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Abstract: Melanoma is a lethal form of skin cancer. Immunotherapeutic agents such as anti-PD-1
(pembrolizumab and nivolumab) and anti-CTLA-4 (ipilimumab) have revolutionized melanoma
treatment; however, drug resistance is rapidly acquired. Several studies have reported an increase in
melanoma rates in older patients. Thus, the impact of ageing on transcriptional profiles of melanoma
and response to immunotherapy is essential to understand. In this study, the bioinformatic analysis
of RNA seq data of old and young melanoma patients receiving immunotherapy identifies the
significant upregulation of extra-cellular matrix and cellular adhesion genes in young cohorts, while
genes involved in cell proliferation, inflammation, non-canonical Wnt signaling and tyrosine kinase
receptor ROR2 are significantly upregulated in the old cohort. Several Treg signature genes as well as
transcription factors that are associated with dysfunctional T cell tumor infiltration are differentially
expressed. The differential expression of several genes involved in oxidative phosphorylation,
glycolysis and glutamine metabolism is also observed. Taken together, this study provides novel
findings on the impact of ageing on transcriptional changes in melanoma, and novel therapeutic
targets for future studies.

Keywords: melanoma; ageing; RNA-seq; transcriptional profiles; gene expression; immunotherapy;
ipilimumab; metabolism

1. Introduction

Malignant melanoma is a lethal form of skin cancer accounting for more than 9000 deaths
per year in the US [1]. Despite the implementation of health measures such as the application
of sunscreens, the incidence of melanoma is increasing to more than 80,000 cases per year
in the US [2]. Melanoma develops due to driver mutations in 48 core melanoma genes [3].
Melanoma development is also driven by mitogen-activated protein kinase (MAPK) pathway
activation, which is driven by mutations in BRAF (52%) or NRAS (28%) leading to malig-
nant transformation [3]. The most common BRAF mutations are V600E followed by V600K
and V600R [3]. Resistance to BRAFV600E inhibitors after treatment remains a challenge to
melanoma treatment. At later stages, melanoma resection remains the main treatment with
poor prognosis [4]. The development of immunotherapy has revolutionized melanoma treat-
ment; however, melanoma acquires resistance, making treatment more challenging [5]. Aging
is an inevitable biological process and a risk factor for many diseases, including melanoma.
Aging is associated with the accumulation of damaged molecules leading to replicative senes-
cence in dividing cells, telomere shortening and reduced levels or the absence of telomerase
(hTERT) expression [6]. Senescent cells constantly produce proinflammatory cytokines—
chemokines—growth factors leading to a microenvironment favorable for the development
of age-related diseases including cancer. Several studies have shown that the incidence of
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melanoma increases with age. Melanoma rates increased by an annual percentage change
of 1.8% in adults aged 40 and higher [7]. In addition, there has been a statistically significant
decrease in melanoma rates in young adults [7]. Patients aged 65 and older are the most vulner-
able age group affected by melanoma-related deaths [8]. Animal experiments have shown that
the melanoma cell line Yumm1.7 derived from a BrafV600E/Cdkn2a−/−/Pten−/− mouse
model of melanoma grows slowly but aggressively in aged mice with increased angiogenesis
and metastases due to the age-related increase in the Wnt antagonist sFRP2 [9]. Luckily, old
melanoma patients have been found to have a better response to the immune checkpoint
inhibitor anti-PD1 due to accumulation of a FOXP3+ Treg cell population [10]. It has also been
observed that in young mice as well as young adults with melanoma, there is an accumulation
of a significantly higher population of Treg cells driving resistance to immune check point
inhibitors [10]. It is, therefore, important to comprehensively understand the molecular mech-
anisms driving melanoma progression during aging to identify new therapeutic targets for the
treatment of malignant melanoma. Elucidating the transcriptional profiles of aging and their
association with physiological and pathological changes in melanoma is, therefore, critical to
identify new therapeutic targets. High-throughput genome-wide transcriptomic profiling is a
powerful tool that identifies gene expression signatures. The Cancer Genome Atlas (TCGA)
is a comprehensive project cataloguing genomic and transcriptomic data of cancers by the
National Cancer Institute (NCI), the National Human Genome Research Institute (NHGRI)
and the National Institute of Health (NIH) [11]. Since transcriptomic states of aged and
young melanoma patients are not fully understood, leading to a knowledge gap, in this study,
robust bioinformatic analysis of publicly available RNA seq data from 13 patients receiving
immunotherapy (representative of two distinct age groups) was performed. Five old and eight
young patients diagnosed with melanoma were collected and an analysis of gene expression
profiles was performed. Transcriptomic changes and gene expression signatures associated
with response to immunotherapy were investigated.

2. Materials and Methods
2.1. Clinical Cohorts

Two cohorts of old (n = 5) and young (n = 8) immunotherapy-treated patients (ipilimumab)
diagnosed with primary malignant melanoma were identified from TCGA and served
as datasets for the evaluation of age-associated transcriptomic changes. The class of
phenotypes that was used was primary tumor in the clinical category of “primary tumor”.

2.2. Data Selection and Processing

Transcriptomic RNAseq gene expression level 3 data containing reads per kilobase per
million mapped reads (RPKM) were downloaded for each case. RPKM is a widely used
RNAseq normalization method and is computed as follows: RPKM = 109(C/NL), where C
is the number of reads mapped to the gene, N is the total number of reads mapped to all
genes, and L is the length of the gene. RPKM results were generated with SeqWare pipeline.
The reference genome was genome GRCh38.p0, and the genome name is GRCh38.d1.vd1.
The alignment of raw reads was completed with BWA.

2.3. Differential Expression Analysis of Individual Genes

Differentially expressed genes (DEGs) were analyzed using the DESeq2 Bioconductor
R package [12]. Normalization was based on the relative log expression method in DESeq2.
The identification of significant DEGs was based on a log2 fold change cutoff value of
≤2 (for downregulated genes) or ≥2 (for upregulated genes). A significance level of
an adjusted p value of <0.05, using a false discovery rate (FDR) cutoff of <0.1, was set.
Heatmaps were generated using “pheatmap”, “RColorBrewer”, “ComplexHeatmap” and
“circlize” R packages [13]. A volcano plot was visualized using the EnhancedVolcano
R package [14].
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2.4. Functional and Pathway Enrichment Analysis

Entrez-ID of each DEG was obtained with the “org.Hs.eg.db” R package, then Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using the “clusterProfiler,” “enrichplot,” and “ggplot2” R packages. KEGG
analysis is used to discover pathways enriched in genes in a gene set of interest. Gene set
enrichment analysis (GSEA), which is not restricted by DEGs, was also used.

2.5. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Mapping Analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) was
used to analyze the differentially expressed genes. Pathways were also analyzed by the
KEGG program. In KEGG pathway enrichment analysis, enriched pathways were identified
according to p < 0.05.

2.6. Principal Component Analysis

Principal component analysis was performed with the R packages FactoMineR and
Factoextra. Two-dimensional PCA plots were generated using the R ggplot2.

2.7. Statistical Analyses

The significance level of the adjusted p value was set at <0.05 and a false discov-
ery rate (FDR) cutoff of <0.1 was set. All analyses were performed with R version 4.1.1
(10 August 2021) using the following packages: gplots, RColorBrewer, org.Hs.eg.db, stat-
mod, DESeq2, EnhancedVolcano, genefilter, pheatmap, NMF, ggplot2, scales, viridis,
gridExtra, reshape2, ggdendro, IHW and dendextend. All graphs were generated in
R version 4.1.1, R Core Team (2022), R: A language and environment for statistical comput-
ing, R Foundation for Statistical Computing, Vienna, Austria.

3. Results
3.1. Demographic and Clinical Features of the Patients

Patients with primary diagnosis malignant melanoma (disease type: nevi and
melanomas) were classified into two groups according to age. The young age group
had an average age at diagnosis of 42.8 ± 7.75 years. The old group had an average age
at diagnosis of 70 ± 4.5 years, p = 0.00001 (Figure 1A). None of the patients displayed
prior or synchronous malignancies. Survival analysis showed that the old age group had
significantly worse melanoma-specific survival, p = 0.006 (Figure 1B).

3.2. Identification of Age-Associated Differentially Expressed Genes in Melanoma

The quality of RNA-seq data was evaluated with principal component analysis (PCA) and
the clustering of RNA-seq samples using Euclidean distance. PCA analysis plots of the 13 RNA-
seq samples showed a clear separation of samples along principal component 1 (PC1), which
explained around 70% of total variance (Figure 1C). In addition, Euclidean sample distances
showed that the two age groups were well-clustered (Figure 1D). Differential expression analysis
was performed using the DESeq2 R package to identify upregulated and downregulated genes
between the old and young patients diagnosed with primary malignant melanoma. DEGs were
visualized as an MA plot (log2 fold change vs. mean of normalized counts) of young vs. old.
Red dots represent transcripts with positive and negative log2 fold change values, and also
indicate the upregulation and downregulation of DEGs (Figure 2A). A total of 3112 significant
DEG genes were identified using a statistical cutoff: q < 0.05. A total of 1345 genes were
upregulated, and 1767 genes were downregulated in the young cohort (Figure 2A,B). The
analysis of DEGs using a hierarchical clustering heatmap revealed distinct gene expression
profiles between the two age groups (Figure 3A). At cutoff log2 fold change values of 3 and −3,
there were 200 upregulated genes and 386 downregulated genes in the young cohort compared
to the old cohort, respectively. The genes with the lowest p values were ATPase family AAA
domain-containing 3B (ATAD3B) and immunoglobulin-like and fibronectin type III domain-
containing 1 (IGFN1). Microsomal glutathione S-transferase 1 (MGST1), a gene that plays a role
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in inflammation, was remarkably upregulated in the young age group (log2 fold change = 3.02)
(Figure 3B). Four collagen genes involved in the extracellular matrix and cellular adhesion were
upregulated in the young group: COL14A1, COL2A1, COL6A6, COL4A4 (Figure 3B). We also
observed a significant upregulation of cell proliferation genes p21CIP1 (CDKN1A) and CDK2 in
the young cohort, while CDK1 was upregulated in the old cohort p < 0.005 (Figure 3C). A slight
upregulation of ARMC8 was also observed in the young cohort (Figure 3C). ARMC8 plays
critical roles in cell proliferation, apoptosis, and differentiation, and has been reported to be a
prognostic marker in several malignancies including liver, lung and breast cancers [15–18]. It has
been reported that ARMC8 is upregulated in malignant melanoma cell lines and is associated
with an increased invasiveness of melanoma [15]. We also observed the significant upregulation
of interleukin-17A (IL-17A) and interleukin 11 (IL11) in the old cohort p < 0.05 (Figure 3D).
Interleukin-17A (IL-17A) is produced by Th17 cells which infiltrate the tumor microenvironment
and induces the expression of several inflammatory cytokines including IL-1β, IL-16 and IL-23,
leading to variable effects on tumor growth at different stages [19,20]. IL-17A upregulation has
been reported in a 53-year-old male with collision primary laryngeal malignant melanoma and
invasive squamous cell carcinoma [21]. IL-11 is a pleiotropic interleukin involved in tumor
development. IL-11 has been shown to be elevated in colorectal cancer and in the exosomes of
metastatic uveal melanoma and is associated with poor prognosis in melanoma [22–25]. It is
known that phenotype switching is characteristic of melanoma, where proliferative cells tend to
be non-invasive, while invasive cells tend to be non-proliferative, a process regulated by the Wnt
signaling pathway [26–28]. We identified the dysregulation of several genes in the Wnt signaling
pathway (Figure 3E). Interestingly, the non-canonical Wnt molecule Wnt5A and the tyrosine
kinase receptor ROR2 which drive invasion, metastasis and therapeutic resistance [29–31], were
significantly upregulated in the old cohort (Figure 3E).
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3.3. Pathway Analysis, Functional Annotation of Differentially Expressed Genes and Identification
of Key Regulatory Genes of Response to Immunotherapy

Functional annotation clustering of the most upregulated and downregulated genes
(log2 fold change = 3 and −3, respectively) was performed with DAVID to identify the
biological processes that are related to differential gene expression changes in the two
melanoma age groups receiving immunotherapy. Among the 200 genes upregulated in the
young group, the top clusters were related to signal peptide, glycoprotein, glycosylation
site:N-linked (GlcNAc) and ion transport. The top clusters in the old age group were related
to extracellular region, signal peptide, extracellular space and glycosylation site:N-linked
(GlcNAc). Pathway and gene set enrichment analysis of the upregulated genes showed
the significant enrichment of genes involved in several biological processes, most notably,
interferon-α, interferon-γ response, IL2-STAT5 signaling, JAK-STAT3, P53 and inflamma-
tory response pathways (Figure 4A). KEGG pathway analysis of DEG genes was also
performed, and it was revealed that the pathways that had the highest enrichment scores
for the DEG genes were riboflavin metabolism (0.71), histidine metabolism (0.64), antigen
processing and presentation (0.6), Toll-like receptor signaling, (0.6), circadian rhythm (0.57),
lysosome (0.55), calcium signaling and the PD-L1 expression/PD-1 checkpoint pathway in
cancer (Figure 4B,C). It is known that cancer cells upregulate programmed death ligand-
1 (PD-L1) which binds inhibitory receptor programmed death receptor-1 (PD-1) on the
T cell surface to avoid immune attack [32]. Several studies have evaluated the efficacy of
PD-1 and PD-L1 inhibitors in different cancers, including lung cancer, renal cancer and
malignant melanoma in PD-L1-negative and PD-L1-positive tumors. Therapeutic benefit
from immunotherapy was observed in patients with the PD-L1-negative tumors; however,
resistance to immunotherapy remains a challenge [33,34]. Indeed, gene set enrichment
analysis (GSEA) of transcriptomic data confirmed the significant enrichment of genes in the
T cell receptor signaling, PD-L1 expression and PD-1 checkpoint and JAK-STAT signaling
pathways, which are essential pathways in melanoma (Figure 4D–G) [35–37].

3.4. Differential Expression of Treg Signature Genes and Metabolic Genes in Melanoma

FOXP3+ T regulatory cells (Tregs) are characterized by the expression of the tran-
scription factor forkhead box P3 (FOXP3). They infiltrate the tumor microenvironment,
thus providing an immunosuppressive microenvironment and immune tolerance [38].
Functionally immunosuppressive Tregs are also highly enriched in the tumor microen-
vironment of patients with melanoma [39–41]. Tregs provide an immune-tolerant mi-
croenvironment by secreting a number of factors such as IL-10, TGF-β, IL-35, PD-1,
LAG-3 and TIM-3 [42,43]. The inhibition of Treg function is therefore required for tu-
mor clearance and therapeutic effectiveness. It has been shown in a cohort of primary
melanoma samples from NYU and Vanderbilt that young patients acquire resistance to
immunotherapy due to a reduction in FOXP3+ Treg cell population, while old patients
(> 66 years) have a small CD8+ T cell population [10]. Animal experiments in murine
models of melanoma have shown that the depletion of Tregs leads to tumor clearance
and increased survival, indicating the critical importance of this cell type for antitumor
immunity [44]. Thus, in this analysis, Treg signature genes in young and old patients
treated with the immunotherapeutic agent ipilimumab were compared to dissect the
molecular pathways regulating T cell function in melanoma during aging. Two Treg sig-
nature genes, NR4A3 and IKZF2, were significantly upregulated (log2 fold change > 1.5)
(Figure 5A). Nr4a3 is an orphan nuclear receptor upregulated in T cells undergoing
differentiation and is required for FOXP3 induction in T cells [45–48]. IKZF2 (Helios) is
a transcription factor required for the suppression of IL-2 production in Tregs and regu-
lates FOXP3 binding to the IL2 promoter, thus silencing Il2 transcription in Tregs. [49].
The expressions of the most prominent signature genes of tumor-infiltrating Tregs, such
as CXCR5, IL17F, IL17A, IL22, FOXP3, IL12RB2, TNFRSF9, CD274, TNFRSF4, TNFRSF9,
IL10, CCR7 and STAT1, were also investigated (Figure 5A). ID3, RDH10 and EOMES are
transcription factors associated with a dysfunctional tumor-infiltrating T cell state [50].
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ID3 and RDH10 were enriched in the old cohort, while EOMES was enriched in the
young cohort (Figure 5A). We also observed a significant upregulation of STAT1 in the
young cohort (Figure 5A). STAT1 is involved in cytokine production and is required for
the recruitment and activation of T cells in the tumor microenvironment. STAT1 has also
been found through a two-cell CRISPR-type screen including human T cells as effectors
and melanoma cells as targets to be upregulated, affecting immunotherapy response [51].
The GTP-binding protein 4 (GBP4) was previously identified as a prognostic signature
gene that separates melanoma patients into low- and high-risk groups according to
survival [52]. GBP4 was significantly upregulated in the young group (Figure 5A). In
addition, we examined metabolic gene expression in the young and aged cohorts. It is
well known that metabolic rewiring is a hallmark of all types of cancer [53–55]. It has
been previously shown that immunotherapy (PD-1 blockade)-resistant melanoma tumor
cells acquire a hypermetabolic state by the upregulation of glycolysis and mitochon-
drial oxidative phosphorylation. The upregulation of lactate and TCA cycle metabolites
is observed in immunotherapy-resistant melanoma cells [56]. Glutamine addiction is
a hallmark of malignant transformation, including melanoma [57]. Glutamine is an
anaplerotic amino acid. Carbon derived from glutamine is used to maintain TCA cycle
intermediates and its nitrogen is used for transamination reactions, as well as purine
and redox intermediates (NAD and NADP) biosynthesis [58]. The upregulation of genes
involved in the biosynthesis of proline from glutamate is also a characteristic of ma-
lignant melanoma [59,60] and the depletion of glutamine sensitizes melanoma cells to
TRAIL-mediated cell death [61]. Five genes—ATP12A, ATP6AP1, ATP6V0A1, ATP6V0C
and ATP6V0D2—involved in the oxidative phosphorylation pathway were upregulated
in the young cohort (Figure 5B), while six genes—ATP6V1C2, COX6C, COX7B, PPA1,
UQCRB and UQCRH—were upregulated in the aged cohort (Figure 5B). Glycolysis
genes ALDH9A1, LDHAL6A, PFKL and PKLR were upregulated in the young cohort
(Figure 5B), while the glutamine metabolism gene GLS2 was notably upregulated in the
aged cohort (Figure 5B). The dysregulation of (NFE2L2 or NRF2) target genes was also
observed. The transcription factor nuclear factor erythroid 2-related factor 2 (NFE2L2
or NRF2) is the master regulator of cellular redox homeostasis. NRF2 regulates the
expression of genes involved in antioxidant defense and xenobiotic metabolism. NRF2
is activated in melanoma and is required for melanoma cell proliferation; its knockdown
sensitizes melanoma cells to oxidative stress [62]. NRF2 expression was slightly upregu-
lated in the young cohort while its target genes NQO1 and ALAS1 were significantly
upregulated in the young cohort. GSTT2B, GSTT2 and TXNDC17 were significantly
upregulated in the old cohort (Figure 5B). Finally, an analysis of the correlation between
gene expression and melanoma patients’ survival from TCGA showed that CCR7 (haz-
ard ratio (HR) 0.67, p = 0.0029), CXCR5 (HR 0.7, p = 0.01), EOMES (HR 0.76, p = 0.047),
GBP4 (HR 0.5, p = 4.9 × 10−7), TNFRSF9 (HR 0.59, p = 0.00011) and STAT1 (HR 0.58,
p = 5.3 × 10−5) were significantly related to patient prognosis. The overall survival rate
of patients with high expressions of CCR7, CXCR5, EOMES, GBP4, TNFRSF9 and STAT1
in melanoma was significantly higher (Figure 5C–H), which is consistent with the sig-
nificantly higher survival rate observed for the young cohort receiving immunotherapy
(Figure 1B).
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of key regulatory genes of response to immunotherapy. (A) Barplot showing biological process terms
and pathways of GSEA. GSEA-normalized enrichment scores are presented on the x-axis. (B) GSEA
ridge plot for differentially expressed genes; the gradient indicates low to high adjusted p values.
(C) Functional enrichment analysis from GSEA results. Nodes represent each enriched gene set of
canonical pathways. Downregulated molecules are shown in shades of blue and upregulated genes
are shown in shades of red. (D–G) Enrichment plots of top regulatory gene networks identified using
gene set enrichment analysis. Significance was set at p-values (≤0.05) and false discovery rate (≤0.25).
Enrichment plots show running enrichment score of the gene set as a running-sum statistic working
down the ranked list of genes. Red–dashed line is the enrichment score peak of the plot for a specific
gene set. Black–vertical bars are positions of genes in regulatory gene subnetworks in the ranked list
of genes. Leading edge is a gene subset contributing mostly to enrichment scores and comprises the
most differentially expressed genes.
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4. Discussion

Melanoma accounts for 80% of skin cancer deaths [63]. Although immunotherapy
has revolutionized melanoma treatment, many melanoma patients remain resistant to im-
munotherapy [64,65]. Immune checkpoint inhibitor proteins such as CTLA-4 and PD-1 are
expressed in activated T cells. CTLA-4 inhibits the activation of T cells and PD-1 binds to
PD-L1/PD-L2 ligands that are expressed in melanoma, thus inhibiting immune attack [63].
Aging is a risk factor for melanoma incidence. In this study, the impact of aging on the
transcriptomic profiles of melanoma patients receiving immunotherapy was investigated.
A comprehensive analysis, including gene expression, the identification of DE genes, GSEA
and pathway enrichment, was performed to identify signature genes. Our results show that
the old-age cohort had significantly worse melanoma-specific survival p < 0.001 (Figure 1A).
A total of 1345 DE genes were upregulated and 1767 DE genes were downregulated in
the young cohort (Figure 2A,B). The results reveal signatures of the impact of age on
melanoma. MGST1 plays a critical role in inflammation, is overexpressed in cancer, and
correlates with drug resistance [66]. In our analysis, MGST1 was remarkably upregulated
in the young cohort. Prall et al. reported that MGST1 expression is age-dependent and
Zeng et al. reported the overexpression of MGST1 in high-risk melanoma patients [67,68].
Collagen genes COL14A1, COL2A1, COL6A6, COL4A4 involved in extracellular matrix
organization were upregulated in the young group (Figure 3B). This is consistent with
previous studies that have reported significant changes in the skin’s extracellular matrix
during aging, such as collagen loss [69]. Miskolczi et al. also reported that melanoma
cell adhesion and nuclear YAP localization are regulated by the mechanical properties of
collagen. Collagen stiffness induced the expression of melanoma differentiation genes
TRPM1, PMEL, TYR and MLANA, as well as well as the proliferation and survival genes
CDK2 and BCL2A1 [70]. Genes regulating cell proliferation, apoptosis and differentiation
were upregulated in the young cohort (Figure 3C). The activation of inflammatory genes
such as IL-17A and IL-11 was observed in the old cohort (Figure 3D). IL-17A induces the
expression of inflammatory cytokines IL-1β, IL-16 and IL-23 in the tumor microenviron-
ment in malignant melanoma [19–21]. The activation of such inflammatory pathways is
potentially associated with poor survival observed for the old cohort receiving immunother-
apy. Indeed, Mehta et al. have reported that the inflammation-induced dedifferentiation
of melanoma cells contributes to poor survival and resistance to immunotherapy in aged
melanoma patients [71]. It has also been reported that phenotype switching in melanoma
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is regulated by the Wnt signaling pathway and that Wnt5A-treated B16 melanoma cells
acquire greater metastatic and invasive potential, an effect mediated by the orphan ty-
rosine kinase receptor ROR2 [30,72]. Indeed, Wnt5A and ROR2 were upregulated in
the old cohort receiving immunotherapy (Figure 3E). This is consistent with previous
results indicating that Wnt5A expression increases in old (55–65 years old) melanoma pa-
tients compared to young (25–35 years old) patients [73]. Behera et al. also reported that
melanoma resistance to vemurafenib is driven by Wnt5A and that PPARγ activation with
rosiglitazone upregulated the age-related protein klotho, a fibroblast growth factor-23
(FGF23) receptor, and decreased Wnt5A expression in therapy-resistant old melanoma
patients, thus reducing tumor burden [74]. Our results further reveal the enrichment of
genes in several biological processes, including interferon-α, IL2-STAT5 signaling, and
the JAK-STAT3 and P53 pathways (Figure 4A). Interestingly, KEGG pathway analysis of
DE genes showed the upregulation of PD-L1 expression/the PD-1 checkpoint pathway
in cancer (Figure 4B–D). DE gene analysis also revealed the differential expression of
several Treg signature genes and metabolic genes. Immunosuppressive FOXP3+ Tregs
infiltrate the tumor microenvironment, inhibiting immune attack and thus affecting the
response to immunotherapy [10,75,76]. Treg signature genes CXCR5, TNFRSF9, CCR7,
STAT1, GBP4, and EOMES were significantly upregulated in the young cohort and were
correlated with higher survival in melanoma (Figure 5B–H), while ID3, IL-17A, IL-17F,
RDH10 and IL-11 were significantly upregulated in the old cohort (Figure 5A). Indeed,
aging impacts the infiltration of immune cells and the expression of immune checkpoints
leading to an immunosuppressive microenvironment and an aggressive phenotype of
tumor cells [77]. We also observed the differential expression of several genes involved in
metabolic rewiring in melanoma. Oxidative phosphorylation genes ATP12A, ATP6AP1,
ATP6V0A1, ATP6V0C and ATP6V0D2 were upregulated in the young cohort (Figure 5B),
while ATP6V1C2, COX6C, COX7B, PPA1, UQCRB and UQCRH were upregulated in the
aged cohort (Figure 5B). GLS2 was upregulated in the aged cohort. It has been reported
that GLS2 upregulation increases tumor metastasis and correlates with poor survival [78].
Consistent with our transcriptomic analysis, Wu et al. reported that aging strongly impacts
several biological pathways in cancer, including epithelial–mesenchymal transition (EMT),
metabolism, KRAS signaling, inflammatory response, glycolysis and Il2-stat5 signaling [77].

5. Conclusions

In conclusion, these data reveal transcriptional changes associated with age; the dysreg-
ulation of many biological, inflammatory and metabolic pathways associated with greater
metastatic and invasive potential in old melanoma patients receiving immunotherapy; and
potential novel therapeutic targets in melanoma. One limitation in the current study is the
small sample size due to limited data on melanoma patients receiving immunotherapy in
the TCGA database. In the future, large samples, clinical cohorts and basic experiments will
be required to verify the impact of ageing on immunotherapy response and the prognosis
of melanoma patients.
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