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Purpose: To determine whether the duration of transgene expression from an alternate adenovector serotype, Ad35, can
provide advantages over an Ad5 serotype vector following a single intravitreal (IVT) administration.
Methods: To assess the transgene expression profile, mice received one IVT injection of Ad5- or Ad35-based vectors
expressing green fluorescent protein (GFP), luciferase or pigment epithelium-derived factor (PEDF). At specified time
points following vector administration, eyes were monitored for GFP expression, or eyes were harvested and assayed for
adenovector genomes, luciferase activity or PEDF levels. Ad35-based vector in vivo biologic activity was investigated
using a mouse model of laser-induced choroidal neovascularization (CNV). On Day 0, mice received one IVT injection
of Ad5.PEDF or Ad35.PEDF (HI-RGD) followed by laser-induced CNV on Day 28. Fourteen days later, animals were
perfused with fluorescein-labeled dextran and CNV lesion size quantitated in choroidal flat mounts.
Results: These studies demonstrate that following a single IVT adenovector administration: 1) gene expression is
prolonged following administration of an Ad35 compared to an Ad5-based vector; 2) the amount of vector genomes in
the eye remain constant out to 60 days post injection of both Ad5 and Ad35-based vectors; and 3) an Ad35.PEDF (HI-
RGD) vector inhibits CNV in a mouse model at 42 days post injection.
Conclusions: These studies show that transgene and genome levels are prolonged in the eye following 1 IVT injection
of an Ad35-based vector. Moreover, therapeutic gene levels from 1 IVT administration of Ad35.PEDF (HI-RGD) vector
block abnormal blood vessel growth in a laser-induced CNV mouse model.

Neovascularization (NV) is the primary cause of
blindness in a wide range of ocular diseases, such as diabetic
retinopathy (DR) and age-related macular degeneration
(AMD). Collectively, AMD and DR are the leading causes of
permanent blindness in the developed world [1–6]. Currently
in the United States, approximately 5.3 million individuals
have DR and an estimated 1.75 million people have wet AMD
[6–8]. These numbers are expected to increase with the rise in
obesity and as more of our population becomes elderly [6,8,
9]. Since AMD and diabetes are chronic diseases, long-term
expression of a therapeutic product is likely to be required.

Recently substantial progress has been made toward the
treatment of wet AMD with Phase III clinical trials using two
different agents, Macugen® and Lucentis®. Both have
demonstrated that an anti-vascular endothelial growth factor
(VEGF) strategy can delay disease progression and in the case
of Lucentis®, improve vision for patients with wet AMD [10–
13]. Both anti-VEGF approaches, however, require repeated
intravitreal (IVT) injections at approximately 4–6 week
intervals. Although these approaches are encouraging, the
necessity for frequent ocular injections at such close intervals
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can be a cause of concern for both the patient and physician.
One reason for this apprehension is the development of
endophthalmitis (intraocular infection), which can require
ocular surgery and lead to vision loss [14,15]. Another
concern for both the patient and physician is the need for
frequent physician visits by a predominately elderly patient
population? Therefore, an important emphasis for
ophthalmologic research is to reduce the number of ocular
injections and develop less invasive procedures for drug
delivery. Because of the high frequency of intraocular
injections needed with Lucentis® and Macugen®, we sought
to identify methods that would reduce the number of
intraocular injections. We have identified an alternative
adenoviral vector serotype, Ad35, which provides prolonged
gene expression, thereby offering longer-term activity with
fewer IVT administrations.

Adenovectors are a useful protein expression system and
have application for the treatment of chronic diseases, such as
AMD [16]. Adenoviral vectors efficiently transduce many
ocular cell types. Following IVT administration, several cell
types in the anterior segment are transduced, including the iris
and ciliary body epithelium, corneal endothelium, and
trabecular meshwork [17–21]. In the posterior segment,
retinal pigment epithelial, photoreceptor, and Müller cells are
transduced [17–21]. Furthermore, adenovectors are well
tolerated following IVT injections in mice, monkeys and
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humans [22–24]. The safety of adenoviral vectors in the
human eye has been demonstrated in two Phase I clinical
trials; one in a pediatric (1 to 7 years old) population and the
other in elderly (62 to 97 years old) patients [25,26]. In
GenVec’s first Phase I study, 1 IVT injection of a replication-
deficient, serotype 5, adenoviral (Ad5) vector into the eyes of
elderly patients with severe wet AMD resulted in only mild
and transient inflammation in some patients. This was not
dose-dependent, and a maximum tolerated dose was not
reached even at the highest tested dose of 1×109.5 particle units
(pu). Likewise, in children with retinoblastoma, an Ad5-based
vector containing thymidine kinase was well tolerated at doses
of 1×1011 pu with up to a total of 5 individual injections. Thus,
in humans, adenoviral vectors given intravitreally resulted in
less of an immune response than originally anticipated [27].

Ad5-based vectors have been traditionally used in pre-
clinical experiments and clinical trials reported throughout the
literature [28–34]. Ad5 vectors mediate their attachment and
entry into cells using the Coxsackie and Adenovirus Receptor
(CAR) [35–39]. In contrast, Ad35 vectors do not interact with
CAR, but instead bind to CD46 receptors (also known as
MCP-membrane cofactor protein) [40–42]. In addition, one
can incorporate into the knob portion of the vector the
sequence arginine-glycine-aspartic acid (cyclic RGD). This
modification promotes vector binding to αvβ3/5 integrin
receptors that can function as secondary Ad35 receptors [43].
Figure 1A is a diagram of the wild-type Ad5 capsid and its
endogenous receptor, CAR, and the Ad35 vector with its
native tropism for CD46 sites on cells and the RGD
modification that enhances binding to cell surface αvβ3/5

integrin receptors. Several groups have shown that the
majority of humans do not have circulating neutralizing

antibodies for Ad35 vectors [44,45]. Since neutralizing
antibodies are reduced for Ad35 compared to Ad5 vectors, we
hypothesize that host immune response to Ad35 vector may
be reduced and thereby may contribute to prolonged gene
expression with an Ad35 vector. In summary, we have
discovered an alternate delivery system that may improve
transgene expression kinetics of a therapeutic protein
following a single intraocular injection, thereby decreasing
the number of intraocular injections, and providing improved
safety and efficacy for AMD treatment compared to Ad5
vectors.

METHODS
Animals: Female, C57BL/6 mice (6–8 weeks old; Harlan
Laboratories, Chicago, IL) were acclimated for approximately
1 week before use. The animals were housed under controlled
lighting conditions (12 h:12 h light-dark), and were given food
and water ad libitum during the experiments. All experiments
were conducted in accordance with the Association for
Research in Vision and Ophthalmology (ARVO) statement
for the Use of Animals in Ophthalmic and Vision Research
and the guidelines established by the Institutional Animal
Care and Use Committee (IACUC) at GenVec, Inc.
Adenoviral vectors expressing GFP, luciferase, or PEDF:
Production and quantification of type-5 (Ad5) and type-35
(Ad35) adenoviral vectors expressing green fluorescent
protein (GFP), luciferase and human pigment epithelium-
derived factor (PEDF) from a cytomegalovirus (CMV)
immediate early promoter expression cassette has been
previously described [46–51]. Both the Ad5 and Ad35 vectors
expressing GFP, luciferase or PEDF were constructed using
GenVec's AdFAST technology, which employs homologous
recombination methods in Escherichia coli to quickly

Figure 1. Schematic representation of Adenoviral vectors. A: This is a schematic diagram illustrating the cellular receptors for Ad5 and Ad35-
based vectors with Ad35 vector containing the RGD motif inserted in the HI loop of the fiber knob. B: This is a schematic representation of
wild-type adenovirus and an adenovector demonstrating the E1, E4 and partial E3 deletion (Ad5), or E1 only deletions (Ad35) with a SV40
poly A stop sequence, transgene (GFP, Luciferase, or PEDF) cDNA, and a human CMV promoter.
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restructure the adenoviral vector genome. The human
cytomegalovirus (CMV) promoter was cloned into the deleted
E1 region of the adenovirus shuttle vector, upstream of the
transgenes and SV40 poly A sequences. The expression
cassettes are oriented such that the transgenes are transcribed
from right to left relative to the adenovirus genome. During
construction, a RGD-4C peptide was incorporated into the HI
loop of the Ad fiber knob as previously described [52–54].
Ad5 vectors were devoid of the E1, E3, and E4 adenovirus
replication regions, whereas Ad35 vectors were devoid of the
E1 region (Figure 1B). Adenovirus particles were purified
using 3 successive rounds of cesium chloride (CsCl) gradient
centrifugation. The vector was formulated for storage and was
assayed for potency, purity, sterility, and absence of
replication competent adenovirus (RCA).
Intravitreal injection of adenoviral vectors: IVT injections of
vector were performed with pulled-borosilicate glass
micropipettes (World Precision Instruments, Sarasota,
Florida) using a pump microinjection apparatus (Harvard
Apparatus, Holliston, MA), as previously described [55].
Each calibrated micropipette delivered approximately 2 µl of
buffer containing the specified number of viral particle units
(1×109 pu) upon depression of a foot switch. Mice were
anesthetized with a 100 µl intraperitoneal injection of
ketamine hydrochloride (40 mg/kg) and xylazine (12 mg/kg),
both from The Butler Company (Columbus, OH). For each
mouse eye, one drop of 0.5% proparacaine hydrochloride
(Bausch & Lomb, Tampa, FL) was administered as a topical
anesthetic. Under a dissecting microscope (Nikon, Melville,
NY), the sharpened tip of the micropipette was passed through
the sclera, just behind the limbus into the vitreous cavity. The
foot switch was depressed, which caused a jet injection of the
vector to penetrate the vitreous space. At specified time points,
eyes were observed for in vivo GFP expression or mice were
humanely euthanized by asphyxiation with carbon dioxide
followed by cervical dislocation, eyes excised and analyzed
for luciferase activity or PEDF levels.
In vivo detection of GFP expression by fluorescence
microscopy: GFP expression was visualized in the anterior
segment of the eye on Days 1, 7, 14, 28, 60, 90, and 120
following one IVT injection of Ad5 or Ad35.GFP based
vectors using a fluorescence stereomicroscope (Leica
Microsystems, Wetzlar, Germany). At each time point, mice
were anesthetized with a 100 µl intraperitoneal injection of
ketamine hydrochloride (40 mg/kg) and xylazine (12 mg/kg),
both from the Butler Company (Columbus, OH); and GFP
expression observed noninvasively by placing the animal
under a microscope and observing the anterior, exterior ocular
surface of the mouse eye. Representative microscopic images
of GFP expression in the epithelial layer of the cornea was
captured by viewing the anterior surface of the eye using the
Leica MZFLIII stereomicroscope with a vertical fluorescence
illuminator equipped with filters for GFP, and a SPOT RT
slider color digital camera (Diagnostic Instruments, Inc.,

Sterling Heights, MI). Images were obtained using a
standardized exposure time.
Assessment of luciferase activity and PEDF levels: To assess
the time course of luciferase activity and PEDF levels
following 1 IVT injection, 1×109 pu were injected, and eyes
were enucleated at specified time points and analyzed for
luciferase activity or PEDF levels. Immediately following
enucleation, eyes were snap frozen in dry ice and stored at –
80 °C. A pre-cooled mortar and pestle on dry ice with liquid
nitrogen provided mechanical homogenization of the eyes.

For luciferase expression, homogenized eyes were lysed
with 300 µl 1X Reporter Lysis Buffer (Promega, Madison,
WI). Resultant lysates were analyzed with a luciferase assay
system according to the manufacturer’s protocol (Promega).
For PEDF levels, homogenized eyes were lysed with 100 µl
0.1% Triton X-100 (Sigma Aldrich, St. Louis, MO) in sterile
filtered Dulbecco's Phosphate Buffered Saline (1X PBS)
without calcium or magnesium (Cambrex Corporation, East
Rutherford, NJ), and PEDF levels were assessed using a
sandwich enzyme-linked immunoabsorbant assay (ELISA)
developed by GenVec, Inc. [56–58]. The total protein
concentration was determined to normalize the measurement
of luciferase activity and PEDF levels based on a Bradford
dye binding procedure with a protein assay (Bio-Rad,
Hercules, CA).
Assessment of adenoviral genomic DNA by polymerase chain
reaction: Viral genomic DNA was extracted from whole eye
using the DNeasy Tissue Kit (Qiagen, Valencia, CA)
according to the manufacturer’s instructions. PCR was
performed using TaqMan 2X universal master mix (Applied
Biosystems, Foster City, CA). Final concentrations of primers
and probe were: 200 nM of each primer, 100 nM of the probe,
100 ng of template DNA, and nuclease-free water in a total
volume of 50 µl per well using the ABI Prism 7700 Sequence
Detection System and 7700 SDS Software (Applied
Biosystems). Nuclease-free water was used as a non-template
negative control. The primers and probe sets were designed
from the pIX gene by Applied Biosystems. The sequences
were as follows: forward primer, 5′-CGC GGG ATT GTG
ACT GAC T-3′; reverse primer, 5′-GCC AAA AGA GCC
GTC AAC TT-3′; fluorogenic detection probe, 5′-FAM-AGC
AGT GCA GCT TCC CGT TCA TCC-TAMRA-3′. The
reactions were thermal cycled using the following conditions:
50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles of
95 °C for 15 s, and 60 °C for 1 min. The data were processed
using the instrument’s sequence detection software package.
Mouse model of laser-induced choroidal neovascularization:
Approximately 28 days following 1 IVT injection of Ad5 or
Ad35-based vectors as previously described, animals were
anesthetized and pupils dilated with Accutome® (1% Accu-
tropicamide; Bausch & Lomb). A drop of 0.5% proparacaine
hydrochloride (Bausch & Lomb) was administered as a
topical anesthetic and a drop of Goniosol® (2.5%
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hydroxypropyl methylcellulose; CibaVision Ophthalmics,
Atlanta, GA) to facilitate viewing and focusing of the laser
beam. Diode laser photocoagulation was used to rupture the
Bruch’s membrane at 3–4 locations in both the right and the
left eyes. Laser photocoagulation was performed around the

optic disc at a wavelength of 532 nm (75 μm spot size; 0.1 s
duration, 120 mV) using a slit lamp delivery system (Oculight
GLx; Iridex, Mountain View, CA) and a hand-held coverslip
(VWR, West Chester, PA) as a contact lens. Burns were
performed at the 3, 6, 9, and 12 o' clock positions;

Figure 2. GFP expression following Ad35-based vector results in longer transgene levels. The anterior segment of whole mouse eyes was
examined for GFP expression following a single IVT injection of 1×109 pu of either Ad5.Null, Ad5.GFP (±HI-RGD), or Ad35.GFP (±HI-
RGD). Naïve mice served as negative controls. Data are shown as GFP expression on Days 1, 7, 14, and 28 post IVT injection. Data are
representative photographs of 1 mouse from each treatment group (n=15 mice/treatment group).
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approximately 2–3 disc diameters from the optic nerve so that
each burn could be identified postmortem. Production of a
vaporization bubble at the time of laser indicated rupture of
the Bruch's membrane that is an important factor in obtaining
choroidal neovascularization (CNV) [59]. After 14 days, mice
were euthanized and the amount of CNV quantitated as
previously described [60,61].

Measurement of laser-induced choroidal neovascularization:
Two weeks following laser treatment, CNV lesion size was
measured in choroidal flat mounts [62]. Mice used for the flat
mount technique were anesthetized and perfused with 1.0 ml
PBS containing 50 mg/ml fluorescein-labeled dextran (2×106

average MW, Sigma) as previously described [62,63]. Eyes
were harvested and fixed overnight in 10% phosphate-

Figure 3. GFP expression following Ad35-based vector results in longer transgene levels. GFP expression in the anterior segment of whole
mouse eyes following 1 IVT injection of 1×109 pu of either Ad5.GFP (±HI-RGD) or Ad35.GFP (±HI-RGD). Naïve mice served as negative
controls. Data are shown as GFP expression on Days 28, 60, 90, and 120 post IVT injection. Data are representative photographs of 1 mouse
from each treatment group (n=5 mice/treatment group).
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buffered formalin (VWR). The cornea and lens were removed
and the entire retina carefully dissected from the eyecup.
Radial cuts (4–7) were made from the edge to the equator and
the eyecup flat mounted to a glass microscope slide (VWR)
using Vectashield® mounting medium (Vector Laboratories,
Inc. Burlingame, CA) with the sclera facing down. Flat
mounts were examined by fluorescence microscopy using a
fluorescence stereomicroscope (Leica Microsystems) and
images captured using a SPOT RT digital camera (Diagnostic
Instruments, Inc.). Image-Pro Plus software (Media
Cybernetics, Silver Spring, MD) was used to measure the total
area of each burn corresponding with a fibrovascular scar. The
areas within each eye were averaged to obtain one value, and
the means were calculated for each treatment group.
Statistical analysis: Data are expressed as the mean±SEM. An
overall test for treatment effect was first performed with one-
way ANOVA (ANOVA). If the overall test indicated a
significant treatment effect, individual treatments were
compared with the vector-only treatment groups, using
Bonferroni analyses, which adjusted for multiple
comparisons. The level established for statistical significance
was p<0.05 (two-tailed Student t-test) [64]. All analyses were
performed using OriginPro 7.5 software (Origin Laboratories,
Northampton, MA).

RESULTS
Ad35.GFP vector results in prolonged GFP expression: To
assess the gene expression profile from Ad35-based vectors,
we observed GFP expression in the eye on Days 1, 7, 14, and
28 post vector injection. Mice received 1 IVT injection of a
vector without a marker gene (Ad5.Null), Ad5.GFP, or
Ad35.GFP (±HI-RGD motif). Figure 2 shows representative
images of the surface of the anterior cornea of a mouse eye
over time. In naïve mice and those injected with Ad5.Null
(empty cassette), green fluorescent cells were absent.
However, eyes that received Ad5.GFP (±HI-RGD motif)
showed an induction in GFP signal within 1 day post-
injection. Subsequent to Day 7, GFP expression rapidly
declined in eyes that received Ad5.GFP (±HI-RGD motif). In
contrast, the response with the Ad35-based vectors (±HI-RGD
motif) resulted in minimal GFP signal on Day 1, which
gradually increased with time. By Day 28 the signal exceeded
that observed on Day 1. GFP expression in eyes given
Ad5.GFP with HI-RGD was identical to Ad5.GFP alone.
Thus, the HI-RGD motif is not the reason for the altered GFP
expression profile observed with the Ad35 vectors. Based on
these initial findings, we continued to monitor the GFP signal
in the animals. The GFP signal continued beyond 4 months in
the Ad35.GFP (HI-RGD) treated eyes (Figure 3), but
diminished to background levels by 8 months (data not
shown).
Adenovector genomes are stable in the eye: Based on the
prolonged GFP expression profile with Ad35.GFP or
Ad35.GFP (HI-RGD), we wanted to verify that the genomes

or DNA from the Ad35 vector backbone were still present in
the mouse eye. For these studies, we selected Ad35.L (HI-
RGD) since there was no difference between the construct
±HI-RGD. Mice received 1 IVT injection of Ad5.L or Ad35.L
(HI-RGD; Figure 4). Animals were euthanized and eyes
harvested on Days 1, 14, 28, and 60. Quantitative analysis of
the adenovector levels showed an initial loss of vector genome
on Day 1. Vector levels are comparable following Ad5 or
Ad35-based vector delivery with a 2-log decrease from Day
1 to Day 14. Stability was observed, as there was no change
in levels out to Day 60 post-vector injection. An additional
study showed that genomes were still present up to 1 year
following 1 IVT of Ad5 vector [65].
Ad35.L vector results in prolonged luciferase activity: To
provide quantitative confirmation of the GFP expression
profile, we examined luciferase activity following 1 IVT
injection of either Ad5.L or Ad35.L (HI-RGD; Figure 5).
Luciferase activity was initially high at Day 1 with a rapid
decline out to Day 120 following administration of Ad5-based
vector. Luciferase activity was approximately 2-logs lower at
Day 1 in Ad35 (HI-RGD) compared to Ad5-treated eyes.
However, luciferase activity remained relatively stable from
Day 1 to Day 120 following 1 IVT injection of Ad35 (HI-
RGD). These results indicate that a single IVT injection of
Ad35.L (HI-RGD) can result in higher and prolonged
luciferase activity out to at least 120 days as compared to
Ad5.L.
Alternate serotype results in high therapeutic transgene
levels: To confirm the marker gene data, we conducted similar

Figure 4. Quantitative analysis of adenovector genomes by
polymerase chain reaction. Adenovector genomes in whole mouse
eyes following 1 IVT injection of 1×109 pu of either Ad5.L or Ad35.L
(HI-RGD). On Days 1, 14, 28, and 60 post vector injection, eyes were
harvested and adenovector genomes quantitated using qPCR. Data
are expressed as the mean±SEM (error bars) with an n=5 mice/
treatment group/time point.
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experiments using Ad5.PEDF and Ad35.PEDF (HI-RGD)
administered once intravitreally (Figure 6). Human PEDF
levels were measured using a sensitive PEDF ELISA as
previously defined [60]. This PEDF ELISA does not detect
mouse PEDF and has a sensitivity level of approximately 0.07
ng/ml. Interestingly, we found in this study that PEDF levels
were comparable between Ad5.PEDF and Ad35.PEDF (HI-
RGD) within 1 day post injection. However, by Day 60, PEDF
levels had dropped by more than 1 log for Ad5.PEDF- treated
eyes whereas in Ad35.PEDF (HI-RGD) treated animals, the
PEDF levels were approximately 5–14 pg/μg protein. Based
on estimations by Stellmach et al. [66,], Raisler et al. [67], and
Mori et al. [61] scant levels of PEDF are sufficient to inhibit
blood vessel growth (on the order of approximately 1–2 pg/
μg protein or 1–2 ng/mg protein). These results indicate that
1 IVT injection of Ad35.PEDF (HI-RGD) can result in
elevated PEDF levels out to at least 60 days.

Ad35.PEDF vector inhibits choroidal neovascularization:
The mouse model of laser-induced CNV, shown in Figure 7A,
mimics several features of wet AMD in humans [49,62]. This
in vivo model is commonly used to screen potential anti-
angiogenic compounds for their ability to inhibit CNV. To
assess the ability of an alternate serotype vector to inhibit
abnormal blood vessel growth in the eye, animals received no
injection (naïve) or a single, IVT injection of buffer, Ad5.L,

Figure 5. Luciferase expression profile following 1 IVT injection of
Ad5- or Ad35-based vectors. Luciferase activity in mouse eyes
following a single IVT injection of 1×109 pu of either Ad5.L or
Ad35.L (HI-RGD). Naive animals served as negative controls. On
Days 1, 28, 60, and 120 post vector injection, eyes were harvested
and luciferase activity assessed. Data are expressed as the mean
±SEM (error bars) with an n=15 mice/treatment group/time point,
except for Day 120, which has an n=5 mice/treatment group. The
asterisk indicates a statistically significant difference between the
Ad5 and Ad35 groups on Day 120 post injection (p<0.05, two-tailed
Student’s t-test).

Ad35.L (HI-RGD), Ad5.PEDF, or Ad35.PEDF (HI-RGD) on
Day 0. Twenty-eight days later, experimental CNV was
induced by creating a laser burn that would disrupt Bruch’s
membrane of the mouse retina. Fourteen days later, the mice
were euthanized, and choroidal flat mounts were prepared to
quantitate lesion size (Figure 7B). Based on these data, PEDF
expression from an Ad35.PEDF (HI-RGD) vector was able to
inhibit CNV lesion growth by greater than 80% at Day 42 as
compared to the no-injection control (Figure 7B).

DISCUSSION
We, and others, have investigated the utility of Ad35 alternate
vectors for possible therapeutic development. Ad35 provides
advantages over the Ad5 vectors with respect to durability of
transgene expression, level of transgene expression and
perhaps a superior safety profile compared to Ad5 vectors
[44,45,68].

Although Ad5 vectors have shown good safety in
numerous clinical trials in areas including cardiology [69,
70], oncology [71–73], and ophthalmology [25,26,74], there
continues to be a quest to improve beyond the Ad5 class of
vectors. One potential limitation of the Ad5 vector platform
is that this adenovector serotype traditionally does not provide
long-term expression. The transient expression is thought to
be due to various immune responses to the vector [75–78]. We

Figure 6. PEDF expression profile following 1 IVT injection of Ad5
or Ad35-based vectors. PEDF levels in mouse eyes following a single
IVT injection of 1×109 pu of Ad5.PEDF or Ad35.PEDF (HI-RGD).
Naive animals served as negative controls. On Days 1, 28, and 60
post vector injection, eyes were harvested and PEDF levels
quantitated by ELISA developed by GenVec, Inc. Data are expressed
as the mean±SEM (error bars) with an n=15 mice/treatment group/
time point, except for Day 60 which has an n=5 mice/treatment
group. The asterisk points to a statistically significant difference
between the Ad5 and Ad35 groups on Day 28 and 60 post injection
(p<0.05, two-tailed Student’s t-test).
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report here that an Ad35 alternate vector can result in up to 4
months of GFP expression in eyes, and diminishing to
background levels by 8 months, following 1 IVT injection.
Interestingly, Mallam et al. [68] also found 8-month GFP
expression in animals given 1 subretinal injection of an Ad5
vector with an Ad35 knob. Mallam et al. [68] also noted that
GFP expression was higher in cells transduced with an Ad35
knob vector versus a vector with an Ad5 knob as determined
by Fluorescence Activated Cell Sorting (FACS) analyses.

Furthermore, the observation of strong GFP expression
following 1 IVT injection of Ad35.GFP (±HI-RGD) into the
eyes of mice was a reasonable finding since it has been
reported that in mice tissues, the testes and the eye express
CD46 [68,79–82]. In humans, CD46 is present in the corneal
epithelium and photoreceptor cells [83]. In mice, Mallam et
al. found that 1 subretinal injection with an Ad35 knob vector
containing GFP resulted in green fluorescent cells within the
photoreceptor inner and outer segments and the retinal
pigment epithelial cells of the mouse eye [68]. Our results

suggest that following 1 IVT injection into a mouse eye with
an Ad35 vector, cells of the anterior segment are transduced.
However, the precise cells, which are infected remains
unknown.

Although the transgene expression profiles differed
between the two marker genes, GFP and luciferase, compared
to the secreted human PEDF protein, our data show that an
Ad35 vector administered intravitreally to the eye results
consistently in higher levels of each transgene at later time
points (e.g., Days 60 and 120) than the Ad5 serotype. In the
case of the anti-angiogenic protein, human PEDF, these levels
were higher than the predicted therapeutic levels (1–2 pg/μg)
[61,66,67], reported to have biologic activity (i.e., inhibit
abnormal blood vessel growth) at a later time point (Day 60).
The difference in transgene expression profiles could be
attributed to variability in protein turnover of the different
proteins in transduced cells. Our data (Figure 7B) support this
valued finding that only a low amount of PEDF is enough to
block neovascularization in the eye. Although the Ad35

Figure 7. In vivo biologic activity of Ad35-based vector in the mouse laser-induced CNV model. A: This is a schematic illustration of the
mouse laser-induced CNV model. B: Mice were untreated (naïve) or received 1 IVT injection (1×109 pu) of either Ad5.L, Ad35.L (HI-RGD),
Ad5.PEDF, or Ad35.PEDF (HI-RGD). Approximately 28 days following buffer or vector treatment, laser induction of CNV was performed.
Fourteen days following laser induction, mice were perfused with fluorescein-labeled dextran, eyes harvested, choroidal flat mounts prepared,
and CNV lesion size quantitated. Data are expressed as the mean±SEM (error bars) with an n=6 mice/treatment group, except for Ad5.L and
Ad35.L (HI-RGD), which had an n=5 mice/treatment group. The asterisk points to a statistically significant difference between the Ad35.PEDF
(HI-RGD)-treated group and all other treatment groups on Day 42 post injection (p<0.01, two-tailed Student’s t-test).
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backbone also seems to have some antivasculature effect (null
effect), major effect is attributable to the presence of PEDF
[49,55,56,60,84].

Our data demonstrate the feasibility and utility of Ad35
vectors as a delivery mode for medical applications in the eye
without frequent repeat intraocular injections. Moreover, the
ability to achieve long-term gene expression in the eye
provides a possible therapeutic benefit of Ad35 over Ad5
vectors for the treatment of chronic ocular diseases.
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