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Purpose.The incidence of liver neoplasms is rising in USA. The purpose of this study was to determine metabolic profiles of liver
tissue during early cancer development.Methods.Weused the rabbit VX2model of liver tumors (LT) and a control group consisting
of sham animals implanted with Gelfoam into their livers (LG). After two weeks from implantation, liver tissue from lobes with and
without tumor was obtained from experimental animals (LT+/LT−) as well as liver tissue from controls (LG+/LG−). Peaks obtained
by Gas Chromatography-Mass Spectrometry were subjected to identification. 56 metabolites were identified and their profiles
compared between groups using principal component analysis (PCA) and amixed-effect two-wayANOVAmodel.Results.Animals
recovered from surgery uneventfully. Analyses identified a metabolite profile that significantly differs in experimental conditions
after controlling the False Discovery Rate (FDR). 16 metabolites concentrations differed significantly when comparing samples
from (LT+/LT−) to samples from (LG+/LG−) livers. A significant difference was also shown in 20 metabolites when comparing
samples from (LT+) liver lobes to samples from (LT−) liver lobes. Conclusion. Normal liver tissue harboring malignancy had a
distinct metabolic signature. The role of metabolic profiles on liver biopsies for the detection of early liver cancer remains to be
determined.

1. Introduction

The incidence of liver tumors is rising in the USA, and it
represents the second most common malignancy of the GI
tract [1]. Therapy relies on early tumor detection but up to
80% of patients are not eligible for surgery at the time of
diagnosis due to advanced stage of disease or to a medical
condition that prohibits surgery. Available tumor markers
for liver cancer screening, that is, AFP, CA19.9 and CEA,
lack high levels of sensitivity and specificity [2] making the
early diagnosis of liver neoplasm a difficult challenge for the
clinician. Serum metabolites related to oxidative stress are

thought to be potential biomarkers for early detection of liver
cancer [3–5].

Metabolomics is defined as the systematic quantita-
tive measurement of time-related pluriparametric metabolic
responses of multicellular systems to pathophysiological
stimuli or genetic modification [4, 5]. It has been used to
describemetabolic changes of all low-molecular-weight com-
pounds present in biological samples of several malignant
processes [6–12]. Metabolic profiling of urine samples by
GC/MS techniques and on plasma by 1H nuclear magnetic
resonance (NMR) from patients with primary liver tumors
had shown changes mainly related to the glycolytic pathway
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and lipid metabolism [13–20]. Metabolite profile within the
liver tumor significantly differ from the ones seen within the
distant noninvolved liver tissue from the same individual [21,
22]. It was hypothesized metabolic profiling from liver tissue
obtained by a biopsy may provide us with distinct signatures
for the detection of early malignancy, at a stage not detectable
by standard imaging modalities. The aim of the present
study was to define the metabolic changes that occur in the
liver during the early development of hepatic malignancies.
For this purpose, we made use of the extensively studied
VX2 rabbit model of secondary liver tumors developed by
Shope and Hurst in 1933 [23–28]. We described a statistically
significant distinct metabolic profile of liver tissue harboring
early malignancy.

2. Materials and Methods

2.1. Animal Model. A syngenic graft tumor was obtained
by injection of a VX2 cell line in the thigh muscle (Vastus
medialis) of a New Zealand white male rabbit as described
by Rous et al., 1952 [29]. The VX2 cell line was obtained
from Dr. Exner laboratory (Case Western Reserve University
School of Medicine, Cleveland, OH). Tumor was left to grow
within the hosted muscle for 1 month; then it was harvested
and minced into cubes of 1mm3. Growths were stored at
−80∘C in Fetal Bovine Serum (Cambrex, East Rutherford, NJ)
with 10% DMSO until implantation when tissue was thawed
and washed 3 times in Hank’s Buffered Salt Solution (HBSS).
General chemicals and reagents were obtained from Sigma-
Aldrich (St Louis, MO). All experiments were approved by
the Institutional Animal Care and Use Committee (IACUC)
of the Case Western Reserve University and were performed
in accordance with their guidelines.

Adult New Zealand white male rabbits weighing 2.5–
3 kg (Covance Princeton, NJ) were quarantined for 15 days
in standard conditions with food (Rabbit Chow, NJ) and
water ad libitum prior to any procedure. Preoperatively,
rabbits were anesthetized with Xylazine (5mg/kg), Ketamine
(50mg/kg), and Acetylpromazine (10mg/kg) administered
IM. Surgical site was shaved and swabbed with Betadine
solution (Purdue Pharma, CT) and infiltrated subcutaneously
(SC) with Marcaine 0.25% without epinephrine for local
anesthesia. Antibiotic prophylaxis was given SC with Peni-
cillin (50,000 units/kg) and Gentamicin (3mg/kg) prior to
the procedure and was continued once daily for 48 hours.

2.2. Experimental Design. Rabbits were first divided into
two experimental groups, (i) the Treated Group (n = 5; 10
paired samples) underwent median laparotomy and surgical
implantation of VX2 tumors in 2 separate sites (right medial
and right posterior liver lobes). Each hepatotomy site was
carefully closed and labeled with a 6 : 0 Prolene suture
(Ethicon, NJ). The abdominal wall was closed in two layers.
All experimental animals received equal tumor load (1mm3×
2 implants). (ii) The Control Group (n = 2; 4 paired sam-
ples) consisted of animals implanted with Gelfoam (Ethicon,
NJ) using the same surgical methodology. Two weeks after
surgery all rabbits underwent a second laparotomy. Biopsies

Table 1

Site effect
Distant (−) Adjacent (+)

Treatment effect

Tumor-implant
Treated Group (LT)

(LT−) (LT+)
Rabbit #1 Rabbit #1
Rabbit #2 Rabbit #2

...
...

rabbit #5 rabbit #5

Gelfoam-implant
Control Group (LG)

(LG−) (LG+)
Rabbit #6 Rabbit #6
Rabbit #7 Rabbit #7

of healthy liver tissue were taken separately from the right
lobe either adjacent to the tumor implant (LT+) or adjacent
to the Gelfoam implant (LG+) and from the left lobe either
distant from the tumor implant (LT−) or distant from the
Gelfoam implant (LG−). Therefore, in this experimental
design, tissue samples were obtained from 4 experimental
subgroups (animals with tumor implants = LT+/LT−, and
animals with Gelfoam implants = LG+/LG−) as explained in
Table 1.

For the purpose of these studies, the tumor Treatment
Effect and biopsy Site Effect are the main effects referring to
the treated versus control and to the adjacent versus distant
comparisons, respectively. In short, this experimental design
is a two-way factorial design, where main effects (treatment,
site) and interaction effect (treatment × site) can be analyzed
statistically, with repeated measures on n = 7 units (rabbits),
amounting to a total of 2n = 14 paired observations as
explained in Table 1.

2.3. Pathology Evaluation. Samples were immediately frozen
on liquid nitrogen and labeled and stored at−80∘C.The rest of
the liver was surgically removed and perfused-fixed with 10%
formaldehyde and 90%PBS at room temperature. All surgical
procedures were performed under sterile conditions.

Postoperatively, 20mL of normal saline (0.9% NS)
was given for insensible water losses and Buprenorphine
(0.1mg/kg; Sigma,MO)was given SC twice daily for 48 hours
for pain control. All animals were examined three times a
day for 72 hours and twice a day afterwards until sacrificed 2
weeks after tumor implantation. In prior study tumor growth
was recognized as early as 14 days after tumor grafting.

Liver tissue obtained from each experimental group
was sliced and embedded in paraffin and stained with
hematoxylin and eosin (H&E) for histological examination.
Blinded slides were assessed by a pathologist for evidence of
tumor development. Tumor size and volume were calculated
from digital records using Digi3 Digital Binocular Micro-
scope with DigiPro 3.0 software (LaboMed, CA).

2.4. Liver Tissue Preparation. Powdered frozen liver tissue
(25mg) was spiked with 5 nmol of heptadecanoic acid
(C17) as internal standard and extracted with 2mL of
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CH
3
CN/methanol (1 : 1 precooled at −12∘C and degassed with

nitrogen flow) using a Polytron homogenizer. The slurry
was centrifuged at 3,800 rpm for 30 minutes at 4∘C and
the supernatant was separated and dried with nitrogen gas
flow. The residue was oximated with 30𝜇L of 15mg/mL of
methoxyamine hydrochloride in dry pyridine and incubated
at 30∘C for 90 minutes. Derivatization was finished with
70 𝜇L ofN-methyl-N-trimethyl-silyl-trifluoroacetamidewith
1% trimethyl-chlorosilane (MSTFA + 1% TMSC) and the
mixturewas incubated again at 37∘C for 40min. Sampleswere
then submitted for spectrometric analyses.

2.5. Gas Chromatography-Mass Spectrometry (GC-MS). GC-
MS analyses were performed on an Agilent 6890 gas chro-
matograph interfaced to an Agilent 5973 mass spectrometer
equipped with a Phenomenex ZB-5 MSi capillary column
(30m × 0.25mm i.d., 0.25𝜇m film thicknesses). Injection
volume was 1 𝜇L in splitless mode. Injector temperature was
set at 250∘C and the transfer line at 275∘C. The carrier gas
was helium at a constant flow rate of 1mL/min. The GC
oven temperature was initially kept at 60∘C for 1min and
increased at a rate of 10∘C/min to a final temperature of
325∘C held for 10min. EI ion source temperature was set to
250∘C and the MS quadrupole temperature to 150∘C. Mass
spectra were acquired in scan mode with a mass range of 45
to 800m/z. Raw data were deconvoluted with the National
Institute of Standards and Technology (NIST) Automated
Mass Spectral Deconvolution and Identification Software
(AMDIS). After spectral analysis and data processing of 113
signals, 56 signals could be identified in 80% of all samples.
Identified signals were confirmed by ourmetabolomic library
and the Fiehn library (Agilent Technologies Inc, Santa Clara,
CA). For further quantification, the data was exported to the
SpectConnect server (Massachusetts Institute of Technology,
Cambridge, MA) [30]. The concentration of each metabolite
was expressed as its relative peak area (divided by the
area of the corresponding internal standard in the same
chromatogram). All 56 identifiedmetabolic compounds were
further used for statistical analyses.

2.6. Statistical Analyses. All analyses were carried out using
the R language and environment, a platform from the R
project for statistical modeling, computing, and graphics
(http://www.r-project.org/).

2.6.1. Preprocessing of Features. Features (metabolites) were
first log-transformed and then variance-stabilized and nor-
malized by our recently developed “joint adaptive mean-
variance regularization” procedure as previously described
[31, 32]. This helps remove sources of systematic variation
in the measured intensities (bias and variance due to exper-
imental artifacts) and to ensure that the usual assumption
of normality and homoscedasticity are met for statistical
inference purposes.

2.6.2. Principal Component Analysis. Principal component
analysis (PCA) was carried out and results displayed as scree
plots (determines the order and the number of principal

components (PCs) accounting for the largest variance in the
data) and as a 2D biplot (uses the first two PCs to display
information about (i) the metabolites as indicated by their
variance and covariances, and (ii) the relationship between
samples as indicated by interindividual distances).

2.6.3. Statistical Inference of Differential Metabolite Concen-
trations for Label-Free GC-MS Analyses. Statistical modeling
was performed using a linear mixed-effect model of analysis
of variance (mixed two-way ANOVA), fitted univariately to
each individual variable (single metabolite concentration).
For statistical inference, we used empirical Bayes methods
and posterior estimators derived from them (moderated F-,
t-, and B statistics) that have proven to result in greater
statistical power [31–35] and to be useful for ranking variables
in terms of evidence for differential expression [32, 35–
38]. Information was borrowed by constraining the within-
block correlations to be equal between variables and by
using empirical Bayes methods to moderate the standard
deviations between them [39].Thesemethods are particularly
appropriate when only few samples are available, as is always
the case in high throughput datasets [35].

2.6.4. Reports for Label-FreeGC-MSAnalyses. Contrasts were
built for each of the effects of interest, and coefficients
were estimated accordingly. Variables were ranked in order
of evidence of differential concentration. Corresponding P-
values were adjusted for multiple testing using the positive
FDR (denoted pFDR) [40], a recent extension of the False
Discovery Rate (FDR) procedure of Benjamini-Hochberg
[41] that is less conservative [40, 42]. Tables report top-to-
bottom rankedmetabolites (rows) from themodel fit for each
metabolite and contrast of interest. Each table consists of
columns with the following information: the estimated log

2
-

fold change orM log-ratio (M= log
2
(FC)) for each individual

metabolite in theeffect or contrast of interest. Moderated
t- and B-statistics represent different measures of statistical
significance. The moderated t-statistic corresponds to the
usual t-statistic except that information has been borrowed
across variables (metabolites), while the B-statistic is the
empirical Bayes log

2
of the posterior odds that the metabolite

is differentially expressed. Finally raw and adjusted P-values
are listed. Note that in every list all themetabolites are ranked
by adjusted P-value and then by B-statistic.

2.6.5. Power Analysis and Sample Size Calculation. We used
the method described in Liu and Hwang [43] and the
pFDR as described above. After variance stabilization and
normalization of the data as described above [31, 32], the
usual distributional assumptions of test statistics become
applicable [43]. Under the above assumption and assuming
a balanced paired design, denote the experimental group
sample size by ng (individual rabbits per group), the common
standard deviation (to all metabolites) by 𝜎, and the effect
size by Δ/𝜎. We calculated the group sample size n

𝑔
required

to detect, for example, a minimum fold change FC (Δ) in
the treatment effect (tumor versus control Gelfoam) with at
most 𝛼% FDR as a function of power 1 − 𝛽, the parameter 𝜋

0

http://www.r-project.org/


4 HPB Surgery

(interpreted as the probability of non-differentially expressed
metabolites), the common standard deviation 𝜎, and for a
fixed level𝛼 of pFDR. Based on the data, parameters estimates
were 𝜋̂

0
≈ 0.88−0.96 and ̂𝜎 ≈ 0.95−1.05, which is consistent

with estimates found in other platforms in high dimensional
data [43]. Under the above assumptions and estimations, for
fixed 𝜋̂

0
= 0.92 and ̂𝜎 = 1.00, while controlling the FDR at

less than 10%, a group sample size as low as ng = 5 can detect a
twofold change on the transformed scale withmore than 90%
power (Figure 1).

3. Results

Tumor grew in all experimental animals (Figure 2). All
tumors were similar in size, with a maximum diameter of 8.4
± 5.96mm and a tumor volume of 241.8 ± 78.6mm3. There
was no evidence for tumor spread or distant metastasis by
gross examination of the abdomen, chest, and brain. Animals
from the control group presented normal livers without signs
of the Gelfoam implant. All rabbits were clinically stable and
no differences were noted regarding their food and water
intake or their body weight.

Principal component analysis (PCA) showed that a min-
imum of two components explained at least 58% of the total
variance of the data. Based on the metabolic concentration
profiles, PCA was able to separate liver tissue samples of
animals where tumor was implanted (LT+/LT−) from liver
tissue samples of animals where Gelfoam was implanted
(LG+/LG−) (Figure 3). Furthermore, PCA analysis shows
that the liver tissue samples adjacent to the tumor could
not be separated from the liver tissue samples distant from
the tumor, whether this was observed in the treated samples
(LT+/LT−) or in the Gelfoam control samples (LG+/LG−).
This is indicative of an overall lack of site effect. In contrast,
PCA analysis shows an overall strong treatment effect as evi-
denced by the clear separation of treated samples (LT+/LT−)
from control samples (LG+/LG−). Also, this clear separation
remained evident whether considering liver tissue samples
adjacent to the tumor only (LT+ versus LG+) or liver tissue
samples distant from the tumor (LT− versus LG−).

These results were further confirmed by ANOVA anal-
yses: Table 2 lists the metabolic compounds whose concen-
trations were found statistically different in the treatment
effect, that is, between the treated group (LT+/LT−) and the
control group (LG+/LG−). A total of 16 identified compounds
(10 downregulated, 6 upregulated) had False Discovery Rate-
adjusted P-values (for multiplicity of testing) below the 10%
FDR level. Interestingly, no statistically significant changes
in metabolic compound concentrations were detected in the
overall site effect, that is, between the experimental distant
group (LT+ and LG+) and the adjacent group (LT− and
LG−). To evaluate if this absence of significance could be
due to a confounding effect of the Sham-treated samples
over the tumor-treated samples, we analyzed the relative
concentrations of metabolic compounds between adjacent
versus distal (LT+ versus LT−) biopsy samples in the treated
samples alone (Table 3). This comparison revealed a list of
20 identified compounds (14 down-regulated, 6 up-regulated)
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Figure 1:Power analyses and sample size calculations.The plots show
statistical power curves (1 − 𝛽) for the main treatment effect (tumor
versus control Gelfoam) as a function of group sample size (ng).
Results are reported for a range of fixed fold change, for the fixed
estimated median standard deviation common to all metabolites
̂
𝜎 = 1.00, and for fixed 𝜋̂

0
= 0.92, while controlling the False

Discovery Rate at 10%. Results show that a group sample size of ng =
5 in a balanced paired experimental design detects a twofold change
in the effect of interest with more than 90% power.

Figure 2: Microscopic morphology of VX2 tumors. All implanted
tumor grafts showedmacroscopic growth on liver sites. At histology,
most tumors had a pseudocapsule formed by fibrotic tissue that
surrounded the tumor which contained typical epithelial cells with
malignant morphology without neoangiogenesis, tumor invasion,
or lymphocyte infiltration at this stage of tumor growth (panel ×20).
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Table 2: Table below shows the differentially expressed metabolites for the overall treatment effect (tumor-treated LT versus Sham-treated
LG) with at most 10% FDR. Metabolites are ranked from top to bottom by (1) statistical significance (𝐵) and (2) magnitude of change (𝑀).

(a) 10 downregulated

Downregulated

ID 𝑀 = log
2
(FC) FDR Adj.

𝐵 = log
2
(Odds)

𝑃 values
1 Uracil −5.9822 4.52𝐸 − 53 141.4358
2 Erythriol −5.0750 9.78𝐸 − 41 101.6021
3 𝛼-Hydroxyglutaric acid −3.2867 2.28𝐸 − 19 42.2173
4 Salicylic acid −2.8973 1.18𝐸 − 15 32.6557
5 Ethanolamine −2.0405 1.38𝐸 − 08 15.8544
6 Glycolic acid −1.1588 1.58𝐸 − 03 4.6512
7 Amino ethyl phosphate −1.0952 2.72𝐸 − 03 4.0824
8 Citrate −0.9941 6.46𝐸 − 03 3.2435
9 L-Serine −0.6642 6.86𝐸 − 02 1.0709
10 D-ribose-5-phosphate −0.6495 7.08𝐸 − 02 0.9943

(b) 6 up-regulated

Up-regulated

ID 𝑀 = log
2
(FC) FDR Adj.

𝐵 = log
2
(Odds)

𝑃-values
1 Glucose 5.0586 1.08𝐸 − 40 100.9430
2 Glycerol 3.0981 1.55𝐸 − 17 37.4367
3 Threonic acid 2.3402 8.15𝐸 − 11 21.0678
4 Glycerol-3-P 1.6936 2.54𝐸 − 06 10.7094
5 O-acetylsalicylic acid 0.9825 6.62𝐸 − 03 3.1519
6 Inositol 0.7428 4.27𝐸 − 02 1.5101

that had a FDR-adjusted P-values below the 10% FDR level.
Graphical illustration of Tables 2 and 3 results are displayed
in a space of statistical significance known as volcano plots
(Figures 4(a) and 4(b), resp.).

4. Discussion

Recent studies focused on primary liver tumors that have
aimed to describe metabolic fingerprints of tumor devel-
opment. While plasma and urine samples [13, 15, 16] give
the potential application of this technique for diagnosis and
followup in a noninvasive approach, they are susceptible to
variations of metabolites from possible simultaneous pro-
cesses in the body and may not reflect the specific metabolic
alterations of tumor growth. In contrast, analysis of tissue
samples will only reflect the metabolic profile of the affected
organ, providing us with a better understanding of the
metabolic changes occurring at the tumor site. In this study
we used a nontargeted GC-MS metabolomic approach to
profile the changes present in the tumor periphery as well as
the metabolic response of healthy nonadjacent liver tissue in
the VX2 rabbit model of secondary liver tumors. Principal
component analysis performed on metabolic profiles in liver
tissue differentiated animals with tumor from Sham animals
as early as 14 days after tumor grafting. We profiled 56
metabolites and most of our findings resemble previously

described changes for HCC [17, 21, 22] and other tumors
[6, 10, 44]. Changes are mostly related to the metabolism of
carbohydrates, lipids, and amino acids and related to inflam-
mation and oxidative stress. Relevantmetabolites (Table 4) in
liver metabolism and their profile under the influence of a
growing tumor are discussed.

4.1. Carbohydrates. The high concentrations of glucose
observed in samples from the experimental groupwhen com-
pared to Shams seems opposite of what has been described in
the literature. In the tumormass, an upregulation of glycolysis
should use glucose as its principal substrate lowering its
concentration. Yang et al. analyzed tumor tissue samples
from 17 patients with HCC and compared them with the
noninvolved adjacent liver tissue as a control [22]. They
found a significantly lower concentration of glucose in the
tumor samples, and this concentration was even lower in
high grade tumors when compared to low grade tumors.
Differences may be due to different sampling design; (i) in
our study the tissue samples did not include the tumor mass
and (ii) in the human study a group of healthy humans
was not included as a control. In addition, the glucose
uptake of cancer cells is about 30 times higher due to the
increase expression of glucose transporters and hexokinase
[45]. Our results showed an increase in the amount of glucose
available for the hepatocytes in the healthy noninvolved liver
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Table 3: Table below shows the differentially expressed metabolites for the site effect (distant versus adjacent biopsy) in the treatment group
alone (LT− versus LT+) with at most 10% FDR.Metabolites are ranked from top to bottom by (1) statistical significance (𝐵) and (2) magnitude
of change (𝑀).

(a) 14 downregulated

Down-regulated

ID 𝑀 = log
2
(FC) FDR Adj.

𝐵 = log
2
(Odds)

𝑃 values
1 Uracil −3.00112 3.83𝐸 − 35 83.65428
2 Erythriol −2.70968 9.69𝐸 − 30 68.06919
3 𝛼-Hydroxyglutaric acid −1.626 2.75𝐸 − 12 24.07396
4 Salicylic acid −1.43637 4.63𝐸 − 10 18.63641
5 Ethanolamine −1.11231 1.17𝐸 − 06 10.90255
6 Amino ethyl phosphate −0.64698 0.004687 3.236894
7 D-Ribose-5-phosphate −0.556 0.013184 2.212044
8 Citrate −0.54086 0.014689 2.056548
9 𝛽-Alanine −0.48647 0.025933 1.533321
10 Glycolic acid −0.41113 0.050703 0.900165
11 Glycine −0.39026 0.058594 0.743548
12 L-Alanine −0.33772 0.085378 0.385349
13 L-Serine −0.33726 0.085378 0.382457
14 Aminomalonic acid −0.31862 0.095196 0.267971

(b) 6 up-regulated

Up-regulated

ID 𝑀 = log
2
(FC) FDR Adj.

𝐵 = log
2
(Odds)

𝑃-values
1 Glucose 2.477314 1.30𝐸 − 25 56.78349
2 Glycerol 1.546767 2.37𝐸 − 11 21.72003
3 Threonic acid 1.349669 4.13𝐸 − 09 16.37445
4 Glycerol-3-P 0.733706 0.001424 4.35813
5 Inositol 0.56952 0.012116 2.354559
6 O-acetylsalicylic acid 0.447728 0.037053 1.194456

that can be used by the highly active glycolytic metabolism
induced by the tumor. The glycolytic disturbances found in
this tumor model were accentuated in the healthy tissue
close to the tumor when compared with the lobe without
tumor, a finding probably due to the presence of a highly
active tumor grown in need of energy substrates promoting
a “stealing phenomenon” from the surrounding parenchyma
and perhaps a relative state of starvation in distant but normal
liver tissue.

Although the concentration of lactate was not signif-
icantly higher in samples of liver tissue adjacent to the
tumor when compared to tissue samples distant from the
tumor from the same animal group, a trend was noted.
The classic finding in cancer, described by Warburg in 1930
[19], represents an increase in the rate of glycolysis with
the final reduction of pyruvate into lactate by the enzyme
lactate dehydrogenase (LDH) in order to regenerate the
nicotinamide adenine dinucleotide (NAD+) necessary for the
glycolytic pathway under an impaired oxidation of pyruvate
in themitochondria [18].This effect is largely attributed to the
activation of hypoxia-inducible factor-1b (HIF-1b) in tumor

cells, which increases the expression of glucose transporters
and glycolytic enzymes, resulting in an upregulation of
glycolysis [4, 6, 7, 46]. A recent study of metabolites in
plasma and urine from a rat model of diethylnitrosamine-
induced HCC found a similar increase in lactate production
in the presence of tumor and its level was related to HCC
invasion and metastasis [45]. The acidic environment that
surrounds the cancer cells has been recently related to a
“reversed Warburg effect” in which lactate increases the
metastatic potential of the tumor cell and 3-hydroxybutyrate
(a ketone body) promotes tumor growth [47–49]. The lack
of significance may be due to sample timing where the
tumor has not reached enough size to influence surrounding
liver tissue towards a more anaerobic metabolism or to a
sample site where cells analyzed were notmalignant and their
anaerobic metabolism, which is enhanced in tumorigenic
cells as mean of survival is not manifested in normal cells
with established blood supply. Disturbances of the normal
oxidative process is manifested as well by a significantly lower
concentration of citrate and𝛼-hydroxyglutaric acid from liver
tissue adjacent to the tumor (LT+) when compared to liver
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Figure 3: Principal component analysis (PCA). (a) PCA scree plots showing how much of variance is accounted for by each principal
component (A) and that a minimum of two principal components ([Z1, Z2]) is enough to explain ∼58% of the total variance (percentage
of explained variance-PEV) in the data (B). (b) PCA biplot of samples and metabolites in the [Z1, Z2] principal component space. Note how
the control group samples (LG+ and LG−) overlap with each other, as well as the treated group samples (LT+ and LT−) with each other. In
addition, note the clear separation between the distant group samples (LT+ and LG+) and between the adjacent group samples (LT− and
LG−).

tissue distant to the tumor (LT−); nevertheless, the present
studies cannot elucidate if these changes are due to increase
consumption, decrease production, or both.

4.2. Lipids. Many studies have noted disturbances of lipid
metabolism in cancer cells [7, 14, 17]. Yang reported decreased
lipid concentrations in tissue samples fromHCCcompared to
noninvolved liver tissue, suggesting an increased utilization
as an energy substrate via 𝛽-oxidation and as a substrate for
the synthesis of cell membranes due to the demand of prolif-
erating cells [22]. The decrease in the levels of ethanolamine,

the second most common head group for membrane phos-
pholipids, suggests increased utilization due to cell prolifer-
ation. Increased activity of the enzyme ethanolamine kinase
has been reported in cancer cells and it has been attributed to
the synthesis of phosphoethanolamine, a component of cell
membranes [50]. Furthermore, we observed an increase in
the levels of glycerol and glycerol-3-P in all samples from the
experimental group when compared to the Shams suggesting
an increase in triglycerides catabolism. Glycerol-3-P can
fuel up glycolysis via dihydroxyacetone phosphate (DHAP).
The above described changes suggested disturbances of lipid
metabolism in normal hepatocytes induced by the presence
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Figure 4: t-test volcano plots. (a) Overall treatment effect. (b) Site effect, conditioning on the Treated Group.The volcano plot is a scatter plot
of all metabolite species arranged by an individual measure of magnitude of change of expression between experimental groups (horizontal
axis) versus a corresponding measure of statistical significance (vertical axis). The horizontal axis represents the estimated log-fold-change
of differential expression, denoted log

2
(FC) orM. The vertical axis represents the log-odds of differential expression, denoted log

2
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B. The most significant metabolites are those that have the largest M in absolute value and the largest B. Metabolites (dots) whose relative
concentrations are significantly downregulated (green) and upregulated (red) between experimental conditions are distributed in the upper
left-hand side and upper right-hand side directions of the plot, respectively. The nonregulated metabolites are shown with grey dots. The
horizontal dotted line represents a null log-odds of differential expression. FDR was controlled at 10%.

of nearby immortal cells. Metabolic changes are mainly char-
acterized by an increased 𝛽-oxidation and by the provision of
substrates for cell membrane synthesis.

4.3. Amino Acids. Studies describe significant disturbances
in the metabolism of several aminoacids, such as alanine,
glycine, and glutamate [13, 21, 22]. In this study the concen-
tration of L-serine, L-alanine, and glycine were significantly
downregulated, while the concentration of glutamate was
unchanged, which may be due to a balance between increase
consumption for protein synthesis proposed by some and
increase production through accelerated protein breakdown
by others [8]. The levels of cysteine, a precursor of glu-
tathione, were noted to have a trend to be decreased in
the (LT+) tissue when compared to the noninvolved liver
lobe (LT−). This difference may be explained by an increase
synthesis of glutathione by the surrounding hepatocytes
(LT+) to cope with oxidative stress. To support this finding,
aminomalonic acid, a dicarboxylic acid derived from cysteine
via 𝛽-elimination of the sulfur residue, was found to be
significantly lower in (LT+) samples when compared to the
(LT−) samples.

The levels of 𝛽-alanine (an amino acid that differs from
𝛼-alanine) were found to be decreased in samples from
(LT+) tissue. 𝛽-alanine is a product of the degradation of
dihydrouracil, which is an intermediate in the catabolism of

uracil. The levels of uracil and the ribose ring D-ribose-5-P
were also found to be decreased in the (LT+) samples. These
findings suggest a status of accelerated cell proliferation, also
found in plasma samples of patients with leukemia [44].

Two metabolites were noted to be regulated in liver
tissue adjacent to tumor implantation (LT+). Although their
concentration did not reach statistical difference when com-
pared to liver tissue distant from tumor implantation (LT−),
their relative different concentrations may have biological
implications. 1-Methylnicotinamide (MNA) is a product of
the catabolism of nicotinamide via enzymatic methylation by
the enzyme nicotinamide N-methyltranferase (NNMT); this
enzyme has been found to be upregulated in liver cirrhosis
[51] and liver tumors [52]. In our study the levels of MNA
were found to be higher in samples of tissue adjacent to the
tumor (LT+) when compared to samples of tissue away from
the tumor (LT−). It has also been shown that the increased
catabolism of NAD+ will further stimulate the conversion
of pyruvate to lactate to replenish the NAD+ pool required
for glycolysis. Furthermore, MNA has also been linked with
hypermethylation of DNA reducing the expression of tumor
suppressor genes, thus promoting tumor cell growth [53] and
prostacyclin dependent anti-inflammatory and antithrom-
botic effects [54, 55].The regulation of liver GABA

𝐴
receptors

plays an important role in the regulation of hepatocyte regen-
eration proliferation and in the pathogenesis of HCC [56],
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Table 4: Relevant metabolites and their relative variation between liver tissue samples from adjacent (LT+) and distant (LT−) to tumor
implantation site.

Metabolites Adjacent to tumor (LT+) Distant to tumor (LT−) Type related mechanism
Glucose ↑ — Increase glucose uptake
Lactate ↑ — Increased 𝛽-oxidation—increased glycolysis
Glycerol ↑ — Lipid metabolism
Glycerol-3-phosphate ↑ — Increased lipids catabolism
Threonic acid ↑ — Vitamin C metabolite
Inositol ↑ — Oxidative stress—glutathione synthesis
Ethanolamine ↓ — Cell replication—membranes
L-serine/L-alanine/glycine ↓ — Protein synthesis
𝛽-alanine ↓ — Cell replication—uracil catabolism
Aminomalonic acid ↓ — Oxidative stress—cysteine metabolism
Citrate ↓ — Citrate cycle—oxidative-redox mitochondrial status
D-Ribose-5-phosphate ↓ — Purine synthesis
Uracil ↓ — Cell replication
1-methyl nicotinamide ↑ — Nicotinamide catabolism—NNMT activation
GABA ↓ — Cell replication
↑: for relative increase; ↓: for relative decrease; —: for no relative change. LT+: healthy liver tissue adjacent to the tumor and LT−:healthy liver tissue distant
from the tumor.

since their activation results in cell hyperpolarization inhibit-
ing DNA synthesis. A transient hepatocyte depolarization
has been reported after partial hepatectomy in rats [57]. An
increase in DNA replication mediated by polyamines follows
cell depolarization. Human HCC tissues have been found
to be depolarized and have decreased GABA

𝐴
-𝛽3 receptor

expression when compared to adjacent nontumor tissue [58].
Moreover, the restoration of membrane potentials resulted in
a decreased proliferative activity and slower growth rates in
human HCC cell lines [59]. In the present study we noted a
trend towards a decreased concentration of GABA in (LT+)
samples suggesting a depolarized state that facilitates cell
proliferation.

Precursors of proinflammatory mediators have roles in
many cellular processes, including inflammation, prolifera-
tion, and apoptosis. Their specific role in cancer is under
investigation [60]. Threonic acid (not to be confounded with
the amino acid threonine) is ametabolite of ascorbic acid and
it further enhances the cellular uptake of ascorbic acid. This
metabolite was found to be different between all groups (LT+,
LT−, and Shams). Its role in liver metabolism in relation to
cancer or oxidative stress remains to be determined.

The findings of our study must be interpreted in light of
some limitations.Themetabolic and redox status of an animal
with a tumor growthmay be a function not only of the tumor
biology and its mass but also, among other factors, their
nutritional status. Although the number of Sham animals was
low, the metabolites in the right and left lobes were identical
and did not differ from the metabolic profile of healthy
rabbits already known (Fiehn library at Agilent Technologies
Inc, Santa Clara, CA). Furthermore, the process of obtaining
samples for metabolic profiling is an invasive one. In spite of
these boundaries, the present study showed that metabolic
disturbances in animals with early liver tumor growth can
be detected and perhaps metabolic signatures of liver tumor

growth may overcome the limitations of current biomarkers
used in the clinical setting.

Metabolic changes found in the very early growth of a
secondary liver tumor resemble the ones previously described
inHCC [14–16], suggesting that these biochemical alterations
are not specific to the biology of the tumor but to the
response of the surrounding healthy liver tissue in response
to a malignant growth with rapid cell proliferation in need
of energy substrates. Changes observed in the healthy tissue
adjacent to the tumor share metabolic characteristics typi-
cally found in neoplastic tissue; they may point to metabolic
alterations that precede the morphological changes in the
tumor surroundings suggested by others [15]. Metabolic
signatures in tissue from subjects with tumor development
could prove to be useful in the early detection of liver
malignancies.

5. Conclusions

Principal component analyses of the metabolic profile from
liver tissue differentiated animals with tumorwhen compared
to animals without tumor as early as 14 days after tumor
grafting. Different metabolic patterns were seen in tissue
samples from healthy liver close to the tumor, healthy liver
away from the tumor, and healthy liver from Sham animals.
Further studies to correlate the metabolic profiles of tumor
tissue and serum are required and could become a promising
clinical tool for the early detection of liver tumors and their
recurrence.
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