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Biotic homogenization, i.e., the increase in community similarity through time or space,
is a commonly observed response following conversion of native ecosystems to
agriculture, but our understanding of the ecological mechanisms underlying this process
is limited for bacterial communities. Identifying mechanisms of bacterial community
homogenization following rapid environmental change may be complicated by the
fact only a minority of taxa is active at any time. Here we used RNA- and DNA-
based metabarcoding to distinguish putatively active taxa in the bacterial community
from inactive taxa. We asked how soil bacterial communities respond to land use
change following a rapid transition from rainforest to agriculture in the Congo Basin
using a chronosequence that spans from roughly 1 week following slash-and-burn
to an active plantation roughly 1.5 years post-conversion. Our results indicate that
the magnitude of community homogenization is larger in the RNA-inferred community
than the DNA-inferred perspective. We show that as the soil environment changes,
the RNA-inferred community structure tracks environmental variation and loses spatial
structure. The DNA-inferred community does not respond to environmental variability
to the same degree, and is instead homogenized by a subset of taxa that is shared
between forest and conversion sites. Our results suggest that complementing DNA-
based surveys with RNA can provide insights into the way bacterial communities
respond to environmental change.

Keywords: metabarcoding, land use change, tropical rain forests, homogenization, tropics

INTRODUCTION

One of the most rampant forms of environmental change today is land use change following
the conversion of tropical rainforests to agriculture (Houghton, 1994; Dirzo and Raven, 2003;
Foley et al., 2005; Laurance et al., 2014). Both above- and below-ground communities experience
species loss and community change at unprecedented rates following land use change (Hooper
et al., 2012; Rodrigues et al., 2013; Mueller et al., 2014), and this is of concern because tropical
rainforests are some of the most diverse and productive ecosystems on the planet (Dirzo and
Raven, 2003). Predicting community responses to tropical land use change is a priority if we are
to better understand how human activities will impact species loss and biogeochemical cycling
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(Cardinale et al., 2012; Bell and Tylianakis, 2016), but in order to
gain such a level of predictability we must better understand the
mechanisms underlying community change.

Biotic homogenization refers to the process by which genetic,
taxonomic, or functional similarities of biotic communities
increase over time or space (Olden and Rooney, 2006). Biotic
homogenization is a major consequence of land use change
(McKinney and Lockwood, 1999). This process can be driven
by two primary mechanisms: (1) the loss of environmental
heterogeneity, which drives subsequent community convergence
(Christensen and Peet, 1984; Lepš, 1991), and/or (2) increased
rates of biotic mixing, which can be driven by the breakdown of
dispersal barriers, invasion of exotic taxa, or the range expansion
of existing taxa (Olden and Poff, 2003; Olden and Rooney,
2006). These mechanisms have both been implicated in the
homogenization of microbial communities following land use
change (Rodrigues et al., 2013; Mcguire et al., 2015; Gossner
et al., 2016; Mueller et al., 2016, 2014; Tripathi et al., 2016), but
it remains unknown how choices related to community inference
method or analysis could influence our mechanistic conclusions.

Understanding mechanisms of biotic homogenization may
be complicated by the fact that only a minority of soil taxa
is active at any given point in time (Lennon and Jones, 2011;
Blagodatskaya and Kuzyakov, 2013). It is possible to distinguish
active community members by assaying 16S rRNA (as opposed
to the 16S rRNA gene) (Jones and Lennon, 2010; Kamke
et al., 2010; Baldrian et al., 2012; Romanowicz et al., 2016).
This methodology could provide new insights into microbial
community homogenization. For example, targeting active taxa
could help us hone in on the portion of the community that
is interacting with the environment and thus who is likely to
respond immediately to environmental changes. Secondly, if
land use change is driving increased rates of biotic mixing,
studying the active fraction could help us distinguish who is
actually growing and becoming established from those who are
simply arriving. This distinction may be especially important
when considering that most of our existing knowledge on
microbial homogenization comes from DNA-based diversity
studies [e.g., Rodrigues et al., 2013; Navarrete et al., 2015b;
Wood et al., 2015)] that do not distinguish active from inactive
taxa. Some controversy, however, surrounds the use of rRNA to
infer microbial activity levels. For example, rRNA concentration
and growth rate and/or activity are not consistently correlated
across taxa, and certain taxa can still contain ribosomes while
dormant [see Blazewicz et al. (2013)]. The use of 16S rRNA:
16S rRNA gene ratios of taxa has also been shown to not
correlate well with activity levels inferred by other means (Papp
et al., 2018a,b), and can be biased by extracellular environmental
DNA (Dlott et al., 2015), taxon-specific dormancy strategies
and sampling extent (Steven et al., 2017). While the use of
rRNA:rRNA gene ratios may be problematic, several studies
have shown that communities inferred using rRNA more closely
correlate with environmental variability (Zhang et al., 2014), and
respond more strongly to seasonal variation (Barnard et al., 2013)
and nutrient pulses (Freedman et al., 2015) than communities
inferred using the rRNA gene, which is consistent with the idea
that the rRNA content of a community is at least enriched

with active members. Thus, RNA-based community inference
may provide unique foundational insights into the mechanisms
underlying community change, but to date few have sought to
make this comparison.

Although there have been several studies comparing
established agricultural sites to pristine ecosystems, few have
sought to include sites that represent the intermediary stages of
conversion (e.g., recently slash-and-burned areas). By including
more sites along the conversion continuum, we can increase the
resolution by which we understand this process and diagnose
when the largest losses of biodiversity occur, as well as pinpoint
management practices that could be targeted for improvement.
Moreover, expanding sampling efforts geographically, i.e.,
to under-represented regions, could disentangle common
patterns from site-specific ones. This is especially important
when considering that much of what we know about microbial
responses to tropical land use change comes from studies in
the Amazon Basin (Cenciani et al., 2009; Rodrigues et al., 2013;
Mirza et al., 2014; Paula et al., 2014; Navarrete et al., 2015a,b; de
Carvalho et al., 2016; Hamaoui et al., 2016; Mueller et al., 2016,
2014; Meyer et al., 2017). Comparatively fewer studies have been
performed in the forests of Indonesia (Lee-Cruz et al., 2013;
Mcguire et al., 2015; Tripathi et al., 2016; Wood et al., 2017) or
Central and West Africa (Sul et al., 2013; Alele et al., 2014; Wood
et al., 2015), and to our knowledge, none have been performed in
the Congo Basin.

Here we examine soil bacterial community change along a
land use change gradient in the Congo Basin, the world’s second
largest rainforest (Wilkie and Laporte, 2001). Our work expands
on past studies by performing paired RNA/DNA co-extraction
from each sample in order to ask whether the putatively active
fraction of the community elicits a different response to land use
change than the total community. Our gradient includes a site
that had very recently been cut and burned, which allows us to
use RNA/DNA in a system that is experiencing rapid and intense
change. We test the following hypotheses: (1) that converted
(burned and plantation) sites will exhibit decreased rates of
spatial turnover of both the RNA- and DNA-inferred bacterial
communities, as well as a decrease in taxonomic richness, (2) that
changes to the soil chemical environment will play a stronger role
in shaping the RNA-inferred community than the DNA-inferred
community, and (3) that biotic invasions or range expansions
contribute to community homogenization.

MATERIALS AND METHODS

Sampling Site
Central Africa contains up to 1.8 million km2 of contiguous
tropical moist forest, making it the second largest block of
tropical moist forest in the world, after the Amazon Basin (Wilkie
and Laporte, 2001). Central African rainforest is renowned for its
exceptionally high levels of biodiversity and endemism (White,
2001; Lee et al., 2006; Butler and Laurance, 2008) and faces threat
of deforestation (Naughton-Treves and Weber, 2001), although
recent forest conservation efforts are proving fruitful (Ernst et al.,
2013; Sannier et al., 2014). The nation of Gabon contains more
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than 10% of the contiguous tropical moist forest in Africa (Wilkie
and Laporte, 2001; Lee et al., 2006), and the majority of these
forested areas are either currently leased as long-term logging
concessions or are at risk from agricultural conversion (Collomb
et al., 2000; Laurance et al., 2006; Lee et al., 2006).

Our study was performed in southwestern Gabon near the
Gamba complex of protected areas (Lee et al., 2006). Soils in
this area are classified as Dystic Fluvisol (Jones et al., 2013).
Agricultural conversion in this region follows slash-and-burn
practices that are typical of most tropical regions whereby forests
are selectively logged and the remaining vegetation is burned.
The following season, plantation crops (typically manioc or
banana) are planted and harvested for 1–3 years. Following the
last harvest, plantations are abandoned and secondary forest
develops. We selected sites representative of this cycle including a
recently burned site (roughly 1 week post burn), an active manioc
and banana plantation (roughly 1.5 years old), and an adjacent
intact forest (with no reported history of logging from locals),
which allows us to break down the conversion process into two
steps, providing more resolution. Sites were all within 1 km of
each other and can be found at the following coordinates: burned
site (2◦ 44′ 48′′ S, 10◦ 8′ 54′′ E), plantation (2◦ 44′ 58′′ S, 10◦ 8′
51′′ E), and adjacent forest (2◦ 44′ 46′′ S, 10◦ 8′ 52′′ E).

Sampling Design and Sample Collection
This study was designed specifically to understand differences
between RNA- and DNA-inferred communities within these sites,
not to identify general effects of land use change on Congo
Basin ecosystems, which would be better-tested using replication
at the land type level (Hurlbert, 1984). Limited access to sites
and logistical challenges with sampling in this area required
that we extensively survey one site within each of three land
types, rather than performing higher levels of replication on
fewer, land types. This design is appropriate for asking how
these sites differ from one another, or how RNA- and DNA-
inferred community composition or diversity patterns differ
from one another (Oksanen, 2001; Schank and Koehnle, 2009;
Colegrave and Ruxton, 2018). Regarding inferences about general
microbial responses to land use change in the Congo Basin,
this study would be considered a case study (Hurlbert, 1984),
whereby our results may be suggestive of broader patterns, but
such patterns should be corroborated using a design with land
type replication.

Soil samples were taken at the end of the Gabonese dry season
(September 24–27, 2013). We established plots within each of the
aforementioned sites. Each plot consisted of a nested sampling
scheme (Rodrigues et al., 2013) where a 100 m × 100 m quadrat
was established, with 10 m × 10 m, 1 m × 1 m, 0.1 m × 0.1 m
quadrats nested within each, giving high coverage of a range
of spatial scales (Figure 1). Soil cores were taken to a depth
of 15 cm (after removal of leaf litter) from the corners of each
quadrat (N = 13 samples per site, N = 39 samples total). For each
point, 3 cores were taken, homogenized, and then subsampled.
From the homogenized mixture, 3 ml (approximately 1 g) of
soil was added to 9 ml Lifeguard solution (Mobio, California,
United States) in the field, then transported cold and stored
at −80◦C in order to stabilize nucleotides for later extraction.

Our spatially explicit design allows for the estimation of spatial
turnover (beta diversity) (Anderson et al., 2011).

Extraction, PCR, and Sequencing
Soil RNA and DNA were co-extracted from Lifeguard-preserved
soil samples using MoBio’s Powersoil RNA Isolation kit
with the DNA Elution Accessory Kit (MoBio, California,
United States) following manufacturer’s instructions. Extractions
were quantified using Qubit (Life Technologies, United States).
RNA was reverse transcribed to cDNA using Superscript III first-
strand reverse transcriptase and random hexamer primers (Life
Technologies, United States).

The V3 and V4 region of the 16S rRNA gene of the DNA
and cDNA were PCR amplified using the primers 319F and 806R
(primarily targeting Bacteria, with limited coverage of Archaea).
Sequencing libraries were prepped using a two-step PCR with
dual-indexing approach (Kozich et al., 2013; Fadrosh et al., 2014).
In short, for the first round of amplification 25 µl reactions
of 5 µl 5X Phusion HF buffer, 0.5 µl dNTPs, 1.25 µl of each
primer, 0.25 µl of Phusion DNA polymerase, 16.75 µl H2O, and
2 µl DNA template were combined and amplified for 22 cycles.
Round 1 products were cleaned using Agencourt AMPure XP
(Beckman Coulter, California, United States) then amplified for
an additional 6 cycles using Phusion HiFi to add the sequences
required for cluster formation on the Illumina flowcell. The final
library was sent to the Dana-Farber Cancer Institute Molecular
Biology Core Facilities for 300 paired-end (PE) sequencing on the
Illumina MiSeq platform.

Soil Chemical Analysis
Soil chemical parameters were measured in each soil core (by
A & L Western Agricultural Lab, Modesto, CA, United States),
including percent organic matter [loss on ignition (Dean, 1974)],
extractable phosphorus [Weak Bray (Kamprath and Watson,
1980) and sodium bicarbonate (Olsen, 1954)], extractable cations
[K, Mg, Ca, Na, and by ammonium acetate extraction (Simard,
1993)], nitrate-N, sulfate-S (Fox et al., 1964), pH, buffer pH,
cation exchange capacity [CEC, (Chapman, 1965)], and percent
cation saturation. Pearson’s correlation tests were performed
on all pairs of chemical parameters to test for autocorrelation
and reduce the number of chemical variables used in our
models. Pairs of variables that were highly correlated (R2 > 0.6,
P < 0.05) were reduced to a single variable so as to not
inflate estimates of environmental similarity among samples
(described below). The final suite of chemical analyses used
after paring down correlated variables included percent organic
matter, extractable phosphorus (Weak Bray), pH, extractable K,
CEC, nitrate-N, and S.

Bioinformatics and Statistical Analysis
Paired end reads were combined then demultiplexed in QIIME
(Caporaso et al., 2010) before quality filtering. Primers were
removed, then UPARSE was used to quality filter and truncate
sequences (416 bp, EE 0.5) (Edgar, 2013). Sequences were
retained only if they had an identical duplicate in the database.
Operational taxonomic units (OTUs) were clustered de novo
at 97% similarity using USEARCH (Edgar, 2010). OTUs were
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FIGURE 1 | Sampling design across Gabonese chronosequence of land use change (LUC). (A) Satellite image of the Congo Basin with location of sampling sites
circled. (B) Images of field sites from which samples were taken. (C) Timeline of land use change. Bar width is proportional to the amount of time a site typically
spends in each stage. Lines indicate when samples were collected. (D) Spatially explicit nested sampling scheme used in each land type. Samples were taken at the
corners of each square.

checked for chimeras using the gold database in USEARCH. To
assign taxonomy, we used the repset from UPARSE in QIIME
using greengenes version 13_5 (RDP classifier algorithm). Finally,
we averaged 100 rarefactions at a depth of 3790 counts per sample
for each community inference (RNA or DNA) and each land
type (forest, burned, or plantation) to achieve approximately
equal sampling depth across comparisons, which excluded three
samples in the DNA-inferred communities (two in the forest and
one in the plantation).

Statistical analyses were performed in the R platform
(R Core Team, 2018). Canberra pairwise community distances

were calculated using the vegdist function in the package
“vegan” (Oksanen et al., 2015). Canberra was chosen because
of its incorporation of abundance data, sensitivity to rare
community members (Jost et al., 2011), and ability to detect
ecological patterns even in instances of relatively low sampling
extent (Kuczynski et al., 2010). Rates of community spatial
turnover were estimated by regressing pairwise community
similarity (1- Canberra distance) against pairwise geographic
distance between samples (Nekola and White, 1999). We used a
similar regression approach between community similarity and
environmental similarity to estimate the relationship between
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community turnover and environmental turnover. Pairwise
soil environmental similarity was calculated using 1- Gower
dissimilarity (Gower, 1971; Gower and Legendre, 1986) using
the daisy function in the package “cluster” in R (Maechler
et al., 2016). Gower dissimilarity was chosen because it can
incorporate and compare different classes or scales of data
(Legendre and Legendre, 1998). Mantel tests were used to test
for significant associations between geographic, community,
and environmental distance, and partial Mantel tests were
used to estimate the relative contribution of environmental
distance and geographic distance on variation in community
dissimilarity in the “vegan” package in R. Differences in average
pairwise similarity across land types were assessed using a one-
way ANOVA after verifying normal distribution of data. Post
hoc comparisons of group means were made using Tukey’s
HSD. Differences in pairwise similarity levels between RNA-
and DNA-inferred communities were assessed using a two-
tailed Student’s t-test. Distance-decay slopes were compared
using the function diffslope (package “simba”) (Jurasinski
and Retzer, 2012). This function employs a randomization
approach across samples from each dataset and compares the
difference in slope to the original configuration of samples.
The p-values computed are the ratio between the number
of cases where the differences in slope exceed the difference
in slope of the initial configuration and the number of
permutations (1000). We used the DESeq2 function (Love
et al., 2014) in R to identify differentially abundant taxa
in one land type vs. another. Low abundance samples were
excluded prior to performing DESeq2 analysis. This function
uses a generalized linear model (family negative binomial) to
estimate dispersion and log2-fold change in relative abundance
of individual taxa. Taxa were deemed differentially abundant if
they had a positive log2-fold change and Padj < 0.05. Figures
were either created using base R or the “ggplot2” package
(Wickham, 2009).

We developed several community analysis approaches to
investigate whether biotic invasion or range expansion contribute
to biotic homogenization. Taxa found in a conversion land
type (i.e., the burned or plantation site), but not the forest,
were considered “newcomers.” In other words, newcomers
included any taxa that were not detected in the forest, but
were detected in the conversion sites. We removed these taxa
from the community matrix, equalized sampling extent (using
rarefaction), and then re-ran analyses of pairwise community
similarity levels and distance-decay (described above). The
expectation was that if they contribute to homogenization
(increased community similarity), then their removal should
decrease pairwise community similarity levels. We took an
analogous approach to ask if range expansion of forest-
associated taxa (referred to as “bloomer” taxa) contributes to
biotic homogenization. To do so, we identified taxa that were
differentially abundant in converted sites relative to the forest
site (described above), then removed them from the community
matrix of the converted site, and re-assessed community
similarity levels and distance-decay. The expectation, as above,
was that if these taxa contribute to homogenization, then their
removal should render the communities less similar.

RESULTS

Soil Bacterial Community Structure
Differs by Land Use
We first asked whether bacterial community structure differed
by land use for RNA- and DNA-inferred communities by
performing a PERMANOVA on OTU-level community
Canberra distance, with land type as the independent variable.
Land type differences in community composition were significant
for both DNA- and RNA-inferred communities (DNA-inferred
F2,35 = 2.35, R2 = 0.125, p < 0.001, RNA-inferred F2,37 = 2.676,
R2 = 0.133, p < 0.001). These findings were also consistent
at higher taxonomic levels (Supplementary Figures 1–3).
The most pronounced differences at the phylum level were
lower relative abundances of Acidobacteria in the burned site
compared to the forest and plantation sites [burned site (DNA):
6.86 ± 0.78%, forest site (DNA): 11.07 ± 1.73%, plantation
site (DNA): 11.30 ± 1.32%], and higher relative abundances of
Actinobacteria in the burned site relative to forest and plantation
sites [burned site (DNA): 10.86 ± 1.16%, forest site (DNA):
7.69 ± 1.40%, plantation site (DNA): 8.73 ± 1.33%], and this
trend was consistent whether communities were inferred via
DNA or RNA (Supplementary Figure 1). OTU-level richness
also differed by land type (F2,70 = 8.26, p < 0.001), but not
community inference method (p = 0.80), with the burned
site being significantly lower in richness than the forest or
plantation sites (Tukey’s HSD p < 0.01, for both comparisons,
Supplementary Figure 4).

Evidence of Biotic Homogenization
Following Land Use Change
We asked whether soil bacterial communities in the sites
undergoing agricultural conversion were on average more
similar to each other, relative to the communities found in
the forest. The RNA-inferred community showed a strong
trend toward homogenization across sites (F2,219 = 23.33,
p < 0.001), with average pairwise similarity increasing over the
progression of agricultural development across our sites (i.e., the
chronosequence, Canberra: forest mean: 0.289 ± 0.008, burned
mean: 0.327 ± 0.004, plantation mean: 0.340, ± 0.004). The
DNA-inferred community also differed in pairwise similarity
across sites (F2,184 = 4.54, p = 0.012), but this trend was less
pronounced, and similarity levels were only significantly higher
in the burned site (Canberra: forest mean: 0.268± 0.011, burned
mean: 0.301 ± 0.006, and plantation mean: 0.288 ± 0.006).
RNA-inferred community similarity was significantly higher than
DNA-inferred community similarity in the burned site (t = 3.87,
p < 0.001) and the plantation site (t = 7.45, p < 0.001), but not
the forest site (p = 0.144; Figure 2).

While levels of average pairwise community similarity tended
to increase across the chronosequence, the spatial signal of
community similarity (i.e., spatial turnover) tended to either
weaken or disappear. Both the RNA-inferred and DNA-inferred
communities showed distance-decay relationships in the forest
(Mantel rRNA = 0.846, p = 0.003, slope = −0.027; Mantel
rDNA = 0.697, p = 0.02, slope = −0.028, Figures 3A,B) where

Frontiers in Microbiology | www.frontiersin.org 5 September 2019 | Volume 10 | Article 2066

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02066 September 9, 2019 Time: 15:14 # 6

Meyer et al. Microbial Community Homogenization

FIGURE 2 | Average pairwise similarity (1 – Canberra distance) of the RNA- and DNA-inferred communities, across the forest, burned, and plantation sites.
Differences between RNA- and DNA-inferred communities assessed using two-tailed Student’s t-test, ∗∗∗p < 0.001.

communities in close proximity tended to exhibit higher levels
of similarity than communities farther apart. The RNA-inferred
community showed no significant distance-decay relationship
in either the burned site (Mantel r = 0.247, p = 0.127) or the
plantation site (Mantel r = 0.431, p = 0.063). The DNA-inferred
community showed a weak distance-decay relationship in the
burned site with a threefold decrease in slope from the forest
(Mantel r = 0.474, p = 0.048, slope = −0.009), and no significant
distance-decay relationship in the plantation (Mantel r = 0.232,
p = 0.163). Thus, both windows into the community indicated
shifts toward spatial homogenization, but this trend was more
pronounced in the RNA-inferred fraction of the community.

Soil Environment Gains Variation, but
Loses Spatial Structure Following
Conversion
Soil chemical profiles exhibited a number of changes across land
types including increases in pH and phosphorus and decreases
in percent organic matter throughout the chronosequence, and
elevated cation exchange capacity and levels of nitrate-N, sulfur,
and potassium in the burned site (Supplementary Table 1).
When we consider the differentiation of soil chemical profiles
within land types, we see that levels of average environmental
pairwise similarity (1-Gower distance) decrease from the forest
to the burned and plantation sites (F2,231 = 4.22, p = 0.016,
Supplementary Figure 5), indicating that soils within a land
type are more dissimilar from one another. Similar to the
spatial structure of the communities, the spatial structure of
environmental variation also changes across the chronosequence.
Forest soils show a significant environmental distance-decay

relationship (Mantel r = 0.729, p = 0.01, slope = −0.052),
where samples closer in proximity tend to be more similar in
environmental conditions. This relationship was not significant
in the burned site (Mantel r = 0.338, p = 0.068), and was
comparatively weaker in the plantation relative to the forest
(Mantel r = 0.465, p = 0.01) and showed a shallower distance-
decay slope (slope = −0.027, difference in slope = −0.025,
p = 0.001). Thus burning and planting seem to introduce
environmental heterogeneity, but this heterogeneity tends to
show little to no spatial structure.

Environmental Heterogeneity Continues
to Influence RNA-Inferred (and Not
DNA-Inferred) Community Turnover,
Despite Loss of Spatial Structure
We asked whether the loss of spatial structure of the soil
chemical environment could be contributing to the loss of
spatial turnover in the microbial community. To do so, we
regressed pairwise community similarity (1-Canberra distance)
against pairwise environmental similarity (1-Gower distance)
for both the RNA- and DNA-inferred communities. In the
forest site, both RNA- and DNA-inferred community similarity
levels were positively correlated with environmental similarity
(Figures 4A,B), even after accounting for differences due
to geographic distance (Table 1), suggesting samples with
similar environmental (chemical) conditions tended to harbor
similar communities. When we look at the burned site and
plantation site, however, this relationship persists for the RNA-
inferred community, but disappears for the DNA-inferred
community (Table 1), suggesting that the spatial homogenization
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FIGURE 3 | Change (or loss) of distance-decay of community similarity for (A) RNA-inferred communities, and (B) DNA-inferred communities. Trend lines were
drawn only for significant (Mantel p < 0.05) associations.

of the DNA-inferred community may be driven by other
mechanisms besides soil chemical homogenization. Thus as
environmental heterogeneity loses its spatial structure, the
RNA-inferred community similarity levels continue to vary
with this heterogeneity and lose spatial structure, while the
DNA-inferred community becomes decoupled from levels of
environmental variation.

No Evidence for Biotic Invasions
Contributing to Homogenization
We next tested the hypothesis that the introduction of
“newcomer” taxa (i.e., those that were not previously present)
was driving community homogenization. 390 of the 1545 DNA-
inferred community members in the burned site (25.2% of
OTUs, representing on average 1.8 ± 1.1% of the community)
were not detected in the forest site. 570 of the 1804 DNA-
inferred community members in the plantation site (31.7% of
OTUs, representing on average 1.8 ± 0.8% of the community)
were not detected in the forest site. These taxa were not
particularly geographically widespread (average occurrence
frequencyBurn newcomers = 0.23 ± 0.010, frequencyPlantation
newcomers = 0.25± 0.010). Moreover, only 53.6% of the newcomer
taxa in the burned site DNA-inferred community were detected
in the RNA fraction of that site, and 63.5% of the newcomer
taxa in the plantation site DNA-inferred community were
detected in the RNA fraction of that site, indicating that many
newcomers are not active. We tested whether the newcomer
taxa were driving higher estimates of community similarity
by removing them from the community matrix, equalizing
sampling extent across samples (using rarefaction), then re-
calculating community similarity (1-Canberra distance). Our

expectation was that the removal of newcomers from the
community matrix would render communities more dissimilar
(i.e., less homogenized). This was not the case. Removal of
the newcomer taxa from the burned site community matrices
actually increased community similarity of the DNA-inferred
community (Table 2). Removal of newcomers also did not render
a significant spatial signal for the DNA-inferred communities
(Table 2). This was also the case for the plantation, where the
removal of the newcomer taxa increased community similarity
for the DNA-inferred communities (Table 2), and left no spatial
signal (Table 2). Thus we have no evidence to suggest that the
homogenization of the DNA-inferred community is driven by the
arrival of newcomer taxa.

We found similar results when we performed these same
analyses on the RNA-inferred communities. Newcomer taxa
comprised a similarly small proportion of the communities in
the burned (2.2 ± 1.8%) and plantation sites (2.1 ± 0.79%).
These taxa were also not particularly widespread, with average
occurrence frequencies in the burned site of 0.26 ± 0.16
and 0.25 ± 0.01 in the plantation site. Similar to the DNA-
inferred community, the removal of newcomer taxa from
the RNA-inferred community rendered higher levels of
average pairwise similarity in the burned site community
and the plantation site community (Table 2), suggesting
that their abundances are not driving levels of community
similarity. Lastly, the removal of newcomers from the RNA-
inferred community did not render significant relationships
with geographic distance (Table 2), indicating that they
do not play a role in community spatial homogenization.
Hence we have no evidence to support the hypothesis
that increased levels of biotic homogenization are being
driven by the arrival of newcomer taxa, and in fact,

Frontiers in Microbiology | www.frontiersin.org 7 September 2019 | Volume 10 | Article 2066

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02066 September 9, 2019 Time: 15:14 # 8

Meyer et al. Microbial Community Homogenization

FIGURE 4 | The relationship between community similarity and environmental similarity (1 – Gower dissimilarity) for (A) RNA-inferred communities, and
(B) DNA-inferred communities. Trend lines were only drawn for significant (Mantel p < 0.05) associations.

TABLE 1 | The influence of environmental similarity and geographic distance on
RNA-inferred and DNA-inferred bacterial communities.

Env. Simil. Geog. Dist.

r P r P

Forest RNA 0.56 0.022 0.409 0.088

Forest DNA 0.536 0.026 0.168 0.208

Burned RNA 0.491 0.008 0.05 0.392

Burned DNA 0.237 0.174 0.338 0.07

Plantation RNA 0.57 0.001 0.082 0.284

Plantation DNA 0.17 0.194 0.124 0.267

Partial mantel test summary statistics showing (1) the effect of environmental
similarity after removing the effect of geographic distance (Env. Simil.), and (2) the
effect of geographic distance after removing the effect of environmental similarity
(Geog. Dist.). P values estimated from 1000 permutations. Bold values indicate
statistical significance (p < 0.05).

it appears that the newcomers contribute variation to
the communities.

Range Expansion of Forest-Associated
Taxa Drive Loss of Community Variation
Because soil bacterial communities in the forest tended to show
high taxonomic overlap with the burned site and plantation
site, we asked whether homogenization might rather be driven
by changes to the relative abundance of certain taxa. We used
DESeq2 –a generalized linear model with a negative binomial
distribution- to identify “bloomer” taxa (i.e., those whose relative
abundance significantly increased by land type). This approach
identified 127 taxa that were differentially enriched in the
DNA-inferred communities of the burned site relative to the

forest (comprising on average 23.85 ± 9.5% of the DNA-
inferred burned site community, and 6.43 ± 2.6% of the
DNA-inferred forest site community), and 192 taxa that were
enriched in the plantation relative to the forest (comprising
on average 26.89 ± 10.3% of the DNA-inferred plantation
site community, and 5.45 ± 2.2% of the DNA-inferred forest
site community). We removed these bloomer taxa from the
community matrices, equalized sampling extent across samples
(as described above), and re-calculated pairwise similarity levels
within land types. The removal of these taxa from the burned
site DNA-inferred community matrix rendered the communities
less similar (0.268 ± 0.005 vs. 0.301 ± 0.006, F2,196 = 6.95,
p = 0.001, Supplementary Figure 6A) and indistinguishable
from the forest levels of similarity (0.268 ± 0.011, Tukey’s
HSD padj = 0.999), indicating that their relative abundances
are indeed contributing to the increased pairwise similarity of
these communities. This was also the case in the plantation,
where the removal of the bloomer taxa from the DNA-inferred
community matrix also rendered the communities less similar
(0.253 ± 0.005 vs. 0.288 ± 0.006, F2,184 = 6.15, p = 0.003,
Supplementary Figure 6A) and indistinguishable from the forest
levels of similarity (0.268 ± 0.011, Tukey’s HSD padj = 0.300),
further supporting the idea that these taxa are driving the
increase in levels of pairwise similarity in impacted sites. Beyond
decreasing levels of community variation, the bloomer taxa
also collectively showed a wider spatial distribution in the sites
in which they were more abundant (Burn: freqburn bloomers in

for = 0.597 ± 0.034, freqburn bloomers in burn = 0.845 ± 0.020;
Plantation: freqplantation bloomers in r = 0.484 ± 0.027, freqplantation

bloomers in plantation = 0.830 ± 0.014). When we test whether these
taxa are driving the changes to spatial turnover, however, we
do not detect a significant spatial signal for the burned (Mantel
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TABLE 2 | No evidence that newcomer taxa contribute to community homogenization in burned site or plantation site.

Burned Plantation

RNA-inferred DNA-inferred RNA-inferred DNA-inferred

No
newcomers

All taxa No
newcomers

All taxa No
newcomers

All taxa No
newcomers

All taxa

Similarity levels 0.347 ± 0.004 0.327 ± 0.004 0.322 ± 0.006 0.301 ± 0.006 0.372 ± 0.004 0.340 ± 0.004 0.322 ± 0.006 0.288 ± 0.006

Mantel r r = 0.231,
p = 0.151

r = 0.247,
p = 0.127

r = 0.407,
p = 0.074

r = 0.474,
p = 0.048

r = 0.452,
p = 0.07

r = 0.431,
p = 0.063

r = 0.22,
p = 0.159

r = 0.232,
p = 0.163

Similarity levels reflect 1 – Canberra distances ± standard error.

r = 0.345, p = 0.08) or plantation (Mantel r = 0.185, p = 0.194)
sites, indicating that the weakening or loss of community spatial
structure may be driven by additional factors.

The same suite of analyses yielded similar findings for the
RNA-inferred communities. Bloomer taxa in the RNA-inferred
community comprised on average 35.6 ± 14.2% of the burned
site RNA-inferred community (6.92 ± 4.0% of the forest site
community), and 37.54 ± 10.6% of the plantation site RNA-
inferred community (9.96 ± 4.1% of the forest site community).
As described above, we tested whether the bloomer taxa were
contributing to the increased levels of pairwise similarity of
the burned and plantation site. Similar to the DNA-inferred
findings, the removal of bloomer taxa from the burned site
RNA-inferred community matrix rendered the communities
less similar (0.306 ± 0.004 vs. 0.327 ± 0.003, F2,219 = 12.95,
p < 0.001, Supplementary Figure 6B) and indistinguishable
from the forest levels of similarity (0.290 ± 0.008, Tukey’s HSD
padj = 0.124), indicating that their relative abundances contribute
to the increased pairwise similarity of these communities. This
was also the case in the plantation, where the removal of
the bloomer taxa from the RNA-inferred community matrix
rendered the communities less similar (0.311 ± 0.004 vs.
0.340 ± 0.004, F2,219 = 22.96, p < 0.001, Supplementary
Figure 6B), but in this case similarity levels were still
distinguishable from the forest levels of similarity (0.290± 0.008,
Tukey’s HSD padj = 0.029). The RNA-inferred bloomer taxa
also collectively showed a wider spatial distribution in the sites
in which they were more abundant (Burn: freqburn bloomers in

for = 0.566 ± 0.04, freqburn bloomers in burn = 0.860 ± 0.022;
Plantation: freqplantation bloomers in for = 0.506 ± 0.03, freqplantation

bloomers in plantation = 0.854 ± 0.015), but when we test whether
these taxa are driving the changes to spatial turnover we do
not detect a significant spatial signal for the burned (Mantel
r = 0.006, p = 0.474) or plantation (Mantel r = 0.413, p = 0.082)
sites following their removal. Thus, the identification of bloomer
taxa in the DNA- and RNA-inferred communities has helped to
identify the fraction of the community that is contributing to
higher levels of community pairwise similarity.

DISCUSSION

Conversion of tropical rainforest to agriculture is one of the
leading drivers of biodiversity loss and biotic homogenization

worldwide (Houghton, 1994; Dirzo and Raven, 2003; Foley et al.,
2005; Laurance et al., 2014). Gaining a better understanding
of the ecological mechanisms driving biotic homogenization is
a priority if we are to predict or mitigate changes to communities
or their ecosystem functions (Cardinale et al., 2012; Bell and
Tylianakis, 2016). We used a spatially explicit design across
a chronosequence of land use change in the Congo Basin to
investigate mechanisms of community homogenization. We used
two windows into the structure of soil bacterial communities: (1)
16S rRNA (RNA) community inference – which should enrich
for the active fraction of the community, and (2) 16S rRNA
gene (DNA) community inference – which includes both active
and inactive members, as well as “relic” DNA from dead cells
(Carini et al., 2016; Lennon et al., 2017). Our results fit into a
broader context of other studies that emphasize the importance
of using RNA alongside DNA to investigate the impacts of
environmental change on microbial communities (Barnard et al.,
2013; Freedman et al., 2015).

Ecosystems can develop spatially autocorrelated
environmental conditions (i.e., a distance-decay in
environmental similarity) through a combination of localized
physical forces or community processes (Legendre, 1993).
Slash-and-burn conversion in our system appears to disrupt
this spatial structure, while introducing variation. This form of
conversion is a relatively uniform type of disturbance, in that
all the aboveground vegetation gets removed and burned across
the landscape, which likely drives the loss of spatial structure of
the soil environment. The intensity of fire across a landscape,
however, is often patchy, depending on certain local factors
such as, e.g., the amount of biomass, or levels of moisture.
Thus this form of disturbance could introduce environmental
variation that shows little coherent spatial structure. This
insight is important when we consider the relationship between
community structure and the environment.

Communities can be homogenized by two main mechanisms:
(1) the homogenization of the environment driving convergence
of communities (Christensen and Peet, 1984; Lepš, 1991), or (2)
increased biotic mixing, driven by the breakdown of dispersal
barriers and/or the range expansion of previously present
taxa (McKinney and Lockwood, 1999; Olden and Poff, 2003;
Dormann et al., 2007; Vellend et al., 2007; Rodrigues et al.,
2013; Mueller et al., 2016). If community homogenization is
driven by environmental homogenization, community turnover
should continue to track environmental turnover, even when
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spatial structure is lost. We see this in our data when we infer
community structure using RNA, but not DNA, suggesting that
environmental spatial homogenization is likely a strong driver
of the spatial homogenization of the RNA-inferred community.
Other studies using DNA-inference have reported relationships
between environmental conditions and community similarity
(Griffiths et al., 2011; Ranjard et al., 2013; Hermans et al., 2017),
but this relationship can be quite weak in heavily managed
soils (Gumiere et al., 2016). One reason for the apparent
differences between our studies and others may be that our
sites represent a much more rapid period of land transition,
and hence DNA-inferred communities (including inactive taxa)
may have not yet been reshaped by the new soil conditions.
The decoupling of responses in the RNA- and DNA-inferred
communities could also represent differing levels of contribution
from homogenization mechanisms. Our results suggest that
taxa that are enriched in the burned site or plantation site
relative to the forest are contributing to the loss of community
variation (i.e., average pairwise dissimilarity) in those sites.
Those taxa also collectively show wider spatial distributions (i.e.,
higher occurrence frequencies) in the disturbed sites relative
to the forest. These findings are consistent with the idea of
a range expansion, and the fact that we saw this trend in
both the RNA- and DNA-inferred communities suggests that
identifying this type of homogenization mechanism may not
require RNA-based community inference. A similar pattern
has been observed in Amazonian sites that have undergone
conversion to cattle pasture, where prokaryotic taxa shared
across forest and agricultural sites tended to be more widespread
in the agricultural sites (Rodrigues et al., 2013), and fungal
communities in agricultural sites tended to be enriched in
generalist taxa that were more widespread (Mueller et al., 2016).
Thus by distinguishing communities using RNA and DNA, we
see that only part of the community seems to be responding
to the environmental changes associated with conversion, while
communities inferred via both methods appear be shaped by
biotic factors such as the breakdown of dispersal barriers and/or
the range expansion of certain taxa.

The use of 16S rRNA as a proxy for activity has been the
subject of recent controversy. Of particular concern are two
main issues: the assignment of false positives [i.e., dormant
taxa misidentified as active (Blazewicz et al., 2013)], and the
inaccurate assessment of activity levels [e.g., driven by comparing
ratios of the relative abundance of taxa in the RNA- vs. DNA-
inferred communities (Dlott et al., 2015; Steven et al., 2017;
Papp et al., 2018a,b)]. The ribosomal content of a community,
however, should be at least enriched with the taxa that are
active and/or growing, and there are a number of studies
that support the notion that rRNA-inference represents activity.
For example, if the active fraction of a community is more
likely to be interacting with the environment than the dormant
fraction (which is likely avoiding the current environmental
conditions), then we would expect a stronger correspondence
between environmental conditions and community turnover
in a community that is enriched in active taxa (Lennon and
Jones, 2011). Indeed this has been shown both along a marine
environmental gradient (Zhang et al., 2014) and a grassland

soil system experiencing re-wetting following drought (Barnard
et al., 2013). It has also been shown that N-addition to forest
soil elicits a stronger response in communities inferred from 16S
rRNA than rDNA (Freedman et al., 2015). Our results contribute
to this narrative by showing that RNA-inferred community
turnover persistently tracks environmental turnover, while this
association is lost when inferring only with DNA. We also see
that the RNA-inferred community shows a more pronounced
loss of community variation and spatial structure than the
DNA-inferred community. An important caveat is that our
study, like other studies of highly complex soil communities,
faces issues of under-sampling, and the extent to which our
observations are influenced by sampling effort could be an
important topic for future work. Thus while rRNA inference
may have certain limitations, our results, alongside others,
suggest that this method should be enriching for active taxa,
and this can have important implications for both qualitative
and quantitative conclusions, especially in systems with strong
environmental gradients.

Tropical ecosystems are characterized by immense
heterogeneity, and this could make the task of detecting
general responses to land use change difficult. Two important
steps toward gaining a better understanding of common
microbial responses to tropical land use change include (1)
expanding the breadth (i.e., the geographic representation) of
regions sampled, and (2) increasing the resolution of our study
systems (e.g., by including more sites along the conversion
continuum). Our study allows us to ask whether commonalities
exist between our findings and those reported from other tropical
ecosystems undergoing land use change. The changes we see
to the spatial structuring of communities (i.e., a diminished
distance-decay relationship) are consistent with responses
reported from the Amazon Basin (Rodrigues et al., 2013;
Navarrete et al., 2015b). While our study was not replicated at
the land type level-restricting our level of inference regarding
how representative our findings are of other Congo Basin areas-
our results at least suggest that a diminished rate of community
distance-decay may be common across tropical areas facing a
similar threat. The method of conversion may be driving this
similarity in microbial community response. The predominant
method for converting tropical rainforests to agriculture is the
use of slash-and-burn techniques (Laurance, 2015). By including
a recently slash-and-burned site in our design, we have gained a
rare glimpse into the impacts directly following the initial step
in agricultural conversion. Already at this stage we see that the
loss of community spatial structure (i.e., distance-decay) has
occurred, suggesting that spatial homogenization could be driven
by the act of conversion, rather than other management practices
such as planting or crop choice. Thus by targeting a region that
has otherwise not been sampled, and increasing the resolution
by which we survey the conversion process, we have gained
new insights that may help to elucidate common community
responses to tropical land use change.

Considering the rate and magnitude by which tropical
rainforests are being converted to agriculture (Laurance
et al., 2014), gaining a mechanistic understanding of
community responses to environmental change is imperative
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(Bell and Tylianakis, 2016). Future efforts could investigate
whether the functional potential (i.e., gene content) or trait
distributions of a community are similarly impacted by land
use change (Louca et al., 2016; Meyer et al., 2017), or whether
ecosystem functions (e.g., those involved in nutrient cycling
or greenhouse gas emissions) are impacted by community
homogenization. Our work highlights the importance of
distinguishing between metabolic states of microbial community
members, if we are to better understand community responses
to environmental change. Lastly, our work demonstrates that
trends in our system are consistent with those reported
from geographically disparate areas (e.g., the Amazon Basin),
suggesting that despite large differences between these areas, land
use change may drive predictable community changes.
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