by LeBleu and Kalluri.77

In another study, human fetal MSCs were transplanted
intrauterinally into mice deficient for collagen type I a2,
a condition that induces abnormal progressive collagen

deposition in glomeruli.78 Renal engraftment of fetal human
MSCs was only about 1% of total kidney cells, but it reduced
the abnormal collagen type I deposition in 4- to 12-week-old
transgenic mice.78

MSCs CAN INFLUENCE FIBROTIC PROCESSES

We provided first evidence for both a pro- and anti-fibrotic
role of MSCs in renal disease.63,69 Others have described that
bone marrow-derived mesangial cell progenitors from ROP
Os/þ mice, a model of spontaneous glomerulosclerosis, can
transmit glomerulosclerosis when transplanted into con-
genicþ /þ mice.29 In another study, bone marrow-derived
cells differentiated into renal tubulointerstitial myofibroblasts
after ischemia/reperfusion injury.79 There are also a number
of studies documenting the acquisition of a myofibroblast-
like MSC phenotype in chronically injured livers,80 chronic
heart allograft rejection,81 and ovarian cancer.82

OTHER ASCs WITHIN THE GLOMERULUS

Recently, it was noted that human parietal epithelial cells
express the stem cell markers CD24, CD133, CD106, and
stem cell-specific transcription factors.7 On injection into
severe combined immunodeficiency mice, these cells, termed
‘adult parietal epithelial multipotent progenitors’, were
capable of ameliorating AKI and differentiated into tubuli.
In recent work, we have investigated whether parietal cells
have the capability to differentiate into podocytes. Using a
novel transgenic mouse model, parietal epithelial cells were
genetically tagged. With this approach, we could provide the
first definitive clues that in young developing mice, parietal
cells migrate onto the capillary tuft and differentiate into
podocytes83 (Figure 1). Studies using human adult parietal
epithelial multipotent progenitors showed similar findings
in adult mice.84 Understanding the regulation of this
process offers exciting new aspects to approach progressive

*

*
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Figure 1 | Evidence for intraglomerular maldifferentiation of mesenchymal stem cells (MSCs) in Lewis rats with anti-Thy1.1
nephritis on day 60 after disease induction, day 58 after injection of 2� 106 cells into the renal artery and recruitment of parietal
epithelial cells during development. (a) Periodic acid-Schiff staining exhibited ‘vacuolar’ changes (*) that were positive for triglycerides
in Oil Red O staining (not shown). (b) Staining for collagen type IV shows an intense fibrotic area (arrow) around the ‘vacuoles’. Original
magnification: � 400. (c) Recruitment of podocytes from parietal cells in juvenile mice Cre recombination was induced in newborn
triple transgenic PEC-rtTA/LC1/R26R mice by administration of doxycyclin for 3 days. After 6 weeks, the mice were culled and the glomeruli
were double-stained with an enzymatic X-gal (blue)/eosin (red) staining to visualize genetically tagged cells. As expected, parietal cells
lining the inner side of Bowman’s capsule were genetically tagged (black arrowheads). Close to the vascular pole, genetically tagged
transitional cells could be identified (arrow with tails). On the capillary convolute, a genetically tagged podocyte can be seen (arrow),
which was recruited from parietal cells.
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glomerular diseases. Nevertheless, in this context, it appeared
as if progenitor cells once again showed unwanted effects:
Smeets et al.11 could demonstrate a contribution of glome-
rular progenitor cells to hyperplastic lesions in crescentic
glomerulonephritis.

In addition to adult parietal epithelial multipotent
progenitors, extraglomerular mesangial precursor cells can
invade the glomerulus after damage from the hilar pole juxta-
glomerular region and contribute to mesangial restitution.85

Whether these cells represent ASCs is currently unknown.

CONCLUSION

MSCs have now been firmly established as sources for
protective factors mediating paracrine effects,21,62–64 support-
ing the evolving concept of protection rather than differ-
entiation.18 Unwanted side effects include the potentially
proangiogenic role of MSCs in tumor formation and adop-
tion of unwanted phenotypes (‘maldifferentiation’),69,71,73

which need to be investigated more systematically in the
future. Alternatively, instead of administering cultured MSCs,
enhanced recruitment of endogenous MSCs might help to
avoid maldifferentiation.71 Once MSC trafficking is more
completely understood, other strategies aiming at increasing/
inducing homing of endogenous MSCs to nephritic glomer-
uli should be assessed.86 Another approach is to manipulate
MSCs in vitro. For example, hypoxic preconditioning
augments the angiogenic potential of cultured MSCs through
increased vascular endothelial growth factor expression.87

Despite the above concerns, the high potential of MSCs
for solid organ and glomerular repair, in particular, cannot
be denied.

DISCLOSURE
All the authors declared no competing interests.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement no. HEALTH-F5-2008-223007
STAR-TREK and from the German Research Foundation
(Deutsche Forschungsgemeinschaft), grant SFB TRR57.

REFERENCES
1. Kitamura S, Yamasaki Y, Kinomura M et al. Establishment and

characterization of renal progenitor like cells from S3 segment of

nephron in rat adult kidney. FASEB J 2005; 19: 1789–1797.
2. Bussolati B, Bruno S, Grange C et al. Isolation of renal progenitor cells

from adult human kidney. Am J Pathol 2005; 166: 545–555.
3. Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like

tubular cells that participate in the regeneration processes of the kidney.

J Am Soc Nephrol 2003; 14: 3138–3146.
4. Oliver JA, Maarouf O, Cheema FH et al. The renal papilla is a niche for

adult kidney stem cells. J Clin Invest 2004; 114: 795–804.
5. Challen GA, Bertoncello I, Deane JA et al. Kidney side population reveals

multilineage potential and renal functional capacity but also cellular

heterogeneity. J Am Soc Nephrol 2006; 17: 1896–1912.
6. Iwatani H, Ito T, Imai E et al. Hematopoietic and nonhematopoietic

potentials of Hoechst(low)/side population cells isolated from adult rat

kidney. Kidney Int 2004; 65: 1604–1614.
7. Sagrinati C, Netti GS, Mazzinghi B et al. Isolation and characterization of

multipotent progenitor cells from the Bowman’s capsule of adult human

kidneys. J Am Soc Nephrol 2006; 17: 2443–2456.

8. Dekel B, Zangi L, Shezen E et al. Isolation and characterization of
nontubular sca-1+lin- multipotent stem/progenitor cells from adult
mouse kidney. J Am Soc Nephrol 2006; 17: 3300–3314.

9. Gupta S, Verfaillie C, Chmielewski D et al. Isolation and characterization
of kidney-derived stem cells. J Am Soc Nephrol 2006; 17: 3028–3040.

10. Oliver JA, Klinakis A, Cheema FH et al. Proliferation and migration of
label-retaining cells of the kidney papilla. J Am Soc Nephrol 2009; 20:
2315–2327.

11. Smeets B, Angelotti ML, Rizzo P et al. Renal progenitor cells contribute
to hyperplastic lesions of podocytopathies and crescentic
glomerulonephritis. J Am Soc Nephrol 2009; 20: 2593–2603.

12. Son BR, Marquez-Curtis LA, Kucia M et al. Migration of bone marrow
and cord blood mesenchymal stem cells in vitro is regulated by
stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met
axes and involves matrix metalloproteinases. Stem Cells 2006; 24:
1254–1264.

13. Rookmaaker MB, Verhaar MC, de Boer HC et al. Met-RANTES reduces
endothelial progenitor cell homing to activated (glomerular)
endothelium in vitro and in vivo. Am J Physiol Renal Physiol 2007;
293: F624–F630.

14. Shi H, Patschan D, Dietz GP et al. Glial cell line-derived neurotrophic
growth factor increases motility and survival of cultured mesenchymal
stem cells and ameliorates acute kidney injury. Am J Physiol Renal Physiol
2008; 294: F229–F235.

15. Herrera MB, Bussolati B, Bruno S et al. Exogenous mesenchymal stem cells
localize to the kidney by means of CD44 following acute tubular injury.
Kidney Int 2007; 72: 430–441.

16. Stokman G, Leemans JC, Stroo I et al. Enhanced mobilization of bone
marrow cells does not ameliorate renal fibrosis. Nephrol Dial Transplant
2008; 23: 483–491.

17. Togel F, Isaac J, Westenfelder C. Hematopoietic stem cell mobilization-
associated granulocytosis severely worsens acute renal failure. J Am Soc
Nephrol 2004; 15: 1261–1267.

18. Krause D, Cantley LG. Bone marrow plasticity revisited: protection
or differentiation in the kidney tubule? J Clin Invest 2005; 115:
1705–1708.

19. Kinnaird T, Stabile E, Burnett MS et al. Marrow-derived stromal cells
express genes encoding a broad spectrum of arteriogenic cytokines
and promote in vitro and in vivo arteriogenesis through paracrine
mechanisms. Circ Res 2004; 94: 678–685.

20. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators.
J Cell Biochem 2006; 98: 1076–1084.

21. Togel F, Hu Z, Weiss K et al. Administered mesenchymal stem cells
protect against ischemic acute renal failure through differentiation-
independent mechanisms. Am J Physiol Renal Physiol 2005; 289: F31–F42.

22. Prockop DJ. ‘Stemness’ does not explain the repair of many tissues by
mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther
2007; 82: 241–243.

23. Kinnaird T, Stabile E, Burnett MS et al. Local delivery of marrow-derived
stromal cells augments collateral perfusion through paracrine
mechanisms. Circulation 2004; 109: 1543–1549.

24. Duffield JS, Bonventre JV. Kidney tubular epithelium is restored without
replacement with bone marrow-derived cells during repair after ischemic
injury. Kidney Int 2005; 68: 1956–1961.

25. Duffield JS, Park KM, Hsiao LL et al. Restoration of tubular epithelial cells
during repair of the postischemic kidney occurs independently of bone
marrow-derived stem cells. J Clin Invest 2005; 115: 1743–1755.

26. Bi B, Schmitt R, Israilova M et al. Stromal cells protect against acute
tubular injury via an endocrine effect. J Am Soc Nephrol 2007; 18:
2486–2496.

27. Hung SC, Pochampally RR, Chen SC et al. Angiogenic effects of human
multipotent stromal cell conditioned medium activate the PI3K-Akt
pathway in hypoxic endothelial cells to inhibit apoptosis, increase
survival, and stimulate angiogenesis. Stem Cells 2007; 25: 2363–2370.

28. Chen TS, Lai RC, Lee MM et al. Mesenchymal stem cell secretes
microparticles enriched in pre-microRNAs. Nucleic Acids Res 2010; 38:
215–224.

29. Cornacchia F, Fornoni A, Plati AR et al. Glomerulosclerosis is transmitted
by bone marrow-derived mesangial cell progenitors. J Clin Invest 2001;
108: 1649–1656.

30. Poulsom R, Forbes SJ, Hodivala-Dilke K et al. Bone marrow contributes
to renal parenchymal turnover and regeneration. J Pathol 2001; 195:
229–235.

31. Imasawa T, Utsunomiya Y, Kawamura T et al. The potential of bone
marrow-derived cells to differentiate to glomerular mesangial cells.
J Am Soc Nephrol 2001; 12: 1401–1409.

Kidney International Supplements (2011) 1, 68–73 71

U Kunter et al.: Mesenchymal stem cells in glomerular disease m i n i r e v i e w



32. Ito T, Suzuki A, Imai E et al. Bone marrow is a reservoir of repopulating
mesangial cells during glomerular remodeling. J Am Soc Nephrol 2001;
12: 2625–2635.

33. Rookmaaker MB, Smits AM, Tolboom H et al. Bone-marrow-derived cells
contribute to glomerular endothelial repair in experimental
glomerulonephritis. Am J Pathol 2003; 163: 553–562.

34. Abe-Yoshio Y, Abe K, Miyazaki M et al. Involvement of bone marrow-
derived endothelial progenitor cells in glomerular capillary repair in habu
snake venom-induced glomerulonephritis. Virchows Arch 2008; 453:
97–106.

35. Suzuki A, Iwatani H, Ito T et al. Platelet-derived growth factor plays a
critical role to convert bone marrow cells into glomerular mesangial-like
cells. Kidney Int 2004; 65: 15–24.

36. Alexandre CS, Volpini RA, Shimizu MH et al. Lineage-negative bone
marrow cells protect against chronic renal failure. Stem Cells 2009; 27:
682–692.

37. Nur R, Fukuda N, Matsumoto T et al. Implantation of dedifferentiated
fat cells ameliorates habu snake venom-induced chronic renal
dysfunction in tenascin-C-deficient mice. Nephron Exp Nephrol 2008;
110: e91–e98.

38. Morigi M, Imberti B, Zoja C et al. Mesenchymal stem cells are renotropic,
helping to repair the kidney and improve function in acute renal failure.
J Am Soc Nephrol 2004; 15: 1794–1804.

39. Wong CY, Cheong SK, Mok PL et al. Differentiation of human
mesenchymal stem cells into mesangial cells in post-glomerular injury
murine model. Pathology 2008; 40: 52–57.

40. Magnasco A, Corselli M, Bertelli R et al. Mesenchymal stem cells
protective effect in adriamycin model of nephropathy. Cell Transplant
2008; 17: 1157–1167.

41. Horwitz EM, Le Blanc K, Dominici M et al. Clarification of the
nomenclature for MSC: The International Society for Cellular Therapy
position statement. Cytotherapy 2005; 7: 393–395.

42. Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining
multipotent mesenchymal stromal cells. The International Society for
Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

43. Wagner W, Ho AD. Mesenchymal stem cell preparations—comparing
apples and oranges. Stem Cell Rev 2007; 3: 239–248.

44. Wagner W, Feldmann Jr RE, Seckinger A et al. The heterogeneity of
human mesenchymal stem cell preparations—evidence from
simultaneous analysis of proteomes and transcriptomes. Exp Hematol
2006; 34: 536–548.

45. Wiese C, Rolletschek A, Kania G et al. Nestin expression—a property of
multi-lineage progenitor cells? Cell Mol Life Sci 2004; 61: 2510–2522.

46. Martinez C, Hofmann TJ, Marino R et al. Human bone marrow
mesenchymal stromal cells express the neural ganglioside GD2: a novel
surface marker for the identification of MSCs. Blood 2007; 109:
4245–4248.

47. Buhring HJ, Battula VL, Treml S et al. Novel markers for the prospective
isolation of human MSC. Ann NY Acad Sci 2007; 1106: 262–271.

48. Le Blanc K, Pittenger M. Mesenchymal stem cells: progress toward
promise. Cytotherapy 2005; 7: 36–45.

49. Tolar J, Nauta AJ, Osborn MJ et al. Sarcoma derived from cultured
mesenchymal stem cells. Stem Cells 2007; 25: 371–379.

50. Zhang ZX, Guan LX, Zhang K et al. Cytogenetic analysis of human bone
marrow-derived mesenchymal stem cells passaged in vitro. Cell Biol Int
2007; 31: 645–648.

51. Herrera MB, Bussolati B, Bruno S et al. Mesenchymal stem cells contribute
to the renal repair of acute tubular epithelial injury. Int J Mol Med 2004;
14: 1035–1041.

52. Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells,
are the major source for regeneration in postischemic kidney. J Clin Invest
2005; 115: 1756–1764.

53. Qian H, Yang H, Xu W et al. Bone marrow mesenchymal stem cells
ameliorate rat acute renal failure by differentiation into renal tubular
epithelial-like cells. Int J Mol Med 2008; 22: 325–332.

54. Togel F, Cohen A, Zhang P et al. Autologous and allogeneic marrow
stromal cells are safe and effective for the treatment of acute kidney
injury. Stem Cells Dev 2009; 18: 475–485.

55. Humphreys BD, Bonventre JV. Mesenchymal stem cells in acute kidney
injury. Annu Rev Med 2008; 59: 311–325.

56. McTaggart SJ, Atkinson K. Mesenchymal stem cells: immunobiology and
therapeutic potential in kidney disease. Nephrology (Carlton) 2007; 12:
44–52.

57. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the
patient’s bedside: an update on clinical trials with mesenchymal stem
cells. J Cell Physiol 2007; 211: 27–35.

58. Terada N, Hamazaki T, Oka M et al. Bone marrow cells adopt the
phenotype of other cells by spontaneous cell fusion. Nature 2002;
416: 542–545.

59. Burns TC, Ortiz-Gonzalez XR, Gutierrez-Perez M et al. Thymidine analogs
are transferred from prelabeled donor to host cells in the central nervous
system after transplantation: a word of caution. Stem Cells 2006; 24:
1121–1127.

60. Guo JK, Cheng EC, Wang L et al. The commonly used beta-actin-GFP
transgenic mouse strain develops a distinct type of glomerulosclerosis.
Transgenic Res 2007; 16: 829–834.

61. Li L, Truong P, Igarashi P et al. Renal and bone marrow cells fuse after
renal ischemic injury. J Am Soc Nephrol 2007; 18: 3067–3077.

62. Majumdar MK, Thiede MA, Haynesworth SE et al. Human marrow-derived
mesenchymal stem cells (MSCs) express hematopoietic cytokines
and support long-term hematopoiesis when differentiated toward
stromal and osteogenic lineages. J Hematother Stem Cell Res 2000;
9: 841–848.

63. Kunter U, Rong S, Djuric Z et al. Transplanted mesenchymal stem
cells accelerate glomerular healing in experimental glomerulonephritis.
J Am Soc Nephrol 2006; 17: 2202–2212.

64. Ninichuk V, Gross O, Segerer S et al. Multipotent mesenchymal stem
cells reduce interstitial fibrosis but do not delay progression of chronic
kidney disease in collagen4A3-deficient mice. Kidney Int 2006; 70:
121–129.

65. Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient
homing to the bone marrow but lose homing ability following culture.
Leukemia 2003; 17: 160–170.

66. Ostendorf T, Rong S, Boor P et al. Antagonism of PDGF-D by human
antibody CR002 prevents renal scarring in experimental
glomerulonephritis. J Am Soc Nephrol 2006; 17: 1054–1062.

67. Ikarashi K, Li B, Suwa M et al. Bone marrow cells contribute to
regeneration of damaged glomerular endothelial cells. Kidney Int 2005;
67: 1925–1933.

68. Li B, Morioka T, Uchiyama M et al. Bone marrow cell infusion ameliorates
progressive glomerulosclerosis in an experimental rat model. Kidney Int
2006; 69: 323–330.

69. Kunter U, Rong S, Boor P et al. Mesenchymal stem cells prevent
progressive experimental renal failure but maldifferentiate into
glomerular adipocytes. J Am Soc Nephrol 2007; 18: 1754–1764.

70. Anjos-Afonso F, Siapati EK, Bonnet D. In vivo contribution of murine
mesenchymal stem cells into multiple cell-types under minimal damage
conditions. J Cell Sci 2004; 117: 5655–5664.

71. Breitbach M, Bostani T, Roell W et al. Potential risks of bone
marrow cell transplantation into infarcted hearts. Blood 2007; 110:
1362–1369.

72. Urist MR, Mc LF. Osteogenetic potency and new-bone formation by
induction in transplants to the anterior chamber of the eye. J Bone Joint
Surg Am 1952; 34-A: 443–476.

73. Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative
lesions following autologous stem cell therapy. J Am Soc Nephrol 2010;
21: 1218–1222.

74. Sugimoto H, Mundel TM, Sund M et al. Bone-marrow-derived stem cells
repair basement membrane collagen defects and reverse genetic kidney
disease. Proc Natl Acad Sci USA 2006; 103: 7321–7326.

75. Prodromidi EI, Poulsom R, Jeffery R et al. Bone marrow-derived
cells contribute to podocyte regeneration and amelioration of renal
disease in a mouse model of Alport syndrome. Stem Cells 2006; 24:
2448–2455.

76. Katayama K, Kawano M, Naito I et al. Irradiation prolongs survival of
Alport mice. J Am Soc Nephrol 2008; 19: 1692–1700.

77. LeBleu VS, Kalluri R. Stem cell-based therapy for glomerular diseases:
an evolving concept. J Am Soc Nephrol 2008; 19: 1621–1623.

78. Guillot PV, Cook HT, Pusey CD et al. Transplantation of human fetal
mesenchymal stem cells improves glomerulopathy in a collagen type I
alpha 2-deficient mouse. J Pathol 2008; 214: 627–636.

79. Broekema M, Harmsen MC, van Luyn MJ et al. Bone marrow-derived
myofibroblasts contribute to the renal interstitial myofibroblast
population and produce procollagen I after ischemia/reperfusion in rats.
J Am Soc Nephrol 2007; 18: 165–175.

80. di Bonzo LV, Ferrero I, Cravanzola C et al. Human mesenchymal stem cells
as a two-edged sword in hepatic regenerative medicine: engraftment
and hepatocyte differentiation versus profibrogenic potential. Gut 2008;
57: 223–231.

81. Wu GD, Nolta JA, Jin YS et al. Migration of mesenchymal stem cells to
heart allografts during chronic rejection. Transplantation 2003; 75:
679–685.

72 Kidney International Supplements (2011) 1, 68–73

m i n i r e v i e w U Kunter et al.: Mesenchymal stem cells in glomerular disease



82. Jeon ES, Moon HJ, Lee MJ et al. Cancer-derived lysophosphatidic acid
stimulates differentiation of human mesenchymal stem cells to
myofibroblast-like cells. Stem Cells 2008; 26: 789–797.

83. Appel D, Kershaw DB, Smeets B et al. Recruitment of podocytes
from glomerular parietal epithelial cells. J Am Soc Nephrol 2009; 20:
333–343.

84. Ronconi E, Sagrinati C, Angelotti ML et al. Regeneration of glomerular
podocytes by human renal progenitors. J Am Soc Nephrol 2009; 20:
322–332.

85. Hugo C, Shankland SJ, Bowen-Pope DF et al. Extraglomerular origin of the
mesangial cell after injury. A new role of the juxtaglomerular apparatus.
J Clin Invest 1997; 100: 786–794.

86. Fox JM, Chamberlain G, Ashton BA et al. Recent advances into the
understanding of mesenchymal stem cell trafficking. Br J Haematol 2007;
137: 491–502.

87. Potier E, Ferreira E, Andriamanalijaona R et al. Hypoxia affects
mesenchymal stromal cell osteogenic differentiation and angiogenic
factor expression. Bone 2007; 40: 1078–1087.

Kidney International Supplements (2011) 1, 68–73 73

U Kunter et al.: Mesenchymal stem cells in glomerular disease m i n i r e v i e w


	Mesenchymal stem cells as a therapeutic approach to glomerular diseases: benefits and risks
	DIFFERENT APPROACHES TO STEM CELL-BASED RENAL THERAPIES
	BONE MARROW IS A RESERVOIR OF REGENERATIVE CELLS FOR RENAL REPAIR
	CHARACTERIZATION OF MSCs AND THEIR MAIN PROPERTIES
	MSC INJECTION ENHANCES GLOMERULAR HEALING IN A MODEL OF ACUTE GLOMERULONEPHRITIS
	TRANSPLANTATION OF FULL BONE MARROW OR MSCs CAN AMELIORATE A MODEL OF CHRONIC GLOMERULONEPHRITIS
	MALDIFFERENTIATION OF MSCs DURING LONG-TERM FOLLOW-UP OF CHRONIC GLOMERULONEPHRITIS
	MSCs IN GENETIC RENAL DISEASES: EXPERIENCES FROM ALPORT MICE
	MSCs CAN INFLUENCE FIBROTIC PROCESSES
	OTHER ASCs WITHIN THE GLOMERULUS
	Figure 1 Evidence for intraglomerular maldifferentiation of mesenchymal stem cells (MSCs) in Lewis rats with anti-Thy1.1 nephritis on day 60 after disease induction, day 58 after injection of 2times106 cells into the renal artery and recruitment of pariet
	CONCLUSION
	DISCLOSURE
	ACKNOWLEDGMENTS
	REFERENCES




