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Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic β-cell
dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive
oxygen species (ROS) deteriorate β-cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes.
In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed
under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and
atherosclerosis.

1. Augmentation of Reactive Oxygen
Species (ROS) by Various Pathways
under Diabetic Conditions

It has been shown that ROS are produced in various tissues
under diabetic conditions [1, 2]. There are several sources of
ROS in cells such as the nonenzymatic glycosylation reaction
[3], the electron transport chain in mitochondria [4],
and membrane-bound NADPH oxidase [5, 6]. In diabetic
animals, glycation reaction is observed in various tissues
and organs, and various kinds of glycated proteins such as
glycosylated hemoglobin, albumin, and lens crystalline are
produced in a nonenzymatical manner through the glycation
reaction. The reaction produces Schiff base, Amadori prod-
uct, and finally advanced glycosylation end products (AGEs).
During the process, ROS are also produced. The electron
transport chain in mitochondria is also an important path-
way to produce ROS. Under diabetic conditions, electron
transport chain is activated, which leads to production of
larger amounts of ROS. It has been shown that membrane-
bound NADPH oxidase is also an important source of
ROS. NADPH oxidase is composed of the membrane-bound
subunits gp91 phox (Nox2)/Nox1/Nox4 and p22 phox and
the catalytic site of the oxidase and cytosolic components p47
phox and p67 phox. NADPH oxidase is activated by various

stimuli such as AGEs, insulin, and angiotensin II; all of which
are possibly induced under diabetic conditions (Figures 1(a)
and 1(b)).

2. Role of ROS in the Progression of Pancreatic
β-Cell Dysfunction in Type 2 Diabetes

Acute exposure of β-cells to a high glucose concentration
stimulates insulin gene expression, but chronic exposure has
various adverse effects on various β-cell function. However,
chronic hyperglycemia is a cause of impairment of insulin
biosynthesis and secretion. This process is called β-cell
glucose toxicity which is often observed under diabetic
conditions. In the diabetic state, hyperglycemia per se and
subsequent production of ROS decrease insulin gene expres-
sion and secretion and finally bring about apoptosis [7–28].
It has been shown that the loss of insulin gene expression is
accompanied by decreased expression and/or DNA binding
activities of transcription factors: pancreatic and duodenal
homeobox-1 (PDX-1) [19–26] and MafA [10, 12, 15]. After
chronic exposure to a high glucose concentration, expression
and/or DNA binding activities of these two transcription
factors are reduced. It is noted here that PDX-1 plays a
crucial role in pancreas development, β-cell differentiation,
induction of surrogate β-cells, and maintenance of mature
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Figure 1: Augmentation of ROS by various pathways under diabetic
conditions. (a) ROS are produced by various pathways under
diabetic conditions. Hyperglycemia induces ROS through activa-
tion of the glycation reaction and electron transport chain in
mitochondria. (b) AGEs, insulin, and angiotensin II induces ROS
through activation of membrane-bound NADPH oxidase.

β-cell function [29–41] and that MafA is a recently isolated
β-cell-specific transcription factor and functions as a potent
activator of insulin gene transcription [42–47].

Under diabetic conditions, ROS are induced and involved
in the β-cell glucose toxicity [22–36]. β-Cells express GLUT2,
a high-Km glucose transporter, and thereby display highly
efficient glucose uptake when exposed to a high glucose
concentration. Indeed, it was shown that expressions of
ROS markers 8-hydroxy-2′-deoxyguanosine (8-OHdG) and
4-hydroxy-2, 3-nonenal (4-HNE) were increased in islets
under diabetic conditions [14, 16]. In addition, β-cells
are rather vulnerable to ROS due to the relatively low
expression of antioxidant enzymes such as catalase and
glutathione peroxidase [48, 49]. Therefore, it is likely that
ROS are involved in β-cell deterioration found in diabetes.
It was shown that when β-cell-derived cell lines or rat
isolated islets were exposed to ROS, insulin gene promoter
activity and mRNA expression were suppressed [19–26].
In addition, when they were exposed to ROS, binding of
PDX-1 and/or MafA to the insulin gene promoter was
markedly reduced. Furthermore, it was shown that the
decrease of insulin gene expression after chronic exposure

to a high glucose concentration was prevented by treatment
with antioxidants [16, 19, 25, 26]. Reduction of expression
and/or DNA binding activities of PDX-1 and MafA by
chronic exposure to high glucose was also prevented by an
antioxidant treatment. These results suggest that chronic
hyperglycemia suppresses insulin biosynthesis and secretion
by increasing ROS, accompanied by reduction of expression
and/or DNA binding activities of two important pancreatic
transcription factors: PDX-1 and MafA. Therefore, it is likely
that the alteration of such transcription factors explains, at
least in part, the suppression of insulin biosynthesis and
secretion, and thus are involved in β-cell glucose toxicity.
Indeed, it was shown that the antioxidant treatment with
N-acetyl-L-cysteine plus vitamin C and E retained glucose-
stimulated insulin secretion and moderately ameliorated
glucose tolerance in obese diabetic C57BL/KsJ-db/db mice
[19]. β-Cell mass was significantly larger in the mice treated
with the antioxidants, and insulin content was preserved by
the antioxidant treatment. Furthermore, PDX-1 expression
was more clearly visible in the nuclei of β-cells after the
antioxidant treatment [19]. Similar effects were observed
with Zucker diabetic fatty rats, another model animal for
type 2 diabetes [25]. Therefore, it is likely that antioxidant
treatment can protect β-cells against glucose toxicity. In
addition, angiotensin II type 1 receptor blocker (ARB) has
antioxidant effects and thereby treatment with ARB exerts
beneficial effects for diabetes [50, 51]. Indeed, it was shown
that when diabetic C57BL/KsJ-db/db mice were treated with
ARB, β-cell mass and insulin content were increased, and
expressions of components of NAD(P)H oxidase and ROS
markers in β-cells were decreased. The ARB treatment also
reduced fibrosis in and around the islets and prevented the
loss of endothelial cells in islets. These results suggest that
ARB treatment protects β-cells by reducing ROS and further
strengthen the hypothesis that ROS are involved in β-cell
glucose toxicity found in diabetes.

It is known that lipotoxicity is also involved in the
deterioration of β-cell function found in type 2 diabetes.
When islets or β-cell-derived cell lines were exposed to free
fatty acids (FFAs), ROS were induced, which led to the
reduction of insulin secretion and β-cell dysfunction [52–
56]. It was also reported that FFA-mediated induction of
inducible nitric oxide synthase (iNOS) and excess nitric
oxide (NO) generation were involved in the progression
of β-cell dysfunction [57]. Because intracellular NO is an
important mediator of β-cell apoptosis [58], it is likely that
the loss of β-cell mass observed in type 2 diabetes is due to
NO-induced apoptosis.

It has been suggested that activation of the c-Jun N-
terminal kinase (JNK) pathway is involved in pancreatic β-
cell dysfunction found in type 2 diabetes. It was reported
that activation of the JNK pathway is involved in reduction
of insulin gene expression by ROS and that suppression
of the JNK pathway can protect β-cells from ROS [59].
When isolated rat islets were exposed to ROS, the JNK
pathway was activated, preceding the decrease of insulin gene
expression. Adenoviral overexpression of dominant-negative
type JNK1 (DN-JNK) protected insulin gene expression
and secretion from ROS. These results were correlated with
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Figure 2: Role of ROS in the progression of pancreatic β-cell
dysfunction in type 2 diabetes. ROS are provoked by hyperglycemia
and/or hyperlipidemia under diabetic conditions, which leads
to activation of the JNK pathway in pancreatic β-cells. ROS
and subsequent activation of the JNK pathway induce nucleo-
cytoplasmic translocation of PDX-1, which leads to reduction of
PDX-1 activity and suppression of insulin. Therefore, it is likely
that ROS and activation of the JNK pathway are involved in β-cell
dysfunction found in type 2 diabetes.

change in the binding of PDX-1 to the insulin promoter.
Adenoviral overexpression of DN-JNK preserved PDX-1
DNA binding activity in the face of ROS, while WT-
JNK overexpression decreased PDX-1 DNA binding activity
[59]. Taken together, it is likely that activation of the JNK
pathway leads to decreased PDX-1 activity and consequent
suppression of insulin gene transcription found in the
diabetic state. Also, it was shown that PDX-1 is translocated
from the nuclei to the cytoplasm in response to ROS.
When β-cell-derived HIT cells were exposed to ROS, both
intrinsically expressed PDX-1 and exogenously introduced
green fluorescent protein (GFP)-tagged PDX-1 moved from
the nuclei to the cytoplasm [60]. DN-JNK overexpression
inhibited the ROS-induced PDX-1 translocation, suggesting
that activation of the JNK pathway is involved in PDX-1
translocation by ROS. Furthermore, leptomycin B, a specific
inhibitor of the classical, leucine-rich nuclear export signal
(NES), inhibited nucleo-cytoplasmic translocation of PDX-
1 induced by ROS [60]. Taken together, it is likely that ROS
induce nucleo-cytoplasmic translocation of PDX-1 through
activation of the JNK pathway, which leads to reduction of its
DNA binding activity and suppression of insulin biosynthesis
(Figure 2).

The forkhead transcription factor Foxo1 is known as one
of the important fundamental transcription factors playing
a key role in apoptosis, cellular proliferation and differ-
entiation, and glucose metabolism through regulating the
transcription of various target genes [61, 62]. It was shown
that Foxo1 regulates hepatic gluconeogenesis, and thus con-
tributes to insulin resistance [63]. Insulin inhibits the func-
tion of Foxo1 through Akt/PKB-mediated phosphorylation
and nuclear exclusion [64], and thereby suppresses hepatic
gluconeogenesis. It was also shown that Foxo1 exhibits a
counter localization to PDX-1 in β-cells [65], suggesting

that it is involved in the deterioration of β-cell function.
Moreover, it was shown that Foxo1 plays a role as a mediator
between the JNK pathway and PDX-1 [66]. In β-cell-derived
cell line HIT-T15, Foxo1 changed its intracellular localization
from the cytoplasm to the nucleus after exposure to ROS.
In contrast to Foxo1, the nuclear expression of PDX-1 was
decreased and its cytoplasmic distribution was increased
by ROS. Activation of the JNK pathway also induced the
nuclear localization of Foxo1, whereas suppression of the
JNK pathway reduced the ROS-induced nuclear localization
of Foxo1, suggesting an involvement of the JNK pathway
in Foxo1 translocation [66]. In addition, ROS or activation
of the JNK pathway decreased Akt phosphorylation in HIT
cells, leading to the decreased phosphorylation of Foxo1 fol-
lowing nuclear localization. Furthermore, adenoviral Foxo1
overexpression reduced the nuclear expression of PDX-
1, whereas suppression of Foxo1 by Foxo1-specific small
interfering RNA retained the nuclear expression of PDX-
1 [66]. Taken together, ROS and subsequent activation of
the JNK pathway induce nuclear translocation of Foxo1
through the modification of the insulin signaling in β-cells,
which leads to the nucleo-cytoplasmic translocation of PDX-
1 and reduction of its DNA binding activity. It was also
shown that the mammalian Ste20-like kinase 1 (MST1)
is activated by ROS, which facilitates Foxo1 translocation
from the cytoplasm to the nuclei [67]. Therefore, it is
also possible that ROS trigger Foxo1 translocation from the
cytoplasm to the nuclei, independently of Akt activity or Akt-
mediated phosphorylation status of Foxo1. Furthermore,
the significance of the JNK pathway in the development
of diabetes comes from the result of a genetic analysis in
humans. While islet-brain-1 (IB1) was known to suppress the
JNK pathway [68, 69], it was shown that a missense mutation
within the IB1-encoding MAPKIP1 gene (S59N) is associated
with a late onset type 2 diabetes [70]. Thus, it is likely that
activation of the JNK pathway is involved in deterioration of
β-cell function found in type 2 diabetes.

3. Role of ROS in the Progression of Insulin
Resistance in Type 2 Diabetes

The hallmark of type 2 diabetes is insulin resistance as well
as pancreatic β-cell dysfunction. Under diabetic conditions,
various insulin target tissues such as the liver, muscle, and fat
become resistant to insulin. The pathophysiology of insulin
resistance involves a complex network of insulin signaling
pathways. After insulin binds to insulin receptor on cell
surface, insulin receptor and its substrates are phosphory-
lated, which leads to activation of various insulin signaling
pathways [71–74]. It has been shown that ROS are involved
in the progression of insulin resistance as well as pancreatic
β-cell dysfunction [75]. Indeed, it was previously reported
that ROS disrupted insulin-induced cellular redistribution of
insulin receptor substrate-1 (IRS-1) and phosphatidylinos-
itol 3-kinase (PI 3-K), and thus impaired insulin-induced
GLUT4 translocation in 3T3-L1 adipocyte [76, 77]. It was
also reported that treatment with antioxidants (N-acetyl-
L-cysteine and taurine) prevented hyperglycemia-induced
insulin resistance in vivo [78]. Furthermore, in patients with
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type 2 diabetes, both acute and chronic administrations of
α-lipoic acid, an antioxidant, improved insulin resistance,
suggesting that ROS are involved in the progression of insulin
resistance [79, 80].

Under diabetic conditions, hyperglycemia increased
ROS, which presumably lead to activation of the JNK
pathway. In addition, under diabetic conditions, free fatty
acids (FFAs), various inflammatory cytokines (e.g., TNFα),
and endoplasmic reticulum (ER) stress are increased, which
also leads to activation of the JNK pathway. Finally, it
has been suggested that activation of the JNK pathway is
involved in insulin resistance as well as pancreatic β-cell
dysfunction found in diabetes [81, 82]. It was reported
that the JNK pathway was abnormally activated in the
liver, muscle, and adipose tissue in obese type 2 diabetic
mice and that insulin resistance in obese type 2 diabetic
mice was substantially reduced in mice homozygous for
a targeted mutation in the JNK1 gene (JNK-KO mice)
[83]. When the JNK-KO and control mice were placed
on a high-fat/high-caloric diet, blood glucose levels in the
obese JNK-KO mice were significantly lower compared to
obese wild-type mice. Intraperitoneal insulin tolerance tests
showed that hypoglycemic response to insulin in obese wild-
type mice was lower compared to obese JNK-KO mice.
Also, intraperitoneal glucose tolerance test revealed a higher
degree of hyperglycemia in obese wild-type mice than obese
JNK-KO mice. These results indicate that the JNK-KO mice
are protected from the development of dietary obesity-
induced insulin resistance. Furthermore, targeted mutations
in JNK1 were introduced in genetically obese mice (ob/ob)
[83]. Blood glucose levels in the ob/ob-JNK-KO mice were
lower compared to ob/ob wild-type mice, and the ob/ob
wild-type mice displayed a severe and progressive hyperinsu-
linemia. Therefore, it is likely that JNK1 deficiency provides
resistance against obesity, hyperglycemia, and hyperinsu-
linemia in both genetic and dietary models of diabetes.
These results suggest that activation of the JNK pathway
plays an important role in the development of insulin
resistance found in type 2 diabetes. It was also reported that
overexpression of dominant-negative (DN) type JNK1 (Ad-
DN-JNK) in the liver of obese diabetic C57BL/KsJ-db/db
mice improved insulin resistance and ameliorated glucose
intolerance [83]. In intraperitoneal insulin tolerance test,
the hypoglycemic response to insulin was larger in Ad-DN-
JNK-treated db/db mice. Furthermore, in the euglycemic
hyperinsulinemic clamp test, glucose infusion rate (GIR)
in Ad-DN-JNK-treated mice was higher than that in Ad-
GFP-treated mice, indicating that suppression of the JNK
pathway in the liver reduces insulin resistance, and thus
ameliorates glucose intolerance in the db/db mice. Further-
more, hepatic glucose production (HGP) was significantly
lower in Ad-DN-JNK-treated mice, whereas there was no
difference in the glucose disappearance rate (Rd) between
these two groups [84]. These results indicate that reduction
of insulin resistance and amelioration of glucose tolerance
by DN-JNK overexpression are mainly due to suppression
of hepatic glucose production. It has been reported that
serine phosphorylation of insulin receptor substrate-1 (IRS-
1) inhibits insulin-stimulated tyrosine phosphorylation of
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Figure 3: Role of ROS in the development of insulin resistance in
type 2 diabetes. The JNK pathway is activated by various factors
such as ROS, ER stress, free fatty acids (FFAs), and inflammatory
cytokines such as TNFα and is involved in the development of
insulin resistance found in type 2 diabetes. It has been also shown
that the IkappaB kinase β (IKK) pathway is also activated by such
factors and is involved in the development of insulin resistance.
Therefore, it is likely that activation of stress signaling is involved
in the development of insulin resistance.

IRS-1, leading to an increase in insulin resistance [85]. IRS-1
serine 307 phosphorylation was decreased and IRS-1 tyrosine
phosphorylation was increased in Ad-DN-JNK-treated mice
[84]. Therefore, it is likely that an increase in IRS-1 serine
phosphorylation is associated with the development of
insulin resistance induced by JNK overexpression. Taken
together, suppression of the JNK pathway enhances insulin
signaling which leads to amelioration of glucose tolerance
(Figure 3).

Protein transduction domains (PTDs) such as the small
PTD from the TAT protein of human immunodeficiency
virus (HIV-1), the VP22 protein of Herpes simplex virus, and
the third α-helix of the homeodomain of Antennapedia, a
Drosophila transcription factor, are known to allow various
proteins and peptides to be efficiently delivered into cells
through the plasma membrane, and thus there has been
increasing interest in their potential usefulness for the
delivery of bioactive proteins and peptides into cells [86–
91]. It was reported that the cell permeable JNK inhibitory
peptide is effective for the treatment of diabetes. This peptide
is derived from the JNK binding domain of JNK-interacting
protein-1 (JIP-1) and has been reported to function as a
dominant inhibitor of the JNK pathway [92]. It is noted here
that JIP-1 itself is a scaffold protein which binds JNK and
activates the JNK pathway. When this peptide was injected
intraperitoneally to C57BL/KsJ-db/db obese diabetic mice,
the FITC-conjugated peptide showed fluorescence signals in
insulin target organs (liver, fat, and muscle) and in insulin
secreting tissue (pancreatic islets) [93]. In insulin tolerance
test, reduction of blood glucose levels in response to injected
insulin was larger in JNK inhibitory peptide-treated mice
[93]. Furthermore, in the euglycemic hyperinsulinemic
clamp test, the steady-state glucose infusion rate (GIR) in
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JNK inhibitory peptide-treated mice was higher than that
in untreated mice, indicating that JNK inhibitory peptide
reduces insulin resistance in the db/db mice. Endogenous
hepatic glucose production (HGP) and glucose disappear-
ance rate (Rd) in the JNK inhibitory peptide-treated mice
were also evaluated. It is noted that Rd reflects glucose
utilization in the peripheral tissues. HGP in JNK inhibitory
peptide-treated mice was lower than that in untreated mice.
In addition, Rd in JNK inhibitory peptide-treated mice
was higher than that in untreated mice [93]. These results
indicate that JNK inhibitory peptide treatment reduces
insulin resistance through decreasing HGP and increasing
Rd. IRS-1 serine 307 phosphorylation was decreased and
IRS-1 tyrosine phosphorylation was increased in the peptide-
treated mice. Concomitantly, glucose intolerance was also
ameliorated in JNK inhibitory peptide-treated mice. Taken
together, suppression of the JNK pathway improves insulin
resistance and ameliorates glucose intolerance, which further
strengthens the significance of the JNK pathway in the
development of insulin resistance.

The JNK pathway is activated by various factors including
ROS, ER stress, FFAs, and inflammatory cytokines such
as TNFα and is involved in the development of insulin
resistance found in type 2 diabetes [94–96]. It has been
shown the IkappaB kinase β (IKK) pathway is also activated
by such factors and is involved in the development of insulin
resistance [97–100]. Activation of the IKK pathway increases
IRS-1 serine phosphorylation which leads to suppression
of insulin signaling. Also, suppression of the IKK pathway
decreases insulin resistance and ameliorates glucose intoler-
ance in diabetic mice. Therefore, it is likely that activation
of stress signaling such as the JNK and IKK pathways is
involved in the development of insulin resistance and that
such pathways could be a therapeutic target for diabetes
(Figure 3).

4. Role of ROS in the Progression of
Atherosclerosis

Atherosclerosis is often observed as a macroangiopathy
under diabetic conditions. Indeed, it has been reported
that increase of intima-media thickness (IMT) in carotid
artery, an index of the progression of atherosclerosis, is
often observed in diabetic patients [101–103] and that the
progression of IMT is influenced by a variety of genetic
risk factors [104–106] and/or intervention for diabetes [107–
109]. It is well known that hyperglycemia per se found
under diabetic conditions facilitates the progression of
atherosclerosis. In addition, hyperinsulinemia which is often
observed in subjects with insulin resistance is likely involved
in the progression of atherosclerosis.

It has been shown that ROS are induced in endothelial
cells under diabetic conditions. There are several sources
of reactive oxygen species (ROS) in cells such as the
nonenzymatic glycosylation reaction, the electron transport
chain in mitochondria, and membrane-bound NADPH
oxidase (Figure 4). It has been shown that membrane-bound
NADPH oxidase is the one of the major sources of ROS in
the vasculature and that NADPH oxidase-derived ROS play
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Figure 4: Role of ROS in the development of atherosclerosis. ROS
are produced by various pathways under diabetic conditions and
involved in the development of atherosclerosis in various aspects.
Hyperglycemia induces ROS through activation of the glycation
reaction and electron transport chain in mitochondria. Also, AGEs,
insulin, and angiotensin II induce ROS through activation of
NADPH oxidase. Increased ROS are involved in the development of
atherosclerosis in various aspects. First, ROS decrease nitric oxide
levels, which leads to endothelial cell dysfunction. Second, ROS
increase expression of various adhesion molecules such as ICAM-
1 and VCAM-1, which leads to inflammatory cell recruitment.
Finally, ROS increase expression of various growth factors and
activate various stress signaling such as JNK and Pim-1, which leads
to proliferation of smooth muscle cell.

a critical role in the development of atherosclerosis. NADPH
oxidase is composed of the membrane-bound subunits gp91
phox (Nox2)/Nox1/Nox4 and p22 phox, and the catalytic
site of the oxidase and cytosolic components p47 phox and
p67 phox. In vascular cells such as endothelial and smooth
muscle cells, Nox 1 and Nox 4, rather than gp91 phox,
are abundantly expressed. NADPH oxidase is activated by
various factors such as AGEs, insulin, and angiotensin II;
all of which are possibly induced under diabetic conditions
[110]. In addition, it was shown that high glucose stimulates
ROS production through the activation of NADPH oxidase
[111, 112] and that the p22 phox was significantly increased
in rat and human diabetic arteries [113, 114]. Therefore,
it is possible that such increased expression of p22 phox
contributes to the development of atherosclerosis. It was also
reported that mice lacking p47 phox, which is an important
component for NADPH oxidase, had lower levels of aortic
ROS production compared with wild-type mice and that
when the mice were crossed with apolipoprotein E knockout
(p47 phox (−/−), apoE (−/−)) mice they had significantly
fewer lesions in their descending aortas compared to p47
phox (+/+), apoE (−/−) mice [115]. NADPH oxidase-
derived ROS play a crucial role in the development of
atherosclerosis in human as well as in mice. Indeed, it has
been reported that ROS production in atherosclerotic human
coronary arteries is associated with NADPH oxidase subunit
p22 phox [116]. Also, it has been reported recently that
phagocytic NADPH oxidase overactivity is involved in ROS
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and atherosclerosis in metabolic syndrome patients and that
hyperinsulinemia likely contributes to ROS in metabolic syn-
drome patients through activation of NADPH oxidase [117].

In addition, it is likely that the vulnerability to oxidative
stress is determined by genetic background. There are several
enzymes regulating redox status and the vulnerability to
oxidative stress is affected by genetic polymorphisms in
these enzymes. For example, it was reported that in type
2 diabetic subjects the C242T polymorphism of the p22
phox gene, an essential component of NADPH oxidase in
the vasculature, was closely associated with intima-media
thickness (IMT) of the carotid artery, an index of the
progression of atherosclerosis [105]. It is noted here that
the presence of 242T allele is known to be associated
with significantly reduced vascular NADPH oxidase activity.
Average IMT in the diabetic subjects with the CC genotype
was significantly higher compared to those with the TC +
TT genotypes. Furthermore, in stepwise multiple regression
analysis, p22 phox CC genotype was an independent risk
factor for increased IMT in the diabetic subjects [105]. These
results suggest that the vulnerability to oxidative stress and
the progression of atherosclerosis are influenced by genetic
background. Furthermore, the accumulation of oxidative
stress-associated gene polymorphisms is likely associated
with the severity and the progression of atherosclerosis in
diabetic patients. For example, it was reported that carotid
intima-media thickness (IMT) as well as serum 8-OHdG
level, a marker of oxidative stress, were closely associated
with the accumulation of several oxidative stress-associated
gene polymorphisms, such as the T allele of the C-588T
polymorphism in glutamate-cysteine ligase modifier subunit
(GCLM) gene, the GG genotype of the G-463A polymor-
phism in myeloperoxidase (MPO) gene, the substitution of
Gln for Arg at position 192 in human paraoxonase (PON1),
and the T allele of the C242T polymorphism in NAD(P)H
oxidase p22 phox gene [118]. Furthermore, the accumulation
of these 4-gene polymorphisms was closely associated with
the progression of carotid IMT in the longitudinal settings.
In a stepwise multivariate regression analysis, the number
of prooxidant alleles was an independent risk factor for the
progression of IMT [119]. These results further support
the hypothesis that the vulnerability to oxidative stress
and the progression of atherosclerosis are influenced by
genetic background. Furthermore, it was reported that
the prevalence of myocardial infarction was significantly
higher in the subjects with higher number of prooxidant
alleles of these 4 gene polymorphisms [120]. Therefore, it
is likely that the accumulation of oxidative stress-related
gene polymorphisms influences the prevalence of myocardial
infarction as well as atherosclerosis.

Increased ROS are involved in the development of
atherosclerosis in various aspects. First, endothelial dysfunc-
tion is an early key event in atherosclerosis [121–123]. It
has been thought that ROS are involved in the progression
of endothelial cell dysfunction, which is accompanied by
inactivation of endothelial nitric oxide synthase (eNOS)
and decrease of nitric oxide (NO) levels [124]. Second,
ROS also induce expression of adhesion molecules such as
intercellular adhesion molecule-1 (ICAM-1) and vascular

adhesion molecule-1 (VCAM-1), which facilitates inflam-
matory cell recruitment and lipid deposition in the intimal
layer. The subsequent ingestion of excess oxidized low density
lipoprotein (LDL) particles by macrophages and monocytes
leads to release of various inflammatory cytokines and
growth factors. Finally, proliferation of vascular smooth
muscle cells (VSMCs) is a key step in the development
of atherosclerosis. It has been suggested that ROS regulate
expression of various growth factors and several growth-
related protooncogenes such as c-Myc, c-Fos and c-Jun [124,
125]. Clinical mass studies have also provided support for
the significance of ROS in the development of atherosclerosis
[126, 127]. Taken together, it is likely that ROS are involved in
the VSMC proliferation and development of atherosclerosis
through various pathways (Figure 4).

The JNK pathway is known to be activated by ROS in
VSMC [128], and activation of the JNK pathway is likely
involved in the progression of atherosclerosis. It is known
that the JNK pathway plays an important role in the initiation
of cellular responses, including cellular gene expression,
growth, migration, or apoptosis. It has been previously
reported that the JNK pathway is activated in balloon-injured
arteries as well [129–131]. In vivo transfection of DN-
JNK significantly suppressed activation of the JNK pathway
and reduced VSMC proliferation in a balloon-injury model
[132]. Neointimal formation after balloon-injury was also
prevented by DN-JNK overexpression. Bromodeoxyuridine
labeling index and total cell-counting analysis showed that
DN-JNK remarkably suppressed VSMC proliferation in both
the intima and the media after injury. In contrast, gene
transfer of wild-type JNK (WT-JNK) significantly enhanced
neointimal hyperplasia after balloon-injury. Taken together,
activation of the JNK pathway triggers VSMC proliferation,
leading to neointimal formation, and the JNK pathway could
be a therapeutic target for atherosclerosis. The role of JNK in
atherosclerotic plaque formation in vivo was also examined
using atherosclerosis-prone apolipoprotein E knockout mice
(ApoE (−/−) mice). Activation of the JNK pathway was
closely correlated with the presence of clearly established
plaques in ApoE (−/−) mice with a high-cholesterol diet.
It was recently reported that atherosclerosis-prone ApoE
(−/−) mice simultaneously lacking JNK2 (ApoE (−/−),
JNK2 (−/−) mice) developed less atherosclerosis compared
to ApoE (−/−) mice [133]. Pharmacological inhibition of
the JNK activity also efficiently reduced plaque formation
[134]. Macrophages lacking JNK2 displayed suppressed foam
cell formation caused by defective uptake and degradation of
modified lipoproteins and showed increased amounts of the
modified lipoprotein-binding and -internalizing scavenger
receptor A (SR-A). Macrophage-restricted deletion of JNK2
was sufficient to decrease atherogenesis [133]. These data
suggest that JNK2-dependent phosphorylation of SR-A pro-
motes uptake of lipids in macrophages, and thereby regulates
foam cell formation. These results strengthen the significance
of the JNK pathway in the progression of atherosclerosis.
Furthermore, it was shown that Pim-1, a protooncogene that
encodes a serine/threonine kinase, is also induced by ROS,
and thus is likely involved in the progression of atherosclero-
sis [135, 136]. Pim-1 was substantially induced in neointimal
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VSMC of balloon injured rat carotid arteries, and in
vivo infection with a dominant-negative Pim-1-expressing
adenovirus (Ad-DN-Pim-1) markedly suppressed neointima
formation and cell cycle progression in the balloon injured
arteries [135]. In cultured VSMC, ROS-stimulated cell cycle
progression and DNA synthesis were suppressed by DN-
Pim-1 overexpression. Furthermore, Pim-1-producing cells
were observed predominantly in the thickened intima of
human thoratic aortas and coronary arteries [135]. These
findings suggest that ROS and consequent induction of Pim-
1 expression also play an important role in the progression
of atherosclerosis. Taken together, ROS and subsequent
activation of various stress signaling such as JNK and Pim-1
are involved in the progression of atherosclerosis (Figure 4).

5. Conclusion

ROS are induced under diabetic conditions, which are
possibly involved in the progression of pancreatic β-cell
dysfunction and insulin resistance found in type 2 diabetes.
Suppression of ROS in obese type 2 diabetic mice restores β-
cell function and insulin sensitivity, leading to amelioration
of glucose intolerance. In addition, ROS are involved in
the progression of atherosclerosis which is often observed
as a macroangiopathy under diabetic conditions. Taken
together, it is likely that ROS are closely associated with the
development of type 2 diabetes and atherosclerosis. Although
at present several clinical trials with antioxidants show only
a little effect, if any, on the progression of type 2 diabetes, we
think that future therapy with stronger and more appropriate
antioxidants would exert some beneficial effects on the
development of type 2 diabetes and atherosclerosis.
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