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Abstract

Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they
gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an
ecoinformatics approach to pest management research, which attempts to harness these data to answer questions
about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study.
Consultant-derived data satisfied a ‘positive control’ test for data quality by clearly resolving the expected negative
relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by
the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus
densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use
by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the
dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were
willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest
management research have strengths and weaknesses that complement those of traditional, experimental
approaches; combining these methods can contribute to enhanced agricultural productivity.
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Introduction

A growing world population will necessitate a substantial
increase in global agricultural production [1]. Part of this
increase can come from more effective suppression of
damaging pest populations [2]. At the same time, indiscriminate
use of pesticides is undesirable, because of negative
consequences for human and environmental health, and
because of the potential to accelerate the evolution of
resistance and disrupt ecosystem services contributed by
natural enemies [3]. Thus, we need an efficient means of
distinguishing between conditions under which pests cause
yield shortfalls versus conditions under which crop plants can
compensate for herbivory, rendering pesticide applications or
other pest control interventions unnecessary.

Researchers have traditionally relied on manipulative
experiments to identify conditions under which pests depress
yield. Although experimentation will continue to be crucial,
alternatives to experimentation that have hitherto received little
attention may play a complementary role. In particular,
observational approaches may be useful in providing greater

statistical power for detecting the small, but economically
important, yield losses that drive farmer decision-making [4].
Key yield losses are often small in magnitude for two reasons.
First, most crops are impacted by many pests, including
diverse arthropod, nematode, pathogen, and weed populations,
each of which may generate small effects, but which can,
collectively, depress yield substantially. Because pests are
generally managed individually or in small groups rather than in
aggregate, we need to resolve individual effects. Second, to
minimize unnecessary pesticide applications, researchers must
be able to resolve the yield loss decision point at which a profit
maximizing farmer will opt to apply a pesticide to protect crop
yield (the “economic injury level”; [5]). Because the cost of a
pesticide application is often small relative to the value of the
crop, this decision point is often reached when only a tiny loss
of yield (ca. 2%) is threatened; experiments generally do not
successfully resolve effects of this size [4]. In some cases,
researchers have formed consortia to replicate experiments
extensively in space and time, creating composite data sets
that enhance statistical power. This approach has had notable
success [6-8], but can only be used when substantial research
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resources are available, and as such can be used only for the
most important pests in developed countries and perhaps only
very infrequently in developing countries.

Ecoinformatics, which involves mining pre-existing data
sources to generate large, observational data sets, holds
promise as a lower-cost means of generating higher-resolution
insights into pest impacts on crop yield. Farmers monitor pest
densities in their crops to guide real-time pest management
decision-making. This vast, decentralized data collection effort
can be combined with farmer data on realized crop yields to
generate large observational datasets quantifying crop-pest
interactions.

Here we present a proof of concept for the application of
ecoinformatics to the study of pest impacts on crop yield. A
long-standing controversy surrounds the possible impact of
Lygus hesperus Knight (Heteroptera: Miridae) on cotton
production in the Western United States. L. hesperus prefer to
feed on young flower buds on cotton, and plants may respond
by abscising damaged buds [9-11]). However, decades of
experimentation, focused nearly exclusively on mid-season
(July) L. hesperus herbivory, have resolved yield effects only at
high pest densities (>8 insects per standard sample of 50
sweeps; [12-17]). Cotton plants exhibit plasticity in growth;
thus, plants can potentially compensate for herbivory that
causes early flower bud abscission by increasing the
subsequent production of ‘replacement’ flower buds, although
this may delay fruit maturation and crop harvest [15,18,19].
Farmers, however, remain skeptical of university
recommendations for high L. hesperus treatment thresholds.
Farmers may be unwilling to extend the cotton growing season
into the fall, when a variety of crop risks may be present, and
generally apply insecticides at much lower densities (2-4 L.
hesperus per sample). Furthermore, farmers generally use a
sliding threshold: earlier in the growing season (pre-flowering;
roughly June in California), farmers often use a threshold near
2 bugs per sample, whereas later in the growing season
(roughly July), farmers often use a threshold near 4 bugs per
sample. Farmers rarely suppress L. hesperus after early
August, when flower buds have diminished chances of
developing to mature fruit prior to harvest.

A renewed focus on L. hesperus is timely for two reasons.
First, a new cotton species, Gossypium barbadense L. (“Pima
cotton”), has replaced Gossypium hirsutum L. (“upland cotton”)
as the dominant species cultivated in California, and it is not
known if the impacts of L. hesperus on these two cotton
species are similar. Second, the widespread adoption of
transgenic cotton cultivars expressing endotoxin genes from
Bacillus thuringiensis and the associated withdrawal of broad-
spectrum insecticides targeting lepidopteran pests has resulted
in the emergence of Lygus spp. and other hemipteran pests as
primary threats in many of the world’s cotton producing regions
[8,20,21].

To build a proof of concept, we will first address a primary
perceived obstacle to this approach, namely that farmer- or
consultant-derived data would be too heterogeneous or of
insufficient basic quality to reveal signals of herbivore impact
on crop performance. Although L. hesperus impact on cotton
yield is controversial, there is no question that L. hesperus

contributes to flower bud abscission [9-11,15,22,23]. We will
therefore ask if a farmer-derived dataset can resolve this
expected effect as a positive control for data quality. We will
then use the farmer-derived data set to evaluate the possibility
that crop sensitivity varies across the growing season by
exploring associations between early- (June) and mid-season
(July) herbivory by L. hesperus and (i) cotton yield and (ii) the
time when farmers opt to terminate crop growth in preparation
for harvest.

Materials and Methods

The data set was built exclusively by collecting pre-existing
data derived from observations of commercial cotton
production in California’s San Joaquin Valley. Data streams
included the following:

• Lygus hesperus densities. L. hesperus population
densities were sampled by four independent pest control
consulting firms, who are employed by farmers to provide
pest monitoring services and control recommendations. The
final data set included observations for 1432 cotton crops
produced by 35 farms between 1997 and 2008. All
consultants used the same standard sampling procedure: an
approximately weekly series (typically 6-12) of sweep net
samples, each comprising 50 swings of a sweep net across
the top of the plant canopy. Successive samples were
transformed into mean L. hesperus density estimates by
calculating the area under the curve of L. hesperus density
versus time, using linear interpolation between successive
density estimates and dividing by the total duration of the
sampling interval; this accounted for the sometimes uneven
time intervals between successive samples. Counts reflect
all motile stages combined, as not all consultants reported
separate counts of nymphs and adults.

• Cotton yield. Farmers shared data on cotton lint yield
(kg/ha) for years for which L. hesperus density estimates
were available. Yield data were available for 1118 cotton
crops.

• Historical cotton yield. Field to field variation in yield
potential across the cotton growing region of the San
Joaquin Valley (from Madera and Merced Counties in the
north to Kern County in the south) can be substantial, due to
differences in soil quality and local climate. Stable
differences in farmer growing practices also contribute to
between-field variation in yield. To control statistically for
variable yield potential, we requested from farmers records
on historical cotton yields for each of their fields as far back
as their records permitted, or until 1990. With these historical
data, the following quantities were calculated:

Expected yield deviation = ∑i≠ f
yi− yi

N ,

where yi is the yield observed in a particular field during year
i, yi, is the mean yield observed for year i across the entire San
Joaquin Valley, as reported by the USDA (http://
www.nass.usda.gov), and N is the number of years between
1990 and 2008, other than the focal year, year f, for which yield
estimates were available for the cotton species in question;
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Observed yield deviation =y f −y f ,

where yf is the yield observed for a particular field-year for
which L. hesperus density estimates were available and y f  is
the mean yield observed for that year across the entire San
Joaquin Valley; and finally:

Yield gap = Observed yield deviation - Expected yield return.

The yield gap was the response variable for analyses of yield
effects.

• Flower bud retention. Pest management consultants and,
in some cases, independent agronomy consultants provided
estimates of flower bud retention, produced by scoring
retention at the first position on fruiting branches located on
the top five mainstem nodes of a sample of cotton plants.

• Pesticide applications. The dates and pest targets of all
pesticide applications were obtained from consultants and
the California Department of Pesticide Regulation’s on-line
Pesticide Use Reporting system (http://www.cdpr.ca.gov/
docs/pur/purmain.htm). Pesticide applications made at
planting (i.e., aldicarb) provided data on planting date.

• Plant growth regulator applications. The plant growth
regulator mepiquat chloride is used by farmers to shift the
plant’s resource allocations from vegetative to reproductive
growth, which may enhance yield [24]. Because L. hesperus
herbivory can trigger increased use of mepiquat chloride
[25], we obtained data on mepiquat chloride from
consultants.

• Date of first application of chemical defoliant. Cotton must
be defoliated prior to harvest. The date of first defoliant
application was used as an indicator of the time when the
farmer opted to terminate the crop. Defoliant application
dates were obtained from pest control consultants and the
California Department of Pesticide Regulation. To combine
data across years, dates were expressed as [(date of first
defoliant application) – (mean date of first defoliant
application for the year in question)]; thus, positive numbers
indicate application dates that were later than average.
These data were used to quantify farmer willingness to
extend the growing season in response to L. hesperus
damage to allow for plant compensation.

• Weather. Temperature and precipitation have the potential
to affect both cotton yield and L. hesperus populations. We
obtained the mean monthly temperature and precipitation
from weather stations in the San Joaquin Valley from the
National Oceanic and Atmospheric Administration's National
Climatic Data Center (http://www.ncdc.noaa.gov). For each
record in the database, we used climatic data from the
nearest weather station (mean ± SD distance to station, 13.1
± 7.2 km) with available data for that year.

Data were managed in a relational database programmed in
SQL Server and accessed using an interface designed by a
private software developer (“Cottonformatics”, Ten2Eleven
Business Solutions).

Statistical analysis
Both the empirical record and theoretical treatments of plant-

animal interactions suggest that the relationship between
herbivore densities and host plant performance will often be
non-linear, with losses accelerating as plant damage increases
[26-28]. L. hesperus impacts on cotton were therefore analyzed
using a flexible non-linear regression method, generalized
additive models (GAM), implemented using program mgcv
1.7-6 in R [29]. GAMs are attractive because they allow the
data “to speak for themselves” in suggesting the form of the
function, rather than imposing a particular model (linear,
quadratic, etc.) on the data. GAMs also provide an objective
means of avoiding the over-fitting of the data (i.e., fitting the
noise instead of the underlying trends) through a process that
penalizes excessive “wiggliness” of the resulting function, as
quantified by the second derivative of the curve (generalized
cross validation). To keep the analyses as transparent as
possible, we opted to analyze quite simple models; three
response variables (flower bud retention, yield gap, and the
date of the first application of defoliant) were analyzed
separately, and in all cases the models included main effects of
farm, year, Gossypium species, and mean L. hesperus
densities during specified time intervals. To model the date of
the first defoliant application, we also included mean local
monthly temperature and precipitation variables. The overall
modeling approach was semi-parametric: only the L. hesperus
density variables were smoothed, using non-parametric thin
plate regression splines, with the remaining variables treated
as traditional linear additive effects in the usual parametric
fashion. All analyses employed a Gaussian distribution and the
identity link function.

To explore the possibility that other factors, correlated with
both L. hesperus densities and cotton yield, might create
spurious associations between L. hesperus and cotton
performance, we explored GAM models including other
variables. Because not all variables were measured for all
records, we could not build a single model with all factors
considered simultaneously without sacrificing many data
records. We therefore conducted a series of analyses to
explore different sets of possible confounders. Although it is not
possible to exclude the possibility of unmeasured confounding
variables, we attempted to search diligently for possible hidden
sources of causality. Because insecticides applied to control L.
hesperus may trigger secondary pest outbreaks that could
depress yield [30], we explored a model including the season-
long number of insecticide applications that targeted L.
hesperus. Because wet years are thought to be associated with
both higher L. hesperus densities [31] and delayed planting,
causing lower yields, we explored a model that included
planting date, expressed as a deviation from the mean planting
date for the year in question. We also explored a model that
included mean local monthly temperature and precipitation
values. Because L. hesperus densities may be lower in larger
fields [32,33], and because larger fields may be correlated with
agricultural intensification, and thus be associated with higher
yields, we explored a model that included field size (ha).
Because L. hesperus densities might be correlated with
densities of other herbivores, including spider mites
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(Tetranychus spp.), aphids (Aphis gossypii Glover), whiteflies
(Bemisia tabaci [Gennadius] and Trialeurodes vaporariorum
[Westwood]), thrips (Frankliniella occidentalis [Pergande]), and
Lepidopteran caterpillars (various, but primarily Spodoptera
spp.), we explored a model that included the numbers of
pesticide applications targeting each of these herbivores.
Finally, because L. hesperus herbivory may change plant
growth form, eliciting changes in farmer decisions to apply
plant growth regulators (mepiquat chloride) or defoliants, each
of which may influence yield [25], we explored a model
including the number of these applications.

An additional concern is that our GAM analyses might not
isolate correctly the associations between June versus July L.
hesperus populations and cotton yield if insect densities are
strongly correlated in time. June and July L. hesperus densities
were positively correlated across our full data set, but the
association was not tight, perhaps in part due to insecticide use
(Pearson’s correlation, R2 = 0.29, N = 1432, P < 0.0001). To
determine if this modest correlation might be generating
interpretational errors, we performed stepwise multiple linear
regression analyses examining the effects of June, July, and
June x July L. hesperus densities on yield. By comparing
different orders of variable inclusion, we evaluated the
possibility that L. hesperus densities during June might mask
important correlates of later herbivory. This analysis also
allowed us to test for an interaction between June and July L.
hesperus (GAMs assume additivity).

Results

A positive control for data quality
The quality of the farmer-derived data was sufficiently high

that the expected negative impact of L. hesperus on flower bud
retention was clearly revealed (Figure 1). During June, the full
GAM model explained 59.5% of the deviance (Table 1),
roughly half of which was attributable to L. hesperus (a model
including only L. hesperus densities explained 30.5% of the
deviance). In July the full model similarly explained 66% of the
deviance (Table 2), but only a quarter of this was now
attributable to L. hesperus (a model including only L. hesperus
explained 16.4% of the deviance). Thus, the ecoinformatics
data set passed this initial “positive control” test. The flower
bud retention data furthermore suggested that the underlying
damage generated by L. hesperus was similar in June and
July; in both cases, flower bud retention dropped by ca. 10% as
L. hesperus densities increased to ca. 4 insects/sample.

Lygus hesperus densities and Gossypium yield
The ecoinformatics data set revealed an association

between early-season (June) L. hesperus herbivory and
depressed cotton yield that is expressed even at very low
herbivore densities (1-2 L. hesperus per sweep sample; Table
3, Figure 2). This result did not rely on the highest L. hesperus
density observations; repeating the analysis excluding the
records (n = 88) with mean June L. hesperus densities >2.0
revealed the same significant yield decline associated with

Figure 1.  Flower bud retention and L. hesperus density.  Association between the proportion of cotton flower buds retained and
mean L. hesperus densities observed during (A) June, and (B) July. Retention values are residuals after controlling statistically for
effects of farm, year, and cotton species. The solid lines are the smooths from the GAM models, and the shaded regions are the
95% confidence intervals.
doi: 10.1371/journal.pone.0080518.g001
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June herbivory (df = 2.6, F = 6.13, P = 0.0002). In contrast, the
data revealed no evidence for any association between L.
hesperus and yield later during the fruiting period (July), across
the full range of L. hesperus densities represented in the data
set (0-10 L. hesperus per sample). Repeating the analysis with
the growing season broken into successive two-week periods
suggested that cotton’s sensitive period may extend very
weakly into the first half of July; thereafter, a non-significant
trend towards increasing yield with increasing L. hesperus
densities was observed (Table S1, Figure S1). Farmers
delayed the first application of defoliant in fields that harbored
moderate to heavy L. hesperus populations during 1-15 July (P
= 0.00033; note that this effect may have reversed for the
handful of fields that had the very highest L. hesperus
densities). However, no such delays in crop defoliation were
found to be associated with L. hesperus densities during June
or 16-31 July (Figure 3, Table S2). Thus, during July, but not
June, the plant appears to compensate strongly for the
abscission of flower buds, perhaps aided by modest extensions
of the crop’s growing period in response to early July herbivory.

As expected given the long list of factors that generate
variation in cotton yield, densities of L. hesperus explained only
a very small portion of the total observed yield variation (a
model including only L. hesperus densities in June and July
explained 7.8% of total deviance). Nevertheless, the large
sample size (N = 1118 records) allowed this economically
important effect to be resolved readily.

Collinearity of June and July L. hesperus densities
Although our GAM analyses did support some non-linearities

in the relationships between June L. hesperus and cotton yield,
the overall trends were broadly linear. We therefore used
stepwise multiple linear regression to examine if correlations

Table 1. Generalized additive model of factors associated
with early-season (June) retention of flower buds by cotton.

Term df F P
Farm 25 7.56 <1x10-15

Year 11 15.00 <1x10-15

Gossypium species 2 1.48 0.23
June L. hesperus density 2.37 27.45 <1x10-15

Deviance explained = 59.5%, N = 656
doi: 10.1371/journal.pone.0080518.t001

Table 2. Generalized additive model of factors associated
with mid-season (July) retention of flower buds by cotton.

Term df F P
Farm 24 9.61 <1x10-15

Year 11 27.02 <1x10-15

Gossypium species 2 5.76 0.003
July L. hesperus density 4.21 13.3 1.1x10-12

Deviance explained = 66.0%, N = 561
doi: 10.1371/journal.pone.0080518.t002

between June and July L. hesperus densities might be masking
effects of July herbivory. We forced Farm, Year, and
Gossypium species into the model first. Using a threshold P-
value to enter = 0.25 and a threshold P-value to remove = 0.10,
June L. hesperus density was selected as the first and only
variable to be added (P < 0.0001, R2 = 0.065, ΔAICc = -73.4).
July and June x July L. hesperus densities were not entered,
despite the permissive threshold. If instead we forced July L.
hesperus into the model as the first step, we obtained a modest
improvement in fit (P = 0.0002, R2 = 0.013, ΔAICc = -12.2), but
the automated stepwise procedure then added June L.
hesperus (P < 0.0001, R2 = 0.066, ΔAICc = -60.6), and as the
final step removed July L. hesperus (P = 0.24, R2 = 0.065,
ΔAICc = -0.6). Thus, we found no evidence that the modest
correlation between June and July L. hesperus densities was
hiding an underlying effect of July L. hesperus herbivory on
crop yield.

Searching for possible confounding variables
Statistical models including variables we deemed most viable

as candidate confounders did not change the underlying
relationship between L. hesperus densities and cotton yield.
GAM models including the number of insecticide applications
targeting L. hesperus (Table S3), the field’s planting date
(Table S4), the field’s size (Table S5), the number of
insecticide applications targeting other herbivores (Table S6),
the number of applications of plant growth regulators or
defoliants (Table S7), and mean local monthly temperature and
precipitation (Table S8) all supported the same core inference:
June L. hesperus were consistently associated with depressed
cotton yield, whereas July L. hesperus were not.

Discussion

The goal of this study was to develop a proof of concept for
the application of ecoinformatics methods to quantifying pest
impacts on crop yield, focusing on the impact of L. hesperus on
cotton. L. hesperus was chosen as a test case, because,
despite decades of experimentation, its optimal management
remains controversial. Furthermore, the prospect of further
exclusive reliance on experimentation was daunting: L.
hesperus is so mobile that very large plots are required to
maintain insect density manipulations, and secondary pest
outbreaks are often associated with use of insecticides to

Table 3. Generalized additive model of factors associated
with yield of cotton, Gossypium spp.

Term df F P
Farm 35 2.44 8.3x10-6

Year 10 12.56 <1x10-15

Gossypium species 1 0.10 0.76
June L. hesperus density 6.39 9.24 7.7x10-12

July L. hesperus density 2.85 0.77 0.53

Deviance explained = 22.0%, N = 1118
doi: 10.1371/journal.pone.0080518.t003
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manipulate L. hesperus densities, making interpretation of
treatment effects difficult (e.g., [12,13]). The farmer- and
consultant-derived data set passed an initial “positive control”
test by resolving the expected impact of L. hesperus on flower
bud retention (Figure 1). L. hesperus explained 30.5% (June)
and 16.4% (July) of the deviance in flower bud retention. These
values are comparable to three earlier researcher-generated
data sets that examined the correlation between Lygus spp.
densities and flower bud abscission across commercial upland
cotton fields (r2 = 0.21 [7]; r2 = 0.22-0.44 [9] Leigh, Kerby &
Wynholds 1988]; and r2 = 0.19 [data reanalyzed from [34]]).
Although data quality and heterogeneity will always be
important concerns in ecoinformatics studies, these results
encourage the hope that consultant-derived data can support
useful research inferences.

Yield gaps: evidence from modeling and
experimentation

Our analyses sought to identify conditions under which L.
hesperus might be associated with unrecognized yield losses.
Indeed, farmers appear to be losing yield when cotton harbors
even very low L. hesperus densities during June, when cotton
plants are producing their first flower buds.

Our confidence that the association between June L.
hesperus populations and loss of yield reflects a direct causal
relationship would be bolstered by complementary evidence
from other sources. We adduce two such sources of supporting
evidence. First, two simulation models of Gossypium growth
and fruiting, each parameterized with observations from

commercial cotton farming in California’s San Joaquin Valley,
but otherwise quite different in structure, each predicted that
Gossypium would be most sensitive to flower bud loss early
during the reproductive period ([22,35]). Thus, there was a
clear reason, a priori, to expect that June L. hesperus herbivory
would depress Gossypium yield.

Second, a careful reexamination of the published
experimental literature reveals suggestive evidence that early
(June) L. hesperus herbivory depresses cotton yield. To our
knowledge, only once have researchers manipulated June L.
hesperus densities without continuing the manipulations later in
the growing season. A June-only manipulation of L. hesperus
densities is important, because season-long suppression of L.
hesperus with insecticides often triggers secondary pest
outbreaks, making such experiments hard to interpret (e.g.,
[12,13]). Falcon et al. [13] in their ‘1969 Experiment’
implemented a low L. hesperus density treatment (“5 early”) by
applying insecticides any time L. hesperus densities reached 5
per sweep sample during the earliest period of fruiting (<5
blooms/4 m of plants; roughly June, in some plots extending
until July 8). The manipulation was then relaxed for the
remainder of the growing season. Mean June L. hesperus
density per sweep sample in the ‘5 early’ treatment plots was
1.48, substantially less than the 5.50 observed in the untreated
control. To achieve these clear density differences during June,
when nearly all L. hesperus are present as mobile, winged
adults (86% adults in this experiment), required the use of very
large plots: plot dimensions were 201 x 805 m. As a result, the
level of replication was small (n = 4), and statistical power was

Figure 2.  Cotton yield gap and L. hesperus density.  Association between the cotton yield gap (difference between the observed
and expected yield, after controlling for annual fluctuations in valley-wide yield) and mean L. hesperus densities observed during (A)
June, and (B) July. The solid lines are the smooths from the GAM models, and the shaded regions are the 95% confidence
intervals.
doi: 10.1371/journal.pone.0080518.g002

Ecoinformatics and Herbivory-Associated Yield Gaps

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e80518



limited. Nevertheless, the first cotton harvest revealed a
statistically significant 10.7% yield loss in the untreated control
compared to plots where L. hesperus densities were
suppressed (P < 0.05). The second harvest was very small in
comparison to the first harvest (producing just 6.1% more
yield), and changed the picture only slightly: early L. hesperus
were still associated with a 9.3% loss of yield. Nevertheless,
inclusion of the second harvest resulted in the loss of the
statistical significance of the yield gap (P > 0.05). The original

authors discussed these highly suggestive trends, and called
for further investigations of the yield gaps stemming from early
L. hesperus herbivory.

Thus, three forms of evidence, simulation modeling,
manipulative experimentation, and the observational study that
we report here, support the same inference. Cotton plants
appear to have a window of heightened sensitivity to L.
hesperus herbivory expressed early during the fruiting period.

Figure 3.  Crop termination and L. hesperus density.  Association between the date of the first application of a defoliant to the
cotton crop (expressed as a deviation from the year’s mean date of initial defoliant treatment) and mean L. hesperus densities
observed during (A) 1-15 June, (B) 16-30 June, (C) 1-15 July, and (D) 16-31 July. The solid lines are the smooths from the GAM
models, and the shaded regions are the 95% confidence intervals. Positive values for the date of defoliation indicate dates later than
the mean for that year. Note that because the GAM penalizes the second derivative of the fitted curve, the model collapses to
linearity when evidence for non-linearity is sufficiently weak, as is seen in panel (B). See Table S2 for the GAM summary.
doi: 10.1371/journal.pone.0080518.g003
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Unnecessary use of insecticides
Our analyses also identified conditions under which farmers

appear to be applying insecticides unnecessarily to suppress
economically benign L. hesperus populations. L. hesperus
populations after mid-July do not appear to be associated with
a detectable loss of yield. The mean density of L. hesperus that
triggered the application of insecticides during late July was 4-5
bugs per sweep sample (Figure 4), comfortably within the
range of densities that showed no effect on cotton yield (Figure
2B). Now that the early window of crop susceptibility has been
identified, the hope is that farmers will become more receptive
to the message that, according to their own data, cotton can
compensate for moderate densities of L. hesperus later, after
the sensitive period closes.

Why might the sensitivity of cotton to L. hesperus decrease
as the plant grows? The fruit maturation process in cotton
appears to shift from being sink-limited to source-limited as the
plant grows [15,18,23,35,36]. Young cotton plants have well-
developed resource gathering structures (leaves and roots),
but few flower buds. In this case, plants protected from
herbivory or other stresses can retain and mature nearly 100%
of flower buds initiated, and any flower bud abscission in
response to L. hesperus feeding may translate into an
immediate loss of yield (Figure 2A). In contrast, maturing plants
rapidly produce a large number of flower buds, whose
demands increasingly outstrip the plant’s resource supply. As a

result, even in the absence of any environmental stress,
abscission of flower buds or young fruit rapidly increases
beginning around the time of flowering [18,23,35-37]. In this
case, we may expect little effect of L. hesperus on yield as long
as the proportion of flower buds damaged does not exceed that
which the plant would abscise anyway [18]. Thus, the
relationship between L. hesperus densities during July and
cotton yield may be non-linear: an initial range of L. hesperus
densities that generate no effect on yield is expected, as was
found (Figure 2B). A subsequent phase of yield decline is,
however, also expected as L. hesperus damages a proportion
of flower buds that is greater than the proportion that would
have been abscised in the absence of damage. Experiments
suggest that this threshold is reached at densities of ca. 10 L.
hesperus per sweep sample.

This highlights an important limitation of the ecoinformatics
approach: because farmers manage L. hesperus with
insecticides in a universally aggressive manner, L. hesperus
densities >10 per sample were never observed, even in a
sample of >1000 commercial cotton fields (Figure 2). Thus,
these farmer-derived data cannot be used to refine the critical
late July L. hesperus density threshold at which yield loss
begins. Observational research approaches like the one
described here can only work with pre-existing variation. Thus,
observational studies cannot explore scenarios like very high L.
hesperus densities if, as was observed here, farmers exclude

Figure 4.  Insecticide use decisions and L. hesperus density.  Mean ± SE density of L. hesperus that triggered the application of
insecticides targeting L. hesperus (solid circles) during successive 2-week intervals during cotton’s fruiting period. Also shown for
comparison are the mean L. hesperus densities observed across all fields (open circles). Numbers above the symbols are the
number of fields for which density estimates were available.
doi: 10.1371/journal.pone.0080518.g004
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them the commercial setting. Experimentation has an obvious
and important advantage in this regard.

A model of cotton yield that includes not only L. hesperus
densities but also the number of insecticide applications
targeting L. hesperus suggests that some additional yield loss
(29.6 ± 10.8 kg/ha) is associated with each insecticide
application, above and beyond the effects of L. hesperus
herbivory (Table S3). This additional yield loss may reflect the
disruptive effects of insecticide use on natural enemies, which
can precipitate damaging outbreaks of other pests [30]. Thus,
some July insecticide applications targeting L. hesperus may
be not only unnecessary and costly, but even
counterproductive.

Plant compensation by extending the growing season
The analysis presented here suggests that cotton is sensitive

to very low densities of L. hesperus pre-flowering. Why couldn’t
cotton compensate by developing additional fruit later in the
growing season? Compensation ability is often treated as a
plant trait, but the termination of crop growth is partially a
response of the crop plant and partially a decision made by the
farmer. Farmers have potent disincentives for delaying crop
harvest, including the risk of fall rain, which degrades lint
quality and can prevent harvest; the risk that late-season aphid
or whitefly populations will build, producing honeydew that
contaminates lint and reduces crop marketability; the cost of
extra irrigation water needed to extend crop growth; and the
pressing need to prepare fields for the following crop before
rains arrive. For these reasons, an ecoinformatics approach
that captures not just plasticity in plant growth, but also flexible
farmer decision making is essential to measuring actual
opportunities for plant compensation through delayed crop
termination. Farmers delayed the termination of crops that
harbored high L. hesperus populations during early July, but no
such association was observed with June L. hesperus
populations, perhaps contributing to the early window of crop
sensitivity (Figure 3).

Conclusions

Decentralized data collection in the agricultural sector can
generate large datasets that hold the promise of greater
statistical power. A proof of concept for an ecoinformatics
approach focused on L. hesperus interactions with cotton
suggested that the quality of consultant-generated data, as
assessed by quantifying the relationship between L. hesperus
and flower bud retention, was comparable to that of
researcher-generated data. Strengths of the approach included
(i) the ability to resolve small, but economically important yield
gaps associated with an early window of crop sensitivity, and
(ii) an opportunity to capture both plant and farmer responses
to L. hesperus herbivory. A key weakness of the approach was
the inability to consider the effects of very high L. hesperus
densities, as these are excluded from the commercial farming
setting by uniformly aggressive farmer pest suppression. The
use of ecoinformatics in several subdisciplines of the
agricultural sciences is growing [38-43], providing a research

methodology that can complement traditional experimental
approaches to enhancing agricultural productivity.
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