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ABSTRACT Individuals with latent tuberculosis infection (LTBI) were regarded as an
enormous reservoir of cases with active tuberculosis (TB). To strengthen LTBI manage-
ment, biomarkers and tools are urgently required for identifying and ruling out active TB
in a fast and effective way. Based on an open-label randomized controlled trial aiming to
explore short-course LTBI treatment regimens, DNA methylation profiles were retrospec-
tively detected to explore potential biomarkers, which could discriminate active TB from
LTBI. The Infinium MethylationEPIC BeadChip array was used to analyze genomewide
DNA methylation levels for 15 persons with LTBI who later developed active TB and for
15 LTBI controls who stayed healthy. The differentially methylated CpGs (dmCpGs)
located in the promoter regions pre- and post-TB diagnosis were selected (P , 0.05 and
jDbj.0.10) and evaluated by receiver operating characteristic (ROC) analysis. Eight
dmCpGs were identified to be associated with TB occurrence; six were located in hyper-
methylated genes (cg02493602, cg02206980, cg02214623, cg12159502, cg14593639, and
cg25764570), and two were located in hypomethylated genes (cg02781074 and
cg12321798). ROC analysis indicated that the area under curve (AUC) of these eight
dmCpGs ranged from 0.72 to 0.84. Given 90% sensitivity, the specificity was highest for
cg14593639 at 66.67%. The combination analysis indicated that “cg02206980 1

cg02214623 1 cg12159502 1 cg12321798” showed the best performance, with an
AUC of 0.88 (95% confidence interval [CI]: 0.72, 0.97), a sensitivity of 93.33% (95% CI:
70.18%, 99.66%), and a specificity of 86.67% (95% CI: 62.12%, 97.63%). Our preliminary
results indicate the potential value of the DNA methylation level as a diagnostic bio-
marker for discriminating active disease in LTBI testing. This finding requires further
verification in independent populations with large sample sizes.

IMPORTANCE Approximately a quarter of the world population had been infected
with Mycobacterium tuberculosis, and about 5 to 10% of these individuals might de-
velop active disease in their lifetimes. As a critical component of the “end TB strat-
egies,” preventive treatment was shown to protect 60 to 90% of high-risk LTBIs from
developing active disease. Developing new TB screening tools based on blood-based
biomarkers, which could identify and rule out active TB from LTBI, are prerequisite
before initialing intervention. We tried to explore potential DNA methylation diag-
nostic biomarkers through retrospectively detected DNA methylation profiles pre-
and post-TB diagnosis. Eight dmCpGs were identified, and the combination of
“cg02206980 1 cg02214623 1 cg12159502 1 cg12321798” showed a sensitivity of
93.33% and a specificity of 86.67%. The preliminary results provided new insight into
detecting the DNA methylation level as a potential tool to distinguish TB from LTBI.
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Globally, tens of millions of people were reported to be infected with Mycobacterium
tuberculosis, and approximately 5 to 10% of them might develop active disease in

their lifetimes (1). Individuals with latent tuberculosis infection (LTBI) were regarded as an
enormous reservoir of active tuberculosis (TB) cases, the procession of which is usually
complex and dynamic (2). Comprehensive strategies had been implemented to control
such seedbeds of TB. Among them, preventive treatment could effectively reduce the risk
of active TB development with an efficacy of 60 to 90% (3). However, how to identify tar-
get populations with the high priority for preventive treatment was a big challenge for
LTBI management, especially in resource-limited countries. Identifying and ruling out
active TB from LTBI with advanced diagnostics tools were prerequisite before starting pre-
ventive treatment. The World Health Organization (WHO) recommends that new diagnos-
tic tests for TB should be low cost, easy to use, and noninvasive and achieve high sensitiv-
ity and specificity (4). Thus, blood-based, host-derived immune response biomarkers,
which could reflect a broad view of the host response to TB provided a promising insight
and are urgently required for identifying TB at an early stage among at-risk populations
with LTBI (5–9).

Recent studies suggested that M. tuberculosis could alter the host epigenome to
modulate the transcriptional machinery by either activation or the suppression of key
immune genes involved in immune response or pathogen persistence (10). Since epi-
genetics can bridge the gaps between the host, M. tuberculosis, and the environment,
it might have great potential in predicting TB development. DNA methylation is the
most widely studied epigenetic marker, and cytosine-guanine dinucleotide (CpG)
methylation is central to many biological processes and human diseases (11–14).
Previous studies reported that varied DNA methylation might be associated with TB
risk (15, 16). However, most of these studies used case-control or cross-sectional study
designs which could not allow for a temporal analysis of the relationship between
DNA methylation and TB occurrence. In addition, few reported biomarkers could
achieve the 90% sensitivity and 70% specificity set by WHO target product profile (TPP)
benchmarks for screening TB. In our previous randomized controlled trial aiming to
explore short-course LTBI treatment regimens, individuals with treated and untreated
LTBI were monitored for 5 years to track the development of active TB. Based on this
study, the current pilot study retrospectively detected DNA methylation profiles
among individuals who developed active TB from LTBI in order to explore potential
markers, which could be used to identify and rule out active disease.

RESULTS
Characteristics of the study participants. As shown in Fig. 1, 15 TB cases devel-

oped from LTBI, and 15 age- and gender-matched LTBI controls stayed healthy were
included in the present study. The detail diagnostic information of the TB cases was
presented in Table S1 in the supplemental material. Two samples at different time
points were detected for each participant by EPIC BeadChip array to estimate the
genomewide DNA methylation patterns.

Table 1 presents the major baseline characteristics of the 30 study participants. The
median age was 65 years (range, 62 to 68 years), the majority being male (73.33%, 22/
30). No significant difference was found between the two groups with respect to base-
line interferon gamma release assay results, smoking history, and alcohol drinking sta-
tus. Those who developed TB were found to have a lower body mass index than those
who remained free of TB (P = 0.025).

Differentially expressed DNAmethylation patterns between various groups. To
acquire candidate methylated CpG sites meeting preset criteria, the methylated sta-
tuses of 863,159 CpG sites in 60 blood samples were analyzed using the EPIC BeadChip
array. A total of 2,826 dmCpGs discriminately expressed between case group and
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control group at follow-up (Fig. 2A and C) and 78,110 dmCpGs changed significantly
pre- and post-TB occurrence (Fig. 2B and D). Among them, no significant change was
observed throughout the study in control group for 134 methylated CpG sites. Finally,
eight of them in the promoter regions were regarded as candidate CpG sites for further
analysis; six were located in hypermethylated genes (cg02493602, cg02206980, cg02214623,
cg12159502, cg14593639, and cg25764570), and two were located in hypomethylated
genes (cg02781074 and cg12321798). The basic information of these eight dmCpGs is
shown in Table 2.

Diagnostic value of TB-associated differentially methylated CpG sites. The diag-
nostic values of the eight dmCpGs were identified using ROC curves. The results indicated
that the areas under the ROC curve (AUC) of these eight dmCpGs ranged from 0.72 to
0.84. Among them, cg12159502 located in Sirt1 presented the best AUC of 0.84 (95% con-
fidence interval [CI] = 0.66 to 0.95) with a sensitivity of 73.33% (95% CI = 48.05 to 89.10%)
and a specificity of 86.67% (95% CI = 62.12 to 97.63%). Given 90% sensitivity, the specific-
ities were highest for cg14593639 of 66.67% (Table 3). We then calculated the performance
of different combinations for these eight dmCpGs. Among 247 different combinations (28
combinations for any two CpGs, 56 combinations for any three CpGs, 70 combinations for
any four CpGs, 56 combinations for any five CpGs, 28 combinations for any six CpGs,
8 combinations for any seven CpGs, and 1 combination for all), 52 combinations met the
WHO TPP benchmarks (see Table S2 in the supplemental material). Table 4 presents the

FIG 1 Flow chart of the study. By 2020, 26 TB incidence cases were identified during the 5-year follow-up period among 1,155
untreated individuals with LTBI. Fifteen TB cases and fifteen age- and gender-matched LTBI controls were included in the study. Two
sets of blood samples for each subject were collected, including one sample at baseline and one sample at diagnosis for those
developed active TB or at terminal survey for those stayed healthy during follow-up. The samples at different time points were
detected by EPIC BeadChip array to estimate the genomewide DNA methylation patterns. Differentially methylated CpG loci between
the case group and the control group were detected, including 2,826 dmCpGs at follow-up. A total of 78,110 dmCpGs changed
significantly pre- and post-TB occurrence. Among these, no change was observed throughout the study in the control group for 134
CpG sites; eight of them in the promoter regions (six hypermethylated genes and two hypomethylated genes) were regarded as
candidate CpGs for further analysis. Promoters were defined as regions located between 1,500 bp upstream of TSS and 200 bp
downstream of TSS and genes containing multiple differentially methylated probes. IGRA, interferon gamma release assays; LTBI,
latent tuberculosis infection; PBMC, peripheral blood mononuclear cells; TB, tuberculosis; TSS, transcriptional start sites.
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combinations with the best performance for each category. Among them, the combination
of “cg02206980 1 cg02214623 1 cg12159502 1 cg12321798” showed the best perform-
ance, with a sensitivity of 93.33% and a specificity of 86.67%.

Functional analysis of difference methylated CpG sites. To further analyze the bi-
ological function of the 2826 dmCpGs between case group and control group during
follow-up, GO function and KEGG pathway enrichment analysis were conducted with
DAVID. With GO function analysis, the results indicated that the dmCpGs were mostly
enriched in the biological process of insulin secretion involved in cellular response to
glucose stimulus, Fcg receptor signaling pathway involved in phagocytosis, and regula-
tion of the sequestering of calcium ion (Fig. 3A). The results of KEGG pathway analysis
suggested, it was suggested that these dmCpGs were mainly enriched in bacterial in-
fectious diseases and cancers (Fig. 3B).

DISCUSSION

In this pilot study, eight dmCpGs (cg02493602, cg02206980, cg02214623, cg12159502,
cg14593639, cg25764570, cg02781074, and cg12321798) were identified to be differently
expressed between LTBI and active TB. The combination of “cg022069801 cg02214623 1

cg12159502 1 cg12321798” showed the best performance, with a sensitivity of 93.33%
and a specificity of 86.67%. The findings suggested that the varied DNA methylation profile
at certain CpG cites might play a role in modulating host susceptibility to active TB occur-
rence and used as a potential biomarker to distinguish TB from LTBI.

The association between DNA methylation and TB risk was reported as early as
40 years ago (17). A wealth of studies reported aberrant DNA-methylated genes or
global DNA methylation in TB patients (5, 18–22). A previous study using Illumina’s
DNA methylation 450K assay identified differentially methylated loci between active
pulmonary TB patients and healthy subjects. The study showed that varied DNA meth-
ylation over the PARP9/miR505/RASGRP4/GNG12 genes may regulate to the develop-
ment of active TB onset (16). Another study evaluated the DNA methylation status of
TB patients and their asymptomatic household contacts and found that patients with
TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-kB, and IFN-g signaling
pathways, which demonstrated that TB patients are characterized by DNA hypermeth-
ylation of genes critical to mycobacterial immunity (15). However, most previous stud-
ies used healthy subjects as controls, which usually defined as asymptomatic individu-
als with normal chest X-ray examination results and had a negative history of TB
disease. The infection status of such controls was unknown. As has been reported by a

TABLE 1 Characteristics of the study participants with LTBIa

Parameter
Participants who developed active
TB during follow-up (n = 15)

Participants who stayed healthy
during follow-up (n = 15) Pb

Median age, yr (Q25–Q75) 67.00 (61.00–68.00) 65.00 (62.00,67.00) 0.437†

Gender, n (%)
Male 11 (73.33) 11 (73.33) 1.000#
Female 4 (26.67) 4 (26.67)

Median BMI, kg/m2 (Q25–Q75) 21.99 (20.99–22.72) 24.03 (22.00–28.08) 0.025†

Ever smoked, n (%)
Yes 8 (53.33) 9 (60.00) 1.000#
No 7 (46.67) 6 (40.00)

Current alcohol drinking, n (%)
Yes 7 (46.67) 6 (40.00) 1.000#
No 8 (53.33) 9 (60.00)

Median IFN-g releasing level at
baseline IGRA testing, IU/mL
(Q25–Q75)

1.44 (0.84–3.33) 2.12 (1.55–3.59) 0.151†

aQ25–Q75, 25th to 75th percentiles; LTBI, latent tuberculosis infection; TB, tuberculosis; BMI, body mass index; IFN-g, interferon gamma; IGRA, interferon gamma release
assays.

b†, Wilcoxon rank sum test; #, Fisher exact test.
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FIG 2 Visualization of differentially methylated probes. (A) Volcano plot of differentially methylated CpG sites between the case group and the control group at
follow-up. (B) Volcano plot of differentially methylated CpG sites between baseline and follow-up in case group. The x axis represents the magnitude of the
difference in signal intensity between the groups for each probe in the microarray, expressed as Db = b (group 1) 2 b (group 2). The y axis represents the
2log10 (P value), with a P value of 0.05. Significantly different sites (P , 0.05 and jDbj. 0.10) are highlighted in red and blue. (C) Hierarchical clustering of
the variable CpG sites derived from the case group and the control group at follow-up. (D) Hierarchical clustering of the variable CpG sites derived from the
baseline and the follow-up in the case group. Different groups are represented: FC is the control group during follow-up, FT is the TB case group during follow-up.
BT is the TB case group at baseline. Methylation levels are expressed as b values from 0 (blue, completely unmethylated) to 1 (red, fully methylated).
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longitudinal study which found healthy subjects who later developed LTBI had a
unique DNA methylation profile (23), the aberrant DNA-methylated genes detected in
aforementioned studied might confounded by LTBI status of the controls because of
the complex immune progress from TB infection to active disease. Esterhuyse et al.
(24) incorporated dmCpGs from only monocytes and granulocytes by machine learn-
ing to distinguish active TB from LTBI in cross-sectional design and obtained a model
with an AUC of 0.74, which was consistent with our results. To our knowledge, the
present study is the first to identify distinct differential DNA methylation profiles
between individuals with LTBI who later developed or did not develop TB. The longitu-
dinal self-control design might help us to determine whether the varied host genomic
methylation is due to host genetic polymorphisms or is caused by M. tuberculosis infec-
tion and pathogenesis. Exploring diagnostic biomarkers that could be of help in identi-
fying active TB from LTBI is meaningful for the practice of precise intervention. Our
understanding of these epigenetic changes will enable the use of epigenetic bio-
markers for the diagnosis of disease in early stages.

Targeting populations with the high priority for preventive treatment was the first step
for implementation of intervention. Thus, systematic screening for TB disease among high-
risk groups could not only achieve early detection and treatment but also identify individ-
uals who are eligible for and would benefit from TB preventive treatment once TB disease
was ruled out. In consideration of the subclinical TB (25) and paucibacillary nature of cul-
ture-negative TB, blood-based, host-derived immune response biomarkers might improve
diagnostic sensitivity compared to microbiologically based methods (26). In addition, TB
screening tools are not intended to provide a definitive diagnosis. In a screening context,
the most desirable strategy would be one with a high total yield of true-positive TB cases,
has few false-positive results, is low in cost, and can be performed quickly, whereas many
of these factors tend to counteract one another in clinical practice (4). Thus, in 2014, the
WHO released a report highlighting that the minimal requirements for a target screening

TABLE 2 Basic information of the identified differentially methylated CpG sitesa

Target_ID Refseq gene CpG island region

b FT vs FC FT vs BT FC vs BC

FT FC BT BC Db P Db P Db P
cg02493602 ME3 S_Shore 0.4645 0.3269 0.2812 0.2791 0.1376 0.015 0.1833 0.002 0.0478 0.279
cg02206980 SIRT5 N_Shore 0.4923 0.3572 0.2843 0.2629 0.1351 0.019 0.2080 ,0.001 0.0943 0.018
cg02214623 GNB2L1 N_Shore 0.5380 0.4229 0.3598 0.3428 0.1151 0.001 0.1782 ,0.001 0.0801 0.003
cg12159502 SIRT1 N_Shore 0.6655 0.5574 0.5612 0.4998 0.1081 0.002 0.1043 ,0.001 0.0576 0.079
cg14593639 ADGRG6 N_Shore 0.6434 0.5395 0.5164 0.4584 0.1039 0.011 0.1270 0.001 0.0811 0.020
cg25764570 HLA-DRA NA 0.6900 0.5884 0.5718 0.5213 0.1016 0.004 0.1181 0.008 0.0670 0.090
cg02781074 GGACT Island 0.4971 0.6038 0.6225 0.6705 –0.1067 0.015 –0.1254 0.009 –0.0667 0.071
cg12321798 FLJ44635 NA 0.5176 0.6178 0.7018 0.6936 –0.1002 0.028 –0.1842 ,0.001 –0.0758 0.060
aDb = mean b value (group 1) –mean b value (group 2). FT, tuberculosis case group during follow-up; FC, control group during follow-up; BT, tuberculosis case group at
baseline; BC, control group at baseline; NA, not applicable.

TABLE 3 Performance of eight identified methylated CpG sites in discriminating active TB from LTBIa

Target_ID Refseq gene AUC (95% CI) P

% sensitivity and specificity (95% CI)

Maximum Youden index WHO TPP benchmark

Sensitivity Specificity Sensitivity Specificity
cg02493602 ME3 0.76 (0.58–0.94) 0.005 80.00 (54.81–92.95) 73.33 (48.05–89.10) 93.33 (70.18–99.66) 13.33 (2.37–37.88)
cg02206980 SIRT5 0.76 (0.56–0.96) 0.011 80.00 (54.81–92.95) 80.00 (54.81–92.95) 93.33 (70.18–99.66) 0.00 (0.00–20.39)
cg02214623 GNB2L1 0.84 (0.69–0.98) ,0.001 86.67 (62.12–97.63) 66.67 (41.71–84.82) 93.33 (70.18–99.66) 53.33 (30.12–75.19)
cg12159502 SIRT1 0.84 (0.69–0.99) ,0.001 73.33 (48.05–89.10) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 53.33 (30.12–75.19)
cg14593639 ADGRG6 0.76 (0.57–0.95) 0.008 93.33 (70.18–99.66) 66.67 (41.71–84.82) 93.33 (70.18–99.66) 66.67 (41.71–84.82)
cg25764570 HLA-DRA 0.80 (0.63–0.96) 0.001 86.67 (62.12–97.63) 60.00 (35.75–80.18) 93.33 (70.18–99.66) 40.00 (19.82–64.25)
cg02781074 GGACT 0.76 (0.58–0.93) 0.004 93.33 (70.18–99.66) 53.33 (30.12–75.19) 93.33 (70.18–99.66) 53.33 (30.12–75.19)
cg12321798 FLJ44635 0.72 (0.53–0.91) 0.029 53.33 (30.12–75.19) 93.33 (70.18–99.66) 93.33 (70.18–99.66) 33.33 (0.00–20.39)
aTB, tuberculosis; LTBI, latent tuberculosis infection; AUC, area under the receiver operator characteristic curve; CI, confidence interval; WHO TPP, World Health Organization
target product profile.
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test would be an overall sensitivity of 90% and a specificity of 70% (27). According to these
criteria, we found several eligible combinations of the eight dmCpGs that met the require-
ments, although this needs further verification.

Among the many combinations of the eight candidate dmCpGs, increasing the numbers
of CpGs did not add extra diagnostic value. One combination of four CpGs—cg022069801

cg02214623 1 cg12159502 1 cg12321798—showed the best performance, which indi-
cated their located genes might involve in TB pathogenesis. cg12159502-located gene Sirt1
and cg02206980-located gene Sirt5 belong to the Sirtuins family, which is a class of NAD-de-
pendent histone deacetylases that share various functions related to energy homeostasis,
stress response, and tumorigenesis (28). It was reported that Sirt1 was required in the inhibi-
tion of apoptosis and inflammatory responses in human cells and had been frequently
reported to be related to TB through inflammatory responses (29–31). The activated SIRT1
deacetylates MAP1LC3B/LC3B to induce its translocation into the cytoplasm and activate
autophagy, which is this pathway’s physiological role in autophagy-mediated trafficking of
M. tuberculosis into lysosomes to restrict intracellular mycobacteria growth (32). Another
study also reported Sirt1 acted as a novel regulator of apoptosis signaling in M. tuberculosis
infection via its direct effects on GSK3b (33). Therefore, the hypermethylation of Sirt1 in case
group may participate in the process of active TB development by inhibiting the expression
of Sirt1 mRNA and interfering the M. tuberculosis apoptosis. Diabetes mellitus is one risk fac-
tor for the development of active TB due to impaired production of chemokines and cyto-
kines (34). A previous study demonstrated that SIRT5 has a potential role in regulating glu-
cose homeostasis, and Sirt5 deficiency mice boost IL-1b production in inflammatory
response (35). These findings provided us with new insight to further explore potential
immune mechanisms of Sirt5 in TB development in diabetes patients. No study has reported
the relation of the cg02214623-located gene GNB2L1 and the cg12321798-located gene
FLJ44635 to TB. The underlying mechanisms need to be verified and explored further in
future studies.

TABLE 4 Performance of different combinations of the 8 identified methylated CpG sites in discriminating active TB from LTBIa

Combination AUC (95% CI) P

% sensitivity and specificity (95% CI)

Maximum Youden index WHO TPP benchmarks

Sensitivity Specificity Sensitivity Specificity
cg022069801 cg022146231
cg12159502

0.89 (0.72–0.97) ,0.001 93.33 (70.18–99.66) 80.00 (54.81–92.95) 93.33 (70.18–99.66) 80.00 (54.81–92.95)

cg022069801 cg022146231
cg121595021 cg12321798

0.88 (0.72–0.97) ,0.001 93.33 (70.18–99.66) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 86.67 (62.12–97.63)

cg022069801 cg022146231
cg121595021 cg14593639
1 cg12321798

0.89 (0.72–0.97) ,0.001 93.33 (70.18–99.66) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 86.67 (62.12–97.63)

cg022069801 cg022146231
cg121595021 cg25764570
1 cg12321798

0.89 (0.72–0.97) ,0.001 93.33 (70.18–99.66) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 86.67 (62.12–97.63)

cg022069801 cg022146231
cg121595021 cg14593639
1 cg257645701
cg12321798

0.89 (0.72–0.97) ,0.001 93.33 (70.18–99.66) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 86.67 (62.12–97.63)

cg022069801 cg022146231
cg121595021 cg14593639
1 cg257645701
cg027810741 cg12321798

0.90 (0.73–0.98) ,0.001 93.33 (70.18–99.66) 80.00 (54.81–92.95) 93.33 (70.18–99.66) 80.00 (54.81–92.95)

cg024936021 cg022069801
cg022146231 cg12159502
1 cg145936391
cg257645701 cg02781074
1 cg12321798

0.90 (0.73–0.98) ,0.001 86.67 (62.12–97.63) 86.67 (62.12–97.63) 93.33 (70.18–99.66) 73.33 (48.05–89.10)

aA total of 247 different combinations from seven categories were assessed; the 7 combinations with the best performance in each category are shown. TB, tuberculosis;
LTBI, latent tuberculosis infection; AUC, areas under the receiver operator characteristic curve; CI, confidence interval; WHO TPP, World Health Organization target product
profile.
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FIG 3 GO and KEGG classification. (A) GO classification map of differential methylation site-related genes. The abscissa represents GO classification, and the
ordinate represents the number of genes, enriched GO classification on biological processes, cellular components, and molecular functions. (B) KEGG classification
map of differential methylation site-related genes. The abscissa is the number of genes, the ordinate is the second classification of KEGG, and the same color
indicates the first classification of KEGG. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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The present study faced a number of limitations. First, our study participants were
middle aged and elderly rural residents. Therefore, our findings cannot be simply
extended to other populations. In addition, the sample size of the present study was
small, and only a few TB cases occurred during 5-year follow-up period; this meant
subgroup analysis on the diagnostic times was unavailable. Thus, the identified
dmCpGs in our pilot study need to be verified in further independent populations with
large sample sizes. Second, to explore the most promising potential methylated CpG
sites related to TB development, strict criteria were set in our study; thus, some rele-
vant methylated CpG sites might be over-excluded. Third, a total of 134 dmCpGs were
found and distributed among different regions according to our selection criteria; since
only dmCpGs in the TSS200 or TSS1500 region (located in the promoter region) were
selected for further analysis, we cannot exclude the potential value of dmCpGs located
in other regulatory regions in distinguishing active TB from LTBI.

Conclusion. Our preliminary results indicate that varied DNA methylation levels
might be related to alterations in the expression of certain genes during active TB
occurrence, which might provide potential value as a diagnostic biomarker for discrim-
inating active disease in the case of LTBI testing. Further studies are warranted to verify
the findings in different study populations with large sample sizes.

MATERIALS ANDMETHODS
Study design and population. The present nested case-control study was based on an open-label

randomized controlled trial that aiming to explore short-course LTBI treatment regimens for rural resi-
dents aged 50 to 70 years in 2015. Detailed information on the study design has been published else-
where (36, 37). At baseline, all eligible participants with QuantiFERON-TB Gold In-Tube (Qiagen, USA)-
positive results (a cutoff value of $ 0.35 IU/mL was used, as recommended by the manufacturer) and
without current active TB at baseline survey were included, and 3-mL blood samples were collected.
Then, 3,783 study participants were randomized into three groups (two intervention groups and one
untreated control group) and followed up for 5 years to track the development of active TB. TB cases
were defined according to the National Guideline for the Diagnosis of Pulmonary Tuberculosis (WS 288–
2017). For microbiologically confirmed or clinical diagnosis TB cases, 3-mL venous blood samples were
collected before initiating antituberculosis treatment. In present study, in order to avoid the influence of
preventative treatment on TB incidence, only 1,155 participants from the untreated group were
included. During the 5-year follow-up, 26 individuals identified with active TB and 15 identified with suf-
ficient peripheral blood mononuclear cells (PBMCs) were selected as the case group for DNA methyla-
tion analyses. Fifteen age- and gender-matched subjects who remained free of TB were randomly
selected from the rest of the individuals with LTBI to serve as a control group. The study was conducted
in accordance with the Declaration of Helsinki, and written informed consent was obtained from each
participant.

Illumina Infinium MethylationEPIC BeadChip array. Two sets of 3-mL blood samples were collected
from each subject and tested, one sample at baseline and one sample at diagnosis, for those developed
active TB or at terminal survey for those stayed healthy during follow-up. PBMCs were isolated from platelet-
depleted whole blood using standard Ficoll-Paque density gradient centrifugation, and genomic DNA from
PBMCs extracted using a Puregene Core kit (Qiagen, Hilden, Germany). DNA (500 ng) was treated with bisul-
fate using an EZ DNA Methylation Gold kit (Zymo Research, Irvine, CA) according to the manufacturer’s
instructions. The methylation of DNA was assayed on a Methylation 850K Beadchip (Illumina, San Diego, CA)
using an Illumina HD methylation assay kit (Shanghai Biotechnology Corporation).

DNA methylation data were analyzed using the methylation analysis module within BeadStudio software
employing default parameters (Illumina, Inc., San Diego, CA). The raw intensity data were loaded to a biocon-
dutor package “minfi.” The raw data were normalized using the subset-quantile-within-array normalization
method, and probes with a detection P value of $0.01 in at least one sample were excluded from further
analysis. Methylation values, referred to as b values, were calculated as the ratio of the methylated signal in-
tensity to the sum of the methylated and unmethylated signals after background subtraction, ranging from
0 (completely unmethylated) to 1 (fully methylated). Specifically, we considered a probe to be differentially
methylated if the absolute Db was.0.1 and the statistical test was significant (P, 0.05).

Criteria for differential DNA methylation analyses. Differentially methylated CpG sites (dmCpGs)
were selected using an algorithm in an IMA Bioconductor. Here, we assessed the mean-difference
b-value (Db) between the two sample groups for each CpG site. In the present study, dmCpGs between
the groups were identified with jDbj . 0.10 and P , 0.05. Only dmCpGs that met following criteria
were further selected as candidate CpG sites. First, the dmCpGs existed between the case group and the
control group in follow-up samples. Second, the dmCpGs should only be found between baseline sam-
ples and follow-up samples in the case group rather than in the control group. Third, only dmCpGs
located in the promoter regions (promoters were defined as regions located between 1,500 bp
upstream of transcriptional start sites [TSS] and 200 bp downstream of TSS) were selected.

Functional annotations. Gene ontology (GO) analysis of the methylation profile was performed using
the “clusterProfiler” package. We used the Benjamini-Hochberg method to determine the adjusted P values,
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and pathways in which false discovery rate values were ,0.05 were chosen. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) was used to identify the exact enriched genes for specific biological terms or
pathways.

Statistical analyses. The Statistical Analysis System (SAS 9.4 for Windows; SAS Institute, Inc., Cary,
NC) was used for data analyses. Chi-square and Fisher exact tests were used to compare the distribution
of categorical variables. The numerical variables are presented as median and Q25–Q75 (25th to 75th
percentile) values. Wilcoxon rank sum tests were used to compare continuous variable. Volcano plots
and cluster analysis were conducted to present the dmCpGs. ROC curve and AUC analyses were per-
formed to evaluate the diagnostic ability of the dmCpGs for discriminating TB disease from LTBI.
Sensitivities and specificities were calculated using the highest Youden index value as the cutoff. We
also compared the performance of individual methylated CpG sites or of combined methylated CpGs
according to WHO’s TPP for a diagnostic tool of at least 90% sensitivity by altering the threshold to
match each target value. P , 0.05 was considered statistically significant.

Data availability. All data generated or analyzed during this study are included in this published ar-
ticle. Raw data can be uploaded upon request.
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