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A B S T R A C T

Given the immense and growing cost of occupational stress to society through lost productivity and the burden to
healthcare systems, current best practices for detecting, managing and reducing stress in the workplace are clearly
sub-optimal and substantially better methods are required. Subjective, self-reported psychology and psychiatry-
based instruments are prone to biases whereas current objective, biology-based measures produce conflicting
results and are far from reliable. A multivariate approach to occupational stress research is required that reflects
the broad, coordinated, physiological response to demands placed on the body by exposure to diverse occupa-
tional stressors. A literature review was conducted to determine the extent of application of the emerging
multivariate technology of metabolomics to occupational stress research. Of 170 articles meeting the search
criteria, three were identified that specifically studied occupational stressors using metabolomics. A further ten
studies were not specifically occupational or were of indirect or peripheral relevance. The occupational studies,
although limited in number highlight the technological challenges associated with the application of metab-
olomics to investigate occupational stress. They also demonstrate the utility to evaluate stress more compre-
hensively than univariate biomarker studies. The potential of this multivariate approach to enhance our
understanding of occupational stress has yet to be established. This will require more studies with broader
analytical coverage of the metabolome, longitudinal sampling, combination with experience sampling methods
and comparison with psychometric models of occupational stress. Progress will likely involve combining multi-
omic data into a holistic, systems biology approach to detecting, managing and reducing occupational stress
and optimizing workplace performance.
1. Introduction

Stress, and stress-related disease, is costing western economies tril-
lions with hospitalization and lost productivity rising every year [1, 2].
Workplace stress costs companies billions in lost workdays, disengage-
ment and declining productivity [3, 4]. There are four likely reasons that
organizations have been unable to tackle this problem. Firstly, methods
for detecting stress sufficiently early, may be sub-optimal [5]. Secondly,
methods for managing stress, or the application of them, may be inade-
quate [6]. Thirdly, the issue may be under-appreciated and thus given
low priority by organizational managers [7, 8]. Finally, inter-individual
differences in biological stress responses mean we must titrate stressors
and stress management according to individual needs and this is chal-
lenging using current tools [9, 10, 11].

In the occupational setting, current best practice for detecting work-
related stress involves psychiatric, psychological or sociological
outcome measures that are typically self-reported, subjective question-
naires. A systematic literature review of interventions to reduce sickness
October 2020; Accepted 26 May
is an open access article under t
absence [12], demonstrated that psychological distress, anxiety,
depression and emotional exhaustion were frequently assessed using
instruments such as the SCL-90 (an assessment of ninety symptoms
associated with the most common psychiatric disorders), various ver-
sions of the General Health Questionnaire (GHQ), the Maslach Burnout
Inventory (MBI) and a number of other clinical psychiatric instruments.
Given the taboo of mental illness, and biases introduced by a respondent's
own agenda, psychiatry-based self-reported tools may produce con-
founding results. Specifically, the SCL-90R instrument has been shown to
be more valid in a patient-therapeutic setting than as a descriptive tool in
the general population [13].

There are three main psychological models of occupational stress the
Job-Demand-Control and Support model (JDCS), the Effort Reward
Imbalance Model (ERI) and the Organisational (In)justice model (OI).
The JDCS model [14, 15] measures three dimensions: psychological job
demands, decision latitude (job control) and social support at work. Jobs
that are characterized as high demand, low control and have low social or
supervisory support are hypothesized to put employees at risk of
2021
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stress-related ill health and disease and associations have beenmadewith
biomarkers of cardiovascular disease [16].

The theoretical approach of the ERI model is the concept that stress
occurs when efforts are out of proportion with perceived rewards [17].
This model has been useful in identifying overcommitment in highly
engaged employees, which may lead to conditions of high effort/low
reward and eventually to burnout and disengagement. A number of
studies have found associations between ERI and biological markers of
stress such as cortisol [18] and heart rate variability [19] Increased risk
of developing metabolic syndrome and cardiovascular disease has also
been associated with ERI [20].

The OI model measures the extent to which employees perceive
workplace procedures, interactions and outcomes to be fair [21]. In this
model there are two main dimensions: relational, or inter-personal, and
procedural justice. Relational justice refers to the extent supervisors
consider their employees’ viewpoint and take steps to deal with sub-
ordinates in a fair and truthful manner. Procedural justice involves the
fairness of formal decision-making procedures. At least one study has
demonstrated a decrease in heart rate variability as a consequence of
altered autonomic control related with organizational injustice although
the result was not statistically significant [22].

Overall, a systematic review of the literature available at the time
demonstrated that there was a general association between these psy-
chological models of stress and biomarkers of stress (cortisol, catechol-
amines, HRV, prolactin, testosterone) but that there were inconsistencies
in the results and the effects were not clear cut [23].

Studies that have attempted to identify objective, biological measures
of occupational stress tend to look at correlations with the subjective
instruments reviewed above, contributing to difficulties in interpreting
biological information and potentially inhibiting the adoption of stress
biomarkers in the workplace [23]. Thus, cortisol levels, one of the most
commonly measured biological markers of stress, were not found to be
associated with perceived stress state [24] or task unpleasantness [25,
26], or were inversely correlated with perceived stress in males and not
correlated in females [27]. In a meta-analysis of 208 studies published in
2002, Dickerson and Kemeny found elevated cortisol associated with
various types of acute stress, although the effect size varied considerably
depending on the nature of the stressor [28]. In fact, some psychological
stressors did not appear to elicit a cortisol response at all, consistent with
the findings of others [29]. Interventions to reduce ERI were not asso-
ciated with decreased levels of cortisol, although salivary amylase (a
measure of the sympathetic nervous system) was decreased by the
intervention [30]. On the other hand, increases in salivary cortisol in
response to an experimentally induced acute stressor was associated with
a background of high role uncertainty [31]. The kinetics of cortisol
release, circulation and elimination are complex [32, 33, 34], as are those
of other putative biomarkers [35], which may add to the difficulties of
correlating individual biological measures with psychological in-
struments of stress.

Burnout is broadly considered to be one of the proximate diseases of
long-term stress and is defined as “a syndrome conceptualized as
resulting from chronic workplace stress” in the WHO's International
Classification of Disease [36]. In a systematic review of biomarkers in
occupational burnout, up to and including 2008, 31 articles involving 38
biomarkers met the inclusion criteria [37]. These biomarkers represented
the hypothalamus-pituitary-adrenal axis (HPAA), the Autonomic Ner-
vous System (ANS), the immune system, antioxidant defenses, sleep,
metabolism and hormones other than stress hormones. None showed
promise as potential biomarkers of burnout. A more recent narrative
review of biomarkers in burnout, including studies reported up to 2018,
came to a similar conclusion: “existing research cannot confirm reliable
endocrinological and immunological markers of burnout” [38]. Subse-
quently, Traunmuller et al., have found that burnout was associated with
physiological changes such as decreased heart rate variability, increased
cortisol and increased blood pressure [39], but that there were two
populations of burnout subjects: one with physiological changes and one
2

without. Psychological classifications such as burnout, much like the
current classification of psychiatric diseases, tend to represent catch-all
categories. This study illustrates that such classifications may need
further segmentation and development of new biomarkers of occupa-
tional stress may facilitate such an objective.

The nature of the stress response is the activation or suppression of
almost every tissue in the body in a tightly orchestrated answer to the
demands, or perceived demands, placed on the organism by the stressor.
As the demands are likely to be stressor dependent, it should not be ex-
pected that single components of the stress phenotype, such as cortisol or
adrenaline, will be predictive, particularly if time courses are not covered
carefully following exposure to acute, intermittent or chronic stressors.
The coordinated responses of multiple biometrics over time are hy-
pothesized to be more predictive. Therefore, methods capable of
measuring multiple diverse biological endpoints are required.

To date, multi-analyte approaches have tended to concentrate on
stress as a precursor of disease. One series of studies designed to oper-
ationalize allostatic load, emphasized metabolic syndrome markers such
as BMI, waist-hip ratio or glycated hemoglobin [40, 41, 42, 43]. This
emphasis on disease etiology was reflected in the approach taken to data
analysis. Ten markers were measured in total and allostatic load was
calculated by summing the number of parameters for which the subject
fell into the highest-risk quartile of the study cohort - that is highest risk
of developing cardiovascular disease e.g. elevated cortisol, high total
cholesterol or high waist-to-hip ratio. The allostatic load score for any
individual, or group of individuals, was therefore a relative risk factor for
that particular study cohort and not a globally applicable allostatic load
score. While this body of work leads the way for multi-marker in-
vestigations, objective (biological) measures of stress, useful for the
prospective and proactive management of stress, are more likely to be
associated with the proximate causes and responses to stress, rather than
association with disease.

The development of genomic, transcriptomic, proteomic and metab-
olomic technologies coinciding with a massive increase in computing
capability to facilitate data analysis, has brought with it the opportunity
to move away from a reductionist, univariate approach towards a
multivariate view of biology [44] and with it the opportunity to develop
more objective, biological methods to detect and diagnose broad physi-
ological phenomena such as stress responses. Omics technologies
promise breakthroughs in biomarker discovery [45, 46, 47] and the
identification of a small number of analytes suitable for biomarker assay
validation is the aim of the majority of studies. Developing reproducible
models based on dynamic multivariate patterns rather than a small
number of analytes, is less researched, but is arguably more likely to be
successful [44] in the stress research field because of the pleiotropic
nature of the stress response.

A full review of genomic, transcriptomic, proteomic and metabolomic
analyses in occupational stress is too broad to be covered in one paper.
Ironically then, this review will focus solely on the use of metabolomics
in occupational stress research. The ultimate goal of developing metab-
olomics methodologies in this field will be to guide employers towards
individualized work patterns for employees to optimize their perfor-
mance while minimizing the long-term deleterious effects of chronic
stress.

2. What is metabolomics?

Just as genomics is the identification of the total complement of genes
of a population and proteomics the identification of the entire complement
of proteins, metabolomics is the identification of the entire metabolic
composition of a cell, tissue or organism at any given moment in time. The
basis for metabolomics is the concept that the concentration of metabolites
in the body is representative of the overall physiological status of the or-
ganism [48]. It therefore has the potential to revolutionize the study of
human health and conditions that perturb human health, such as occu-
pational stress. In the last twenty years, metabolomic studies have created
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new understanding of human health and aided in the identification of
previously unpredicted biomarkers for human disease and therapies [49].

Metabolomic studies assay thousands of small molecules in cells,
tissues, organs, or biological fluids and create metabolic “fingerprints”
using multivariate statistical methodology. However, while it is possible
to determine the whole genome, it is not yet possible to measure the
whole metabolome. Importantly, while we know howmany human genes
there are, we don't yet know how many human metabolites there are. In
fact, human metabolites are not just of human genetic origin, but also
from the microbiome and from the diet and environment in general. This
is both a drawback of metabolomics, but also a strength, as it reflects the
complete biological state of an individual and the interaction between
that individual, its genome and the environment [50].

One of the challenges of metabolomics is how to detect and quantify
so many molecules with such different physicochemical properties.
Aliphatic compounds behave differently to aromatics, amines to car-
boxylic acids. Phosphates, sulphates, sugar conjugates and all manner of
ionizable and un-ionizable functional groups have to be accommodated
for the detection, identification and quantification of metabolites. While
a gene or gene transcript is made up of four similar components and a
protein is made up of twenty, connected in a very predictable and linear
fashion, small molecule metabolites can contain fifty or more functional
groups connected in numerous ways. Two methodologies that can deal
with some of this chemical diversity, nuclear magnetic resonance (NMR)
spectroscopy and mass spectrometry (MS), are primarily used in untar-
geted metabolomic studies, while electrochemical detection (ECD) has
proven useful for targeted neurotransmitter analysis [51]. Data from
multiple platforms can be combined to give a broader coverage of the
metabolome, although this complicates the data analysis and quality
control.

The use of metabolomics in the occupational setting has precedent.
The technique has been used extensively in toxicological studies [52, 53,
54], leading to the use of metabolomics in occupational exposure
assessment [55, 56].

To summarize, stress is a complex state with multiple triggers and
affecting multiple systems in the body. To manage occupational stress
more effectively it is necessary to take a multivariate approach that
objectively measures the plethora of physiological and biochemical
changes that occur in response to acute, intermittent and chronic stressors.
Metabolomics takes a broad, multivariate snapshot of the total biochem-
ical composition of the body at any moment in time and has been used
extensively to probe the effects of stressors such as environmental toxins or
pharmaceutical overdose. It therefore has promise as a post-genomic
methodology to aid in the understanding and management of occupa-
tional stress. The aim of the current review is to evaluate the current
application of metabolomics in the study of occupational stress. This re-
view focuses solely on human studies, although a number of metabolomic
studies in animal models of stress have been reported [57, 58, 59, 60].

3. Materials and methods

A review of the literature was conducted on the application of
metabolomics in occupational stress research. An initial PubMed search
using the search term: (metabolomics OR metabonomics OR “metabolic
profiling”) AND (“workplace stress” OR “occupational stress”) for all
fields, returned sixty references between 2003 and 2020 out of 28,527
for the (“workplace stress” OR “occupational stress”) search term. The
date range was chosen as there were no references matching the com-
bined search term before 2003. A search of the BASE database (base-s
earch.net) using the search string “occupational stress” OR “workplace
stress” returned 11,292 records between 2003 and 2020, one of which
was retained when the search string: (metabolomics OR metabonomics
OR “metabolic profiling”), was added (using AND logic to append to the
original search). Finally, a search of Google Scholar using the same
search string and period returned 88 records. Beyond this systematic
search, citations from the metabolomics literature revealed 21 additional
3

studies. The titles and abstracts of these 170 articles were reviewed
manually to create a final body of research of direct relevance to the
application of metabolomics to occupational stress.

4. Results

4.1. Literature search

The search strategy and the stepwise outcomes are outlined in
Figure 1. Manual review of the titles and abstracts of the 170 articles
identified by the literature search revealed three studies of direct rele-
vance: one study that examined the effect of shift work on the metab-
olome [61], one that examined the effects of mental fatigue (caused by a
stressful occupation - air-traffic control) [62] and a third that investi-
gated lifestyle stressors, including those related to work [63].

A number of other studies were identified that were of peripheral or
indirect relevance. There were two studies that examined the clinical
conditions of exhaustion disorder [64] and chronic fatigue syndrome
[65], respectively. These were considered of peripheral significance in
relation to mental fatigue and burnout at work, but as they were based on
clinical diagnoses of unspecified origin, they were excluded from the
review. A third study investigated the effect of deployment on the
metabolome of service personnel [66]. While this may represent a spe-
cific case of occupational stress, the focus of the paper was on metab-
olomic changes caused by occupational exposure to environmental
pollutants. Most of the changes observed were ascribed primarily to ex-
posures to insecticides, herbicides and pollutants, such as oxidative stress
and mitochondrial disruption, or to changes in physical conditioning,
such as keratan sulphate. An additional confounding factor was the un-
known gender mix in the case and control groups of the study, which was
reflected in differences in sex hormones between groups and may have
resulted in other metabolomic differences between groups. The results of
this study were not therefore included in this review. A study into
Post-Traumatic Stress Disorder (PTSD) was identified [67] and consid-
ered because of its relevance to certain occupations such as the armed
forces, police, hospital workers, prison officers, etc. However, it was
eventually excluded from the review because it involved clinical di-
agnoses of unspecified etiology. Two studies were identified that exam-
ined the effect of stress management interventions on the metabolome.
One investigated the effect of Cognitive Behavioral Therapy (CBT) on
psychological wellbeing of obese subjects with self-reported stress
symptoms [68]. The reduction in perceived stress was not statistically
significant, although there was an improvement in psychological flexi-
bility as it pertains to weight-related difficulties (measured using the
AAQW psychometric instrument) and heart rate variability, a measure of
autonomic nervous system tone that has been used as a marker of stress.
The AAQW score was associated with changes in the plasma metab-
olome, primarily in the phosphatidylcholine profile and generally weak
associations were found between stress and lipid components of the
plasma metabolome, although the causal relationship between psycho-
logical flexibility, stress and metabolite changes was not determined. In
another study, the plasma metabolome was measured to determine the
effects of a six-day Ayurvedic (“Perfect Health”) intervention [69]. Sig-
nificant reductions were detected in the circulating levels of twelve
phosphatidylcholines following the intervention, which may have been
due to the use of hypolipidemic herbal medicines that the subjects took
during the procedure but is more likely due to the dietary restriction of
dairy, meat and eggs. Although these studies were not included in the
review because they did not study occupational stress per se, they
demonstrated the potential for stress management interventions to be
detected in the metabolome. They also demonstrate the potential for
confounding factors to interfere with metabolomic studies of occupa-
tional stress. Other potential confounding factors studied using metab-
olomics have been ageing [70], health status [71, 72], sleep deprivation
[73, 74] and psychiatric conditions [75, 76, 77, 78, 79, 80] such as
schizophrenia and depression.

http://base-search.net
http://base-search.net


Figure 1. Literature Search Schematic. The initial search string in PubMed in its entirety was: ((“occupational stress”) OR (“workplace stress”)) AND ((metabolomics)
OR (metabonomics) OR (“metabolic profiling”)). After the initial search the search period was restricted to 2003 to 2020 as there were no relevant articles
before 2003.
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4.2. Methodological comparison of metabolomic studies in occupational
stress

Three studies were found that used metabolomics to investigate
occupational stressors. The study of Sood et al. [63], investigating
psychological stress caused by various lifestyle and occupational
chore-based stressors, differed from the other two in that it measured
the serum metabolome and utilized 1H-NMR. 1H-NMR is particularly
well suited to metabolomics because it can be used on crude samples,
such as diluted urine, without extraction steps that can change the
relative concentrations of metabolites in the sample [52, 53]. A
particular benefit of NMR is that the complete molecular structure of a
metabolite can be elucidated, although formal identification would
generally be confirmed with a reference standard. Quantitation is also
relatively straight forward as the signal response correlates to the
number of protons in the molecule. However, NMR is relatively insen-
sitive compared to mass spectrometry or electrochemical detection.
One of the challenges facing all analytical methods used for metab-
olomics is that they may be biased towards specific chemical motifs,
which can emphasize certain pathways over others, e.g. energy or
amino acid metabolism by NMR or lipid metabolism by GC-MS [54].
However, in stress-research, particularly in the study of the regulation
of energy utilization by the HPA axis and glucocorticoids, this may be
an advantage allowing broad targeting of carbohydrate and lipid
metabolism.

Serum samples offer a snapshot of the metabolome at any given
moment in time and collection can be standardized. However, Sood et al.
did not specify or appear to standardize time of day for sample collection.
NMR offers rapid analysis and relatively robust metabolite quantifica-
tion. Sood et al. utilized a “constant peak at around 5.32ppm which was
set to zero integral” to standardize signal intensity for metabolite quan-
tification by peak area integration. Explicit identification of this peak
would improve comparison with other studies.

In contrast, the study of Rotter et al. [61] into the effect of
night-shiftwork and that of Chen et al. [62] into the effect of mental
fatigue caused by a day of intense, cognitively challenging work (air--
traffic control) both measured the urine metabolome using LC-MS. MS
methods offer much greater sensitivity than NMR (several orders of
magnitude) and a wide dynamic range for metabolite detection, iden-
tification and quantitation. Metabolite identification by MS is usually
only partial in the absence of a synthetic standard or some prior
knowledge of structure. Quantifying metabolite concentrations by MS is
problematic due to matrix effects on the signal. The gold standard for
MS quantification is to use isotopically labelled standards, which is only
possible for known metabolites and limits the number of metabolites
that can be fully quantified in a sample or analytical run. Although
direct MS analysis of biological samples has shown some promise in
metabolomic studies, using plasma ionization techniques to introduce
the sample into the spectrometer [81], some separation of metabolites
from the matrix and from other metabolites is usually preferred to
facilitate identification and quantitation of a larger number of compo-
nents. Liquid chromatography (LC), gas chromatography (GC) and
capillary electrophoresis (CE) are the most common modes of analyte
separation. GC-MS has been widely used in lipidomic studies [82] but
cannot easily be used to measure non-volatile compounds without
derivatization, which introduces another variable into the analysis that
must be controlled. LC-MS is arguably the most flexible of the mass
spectrometric techniques allowing analysis of a wide range of metab-
olites by modifying the chromatographic stationary and mobile phases
as well as the ionization modes of the mass spectrometer. It is even
possible to quantify different enantiomers should racemic mixtures of
chiral metabolites be suspected. Quality control of the analysis is
essential to ensure reproducible results and to remove spurious varia-
tion due to the analysis and data processing, which may include mea-
sures such as column pre-conditioning, sample order randomization,
and randomized repeat analysis of quality control samples [83, 84]. To
5

improve the quantitation of metabolites by LC-MS, commercial stan-
dards have been developed containing predetermined mixtures of me-
tabolites for targeted metabolomics. A number of kits, offered by
Biocrates contain a range of metabolites with the most comprehensive
comprising 630 metabolites, including dozens of microbiome metabo-
lites (www.biocrates.com). Of specific interest to this review, the kit
contains a number of known stress-related components such as dopa-
mine, cortisol, DHEAS, histamine and serotonin. Rotter et al., used one
version of this kit, AbsoluteIDQ p150, to detect and identify 162 me-
tabolites. To ensure the robustness of the quantitation, the investigators
took a stringent approach to quality control that rejected highly vari-
able metabolites (CV> 25%) and those with a signal intensity of less
than three times baseline in more than 50% of samples. As a result, only
44 metabolites passed quality control. This limited the metabolome
coverage, mainly to acylcarnitines, phosphatidylcholines and amino
acids, but gives confidence in the quantitation. In addition, Rotter et al.
compared three different data normalization methods (creatinine,
osmolality and regression-based normalization (RBN)), which gener-
ated different, but overlapping, panels of significant metabolites. There
was a high correlation between creatinine concentration and osmolality
but the correlations between creatinine, osmolality and RBN normal-
ized metabolite concentrations were low. RBN and osmolality normal-
ization procedures showed a significant decrease in creatinine
concentration. The authors do not discuss the impact of a metabolic
decrease in creatinine concentration on metabolome measurement
using the creatinine normalization method and chose to draw their
main conclusions from the creatinine normalized data as this is the most
commonly used method, allowing comparisons to be drawn with other
studies.

In some applications semi-quantitative analysis may suffice depend-
ing on the study design. This is the approach taken by Chen et al. who
collected one sample prior to the start of the study period and a sample at
the end, with the study period being a working day. PCA was used to
showwhich metabolites had changed from the pre-work to the post-work
sample and then to identify which had changed only in air-traffic con-
trollers (experiencing mental fatigue) but not in executives on light
duties. The authors used this design to simplify quantification by
assuming that a change inMS signal strength between pre-work and post-
work was due to changes in metabolite concentration. Unfortunately, this
does not necessarily take into account potential matrix effects on MS
metabolite quantification which has the potential to introduce bias into
the study. Chen et al. sought to expand coverage of the metabolome,
utilizing three different chromatographic separation modes (with C18
reverse phase, HILIC and non-polar stationary phases) and two mass
spectrometric ionization modes (ESIþ and ESI�) to detect between
11,414 and 17,590 compounds.

Urine collection is non-invasive and therefore well suited to field-
based occupational studies. However, homeostatic mechanisms main-
taining the internal milieu by renal excretion leads to more variable
concentration of metabolites in urine. Rotter et al., collected and indi-
vidually analyzed all spontaneously passed urine samples. The authors do
not specify how this design was accommodated by the data analysis
protocol - linear mixed effects modelling.

The three studies utilized different data analytical approaches. Chen
et al., utilized OPLS-DA to discriminate between pre-work and post-work
samples in air-traffic controllers. A Wilcoxon-Mann-Whitney test was
used to determine the significance of the most important metabolites
from the OPLS-DA loadings. Choice of classification model may be based
on researcher preference or knowledge as they all perform similarly,
although one study has demonstrated that OPLS-DA out-performs PCA,
PLS, Support Vector Machine (SVM) or Random Forests (RF) when data
sets contain subtle differences between experimental groups [85]. It is
important to recognize that multivariate analyses can over-fit data,
particularly when a very large number of variables (metabolites) are
analyzed compared to the number of samples [86] as in this study by
Chen et al. From the thousands of metabolites detected, twenty and

http://www.biocrates.com
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fourteen metabolites were identified that contributed to the differences
between pre- and post-work samples in two groups of air-traffic con-
trollers (mental fatigue) and 35 metabolites were identified in the
light-duties group. Only three metabolites were altered in both mental
fatigue cohorts and not in the control condition and therefore considered
to be associated with mental fatigue. This approach to reducing the
number of metabolites may overcome the over-fitting issues.

Sood et al. [63] utilized OPLS-DA as a screening tool together with
univariate t-test and ANOVA to determine the significance level of me-
tabolites contributing to the separation between stressed, non-stressed
and borderline stressed subjects. Significance level was set at p < 0.05
and the authors do not specify corrections for multiple analyses or false
discovery rate methodology. Univariate statistical analysis is often per-
formed as a first pass data analysis in metabolomic studies. However, the
problem of applying multiple statistical analyses means that statistically
significant results can occur by chance when no difference is actually
present in the data, leading to spurious conclusions. This is particularly
problematic with the hundreds or thousands of metabolites that can be
detected in a single sample. The classical probability threshold for sta-
tistical significance of 5% may not therefore be sufficiently discrimina-
tory in this setting [87]. Using a much higher probability threshold, or
applying a correction for multiple tests, can minimize erroneous identi-
fication of “significant”metabolites [86]. A number of articles have been
written on methods of dealing with false positive discoveries with mul-
tiple statistical testing e.g. [88, 89, 90, 91]. Another challenge is that
univariate analyses do not always identify differences between experi-
mental groups where they exist (false negatives) because they can't
identify variables that are discriminatory when combined but not when
considered individually [86]. The approach of Sood et al., may therefore
have led to misidentification of relevant metabolites contributing to the
effect of occupational stress on the urine metabolome in this study. Sood
et al. identified 41 contributory metabolites, eighteen of which had re-
ported associations with stress or stress-related conditions. Ten were
specific to the stressed cohort. In contrast, Chen et al. [62] may have
missed relevant metabolites by their approach because it may have
neglected combinatorial effects.

Longitudinal or time-course data sets in which subjects may act as
their own control are of particular interest in clinical or field studies.
Classification methods such as PCA or PLS are applicable but with a time
course dimension. Analyzing the multivariate changes over time can be
achieved using techniques such as multivariate analysis of variance
(MANOVA) or a Repeated Measures (RM) model [90]. Rotter et al. used
linear mixed effects modelling to determine the impact of shift work and
chronotype on the urine metabolome, presumably controlling for urine
sample collection time (although this is not specified). Fifteen of the 44
metabolites that passed QC were considered to explain a significant
proportion of the shiftwork-associated variability with an acceptable
false discovery rate (p < 0.05).

4.3. Interpretation of metabolomic changes associated with occupational
stress

The metabolites associated with occupational stress according to the
original authors’ criteria are listed for comparison in Table 1.

In the study of Rotter et al., female nurses on night shift exhibited a
different urinary metabolome than on day shift. The effect was different
depending upon the chronotype of the subject (early or late preference).
In explaining the difference observed in shift work, the authors focused
on nightshift induced perturbation of acylcarnitines which could indicate
altered fatty acid beta-oxidation under the control of circadian rhythm
regulators such as CLOCK/BMAL1. There were also alterations in the
urinary levels of phospholipids and sphingolipids. Alterations in
phenylalanine and arginine may indicate modified catecholamine and
nitric oxide signaling, respectively. Arginine is also a precursor of crea-
tine. Creatinine was significantly decreased following RBN or osmolality
normalization procedures. Increased arginine and decreased creatinine
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may indicate a decreased requirement for creatine synthesis due to lower
degradation of phosphocreatine to creatinine suggesting a change in
energy usage in muscles during night shift work. Night shift work is likely
to be associated with disrupted circadian rhythm, sleep patterns and
possibly sleep deprivation. Sleep deprivation is of general relevance in
the occupational setting given the association of sleep deprivation with
full-time working and an apparent societal decrease in the average
number of hours spent sleeping [92, 93, 94]. Sleep deprivation of just 24
h was shown to affect the LC-MS derived metabolic profile of plasma
[73], with significantly increased levels of tryptophan, serotonin,
taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids in
male volunteers. In a subsequent study in female volunteers [74]
decreased histidine, glutamate, citrulline and dimethylarginine, carnitine
and a number of phosphatidylcholines were observed, suggesting a sex
difference in the response to sleep deprivation. While nightshift work and
sleep deprivation are not an exact comparison, similar perturbations
were detected in lipid metabolism with a decrease in five acylcarnitines
and an increase in two other acylcarnitines reported in the female nurses
on nightshifts.

The urinary metabolomic changes associated with mental fatigue
were studied in air-traffic controllers [62]. In this comprehensive
LC-MS/MS analysis utilizing three different chromatographic separation
conditions to increase the richness of the detected metabolome, the au-
thors reported three putative biomarkers: decreased N2,
N2-dimethylguanosine, decreased N-acetylarylamine (a well-known but
discontinued analgesic) and increased alpha-carboxyethyl hydrochro-
man, a water-soluble metabolite of vitamin E. The authors offered limited
biological interpretation of the results, suggesting that N,
N-dimethylguanosine belonged to the tyrosine metabolism pathway
(KEGG). However, this metabolite is also associated with tRNA degra-
dation, suggesting a down-regulation of protein synthesis in mental fa-
tigue. Decreased N-acetylarylamine in air-traffic controllers (or increase
in executives on light duties may highlight the potential for pharma-
ceuticals to be a factor (confounding or otherwise) in real-world studies.
However, it does seem unlikely that the executives on light duties were
managing headache symptoms with a discontinued analgesic. The
finding that turnover of vitamin E might be increased in mental fatigue is
interesting given its role as an antioxidant and the proposed role of
oxidative stress in health deterioration caused by sleep loss [95]. Inter-
estingly alpha-tocopherol (Vitamin E) was elevated in plasma in patients
exhibiting exhaustion disorder [62], although the two findings appear at
odds.

The study of Sood et al. is notable in that it attempts to use metab-
olomics to develop a diagnostic tool in itself as opposed to identifying
putative biomarkers. Sood et al., used NMR-based metabolomics to
evaluate the natural stress status of individuals as a result of dealing with
regular chores. Scores were calculated from self-reported questionnaires
of stress status (Q-Score) and from the quantification of serum metabo-
lites identified by NMR (M-Score). There was a strong correlation be-
tween the Q-Score and M-Score among 124 subjects. Out of 187
metabolites detected, 30 contributed significantly to the M-Score and 18
were previously found to be associated with psychological stress or
stress-related diseases. These included 6-phosphogluconate, amino-
adipate, D-arabitol, cysteine, sorbitol, D-fructose, threonate, 2-methyl-
glutarate, chenodeoxycholate (CDCA), L-dihydroorotate. Further work
is required to determine if the M-Score could be used as a biomarker to
help individuals to alleviate their stress or reduce exposure to stressors,
but given this approach utilizes the changes in numerous metabolites
simultaneously to enumerate the score, it would appear to have signifi-
cant promise for the study, management and reduction of the pleiotropic
response to occupational stress.

Amongst these occupational studies (mental fatigue, shiftwork and
chore-related stress), the only study to show an increase in carbohydrate
metabolites was the study of Sood. This may be a function of the meth-
odology used (NMR as opposed to MS). Notably, this was also the only
study that demonstrated an alteration of cortisol. Serum cortisol was
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increased consistent with stress without adaptation to a blunted cortisol
response that can occur in chronic stress. CDCA has been reported to have
effects on glucocorticoid metabolism by inhibiting 11-beta-hydroxyste-
roid dehydrogenase (11β-HSD) [96]. The HSD11B2 form of the enzyme
oxidizes cortisol to cortisone, deactivating it in the kidneys, colon and
salivary glands. Inhibition of this form could be consistent with elevated
serum cortisol. In contrast, a metabolomic study of Chronic Fatigue
Syndrome (CFS) reported a reduced concentration of chenodeoxycholic
acid [65]. How these findings are related is not clear. Elevated dihy-
droorotate, a precursor in uridine monophosphate synthesis, could be the
result of increased RNA synthesis (casused by increased protein synthe-
sis) or inhibition of the enzymes utilising dihydroorotate e.g. dihy-
droorotate dehydrogenase (DHODH). Inhibitors of DHODH are
immunosuppressive [97] and immunosuppression is a common effect of
chronic stress [98].

None of the notable findings observed in occupational nightshift work
[61], mental fatigue [62] or general occupational and lifestyle stress [63]
corresponded between studies (Table 1).

5. Discussion

Stress is a multi-faceted phenomenon, characterized by different
triggers, different responses and affecting the whole body. While the
biological response to stress has been studied extensively over many
decades [99], it has proved difficult to associate the known biochemical
and physiological responses with stress in the occupational setting [23,
38]. Multivariate measures of stress, such as those produced by metab-
olomics, may help to address this gap. The aim of the current review was
to determine the extent of the current literature on metabolomic in-
vestigations of occupational stress.

A total of thirteen clinical or field-based human metabolomic studies
of stress were identified, out of which three were investigations of
occupational or workplace stress. Although a limited data set, the results
of the three occupational studies are consistent with the proposition that
stress is diverse in its etiology and consequences and therefore in the
biochemical changes that are detectable. The study of Sood et al. [63]
investigated chronic stress caused by repetitive chores that may therefore
conform to the JDCS model of stress [14, 15]. In contrast, the study of
Chen et al. [62] into mental fatigue caused by intense mental and
emotional work, investigated a relatively acute stress response (one shift)
which may also conform to the JDCS model. The third study into
night-shift work [61], may exemplify a mixture of demand-control stress
and sleep deprivation of a relatively acute nature. None of the metab-
olomic changes observed were found in more than one of the studies. It is
feasible that effort-reward imbalance [ERI] and organizational injustice
(OI) could also be implicated in the stress responses measured [17, 21].
However, none of the studies attempted to associate metabolomic mea-
sures with specific models of occupational stress. Sood et al. diagnosed
stress based on self-reported symptoms such as headache, forgetfulness,
etc., while stress was not specifically measured as a construct in the other
two studies. Future metabolomic studies of occupational stress might
benefit from associating metabolomic changes with specific models of
stress. However, as noted in the introduction, validation of metabolomics
with existing psychometric models of stress may be counterproductive.
Rather than validating one against the other, the aim should be to utilize
all information integrated into a single model to arrive at a better un-
derstanding of the causes, chronology, responses and adaptations to
stressors.

The conclusions that can be drawn from this small dataset about the
metabolic signature of occupational stress are limited. As described in the
results, the biochemical changes observed in each study were largely
interpretable with respect to known stress responses. However, none of
the changes were observed in more than one study. Clearly a larger
number of studies is required, but it emphasizes the point that the
changes occurring as a result of stress are complex and numerous. As an
example, a number of changes specific to the nightshift study were
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consistent with those observed in a metabolomic study into sleep
deprivation in female volunteers [74], further supporting the proposition
that occupational stress is not a single entity with predictable biochem-
ical and physiological responses. Nightshift work and high workload may
both be considered stressful because of high demand, low control and
support, but are likely to have different metabolic signatures, as exem-
plified by the studies of Rotter et al., and Sood et al. reviewed here.
Similarly, stress caused by workers’ rights issues, institutionalized
bullying or feelings of inadequate compensation may all be classed as OI
stress but are likely to appear different at the biochemical level. Further
understanding of the biochemistry of occupational stressors within the
existing frameworks provided by psychological models of stress may
facilitate a greater understanding of how people adapt and the conse-
quences for long-term health.

The lack of concordance between the studies is only partly due to the
different etiologies of stress in the studies. Another factor is the different
methodologies used. For example, the study of Sood et al. was the only
one that identified changes in carbohydrate metabolism. This is likely
due to the use of NMR in this study while the other two studies used LC-
MS. Unfortunately, the diversity present in biochemistry cannot currently
be captured by any single analytical technique. In order to compile a
complete picture of the metabolomic responses to stress it will be
necessary to combine techniques (at least until a universal methodology
is developed in the future). This complicates the analysis considerably. As
demonstrated by Rotter et al., normalization of LC-MS data for metabo-
lite quantification is challenging with different normalization methods
producing different results. Normalizing consistently across LC-MS,
NMR, GC-MS, electrochemical detection or other methods exacerbates
the problem. Furthermore, the complexity of data analysis increases
exponentially as the dimensionality of the data sets expand to answer
such questions [100]. Technological developments are addressing this,
allowing large datasets of information including hundreds or thousands
of metabolites of interest to be compiled, as demonstrated by the
approach of Chen et al. There is, however, a tendency to reduce these
large datasets to “a change in energy metabolism” or “disturbed amino
acid metabolism”, with the risk of investigator-specific bias in this kind of
focusing.

Another methodological difference between the studies was the
choice of biofluid. Urine is relatively convenient, not requiring any
special expertise to collect, and is therefore well suited to occupational
studies. Urine was the matrix chosen by Rotter et al. and Chen et al.
However, urine production is continuous whereas urine collection is
discontinuous, complicating the interpretation of metabolite concentra-
tions which may be affected by circadian rhythms, such as the well-
known daily fluctuations in cortisol levels [101] and may mask acute
or intermittent stress responses. Pooling of 24-hour collections can
overcome the issue of natural rhythms but may further mask acute and
intermittent stress responses. Serum, as analyzed by Sood et al., allows a
greater granularity of timed samples and therefore ability to detect
metabolic changes associated with acute or intermittent stress. The
disadvantage of requiring trained personnel on site and interrupting
work to take many, regular samples can be partially overcome by
blood-spot sampling [102, 103]. This technique can be performed by the
subject with minimal equipment and training to take a small thumb-prick
sample [104]. It is relatively painless, although most people would prefer
not to collect too many samples from themselves in a day. Such a sam-
pling technique could be effectively combined with experience sampling
methodology (ESM), which interrupts subjects going about their normal
activities to determine their state in the moment [105, 106, 107]. This
would provide access to metabolic signatures coincident with
self-reported psychological and physical state. Blood spot analysis re-
duces sensitivity so is currently more applicable to MS based methods
[108, 109].

The dynamics of metabolic signatures are complex and broadly
affected by five different processes: (i) the synthesis and release of me-
tabolites, including neuroendocrine signaling molecules, triggered by the
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stress response (ii) distribution of metabolites around the body (iii)
degradation of the metabolites and (iv) excretion. All five can be affected
by the stress response itself or by confounding factors. A number of
studies associating metabolomic changes with stress were excluded from
the review because they were not occupational, but they offer insights
into potential confounding factors. These included studies of aging [70],
suboptimal health [71, 72], PTSD [67], Ayurvedic Therapy [69] and
weight management [68]. Other confounding factors may also need to be
controlled in occupational stress studies of real-world stressors, including
smoking [110], alcohol, drug abuse and pharmaceutical usage [54], diet
or dietary changes [111], exercise [112], environmental factors and
infection [55, 113]. Therefore, analysis of detailed time courses, made
possible with blood spot or saliva sampling, will greatly enhance inter-
pretation of occupational stress responses. Concomitantly measuring
analytes in saliva or urine and in the circulation will help to understand
the dynamics of biological processes. None of the studies reviewed
analyzed more than one matrix.

Another approach to aid interpretation is to develop a database of the
metabolome. Studies cataloguing the human metabolome in urine, saliva
and serum have been conducted. However, the metabolome will change
throughout life and following large cohorts of individuals from cradle to
grave will be instrumental to reliable application of metabolomics [114,
115]. The aim is to define normal but also to define the changes that
occur in disease, during various life events and during stressful condi-
tions forming a comparative database of metabolome variation. To this
end a metabolic database of changes associated with disease-free ageing
has been established [116] and is publicly available (http://www.metab
oage.info). The growth in wearable health monitoring devices and the
acceptance of such devices by the general public allows concomitant
measurement of other physiological parameters such as heart rate vari-
ability, skin conductance, ECG, EEG or ultra-weak photon emission [117]
to facilitate richer interpretation. Combination with proteomics, tran-
scriptomics and genomics information will lead to even richer data sets
[44, 118, 119]. Such a systems approach is already possible and will lead
to a breakthrough in health monitoring, health improvement and disease
prevention as opposed to disease detection and treatment. This would
have widespread benefits beyond the occupational health sphere and is
beyond the scope of occupational stress management.

Stress management in the workplace is growing in popularity [120]
although evidence of success is limited [121, 122]. Monitoring the re-
quirements for stress management and the success of interventions is
necessary and objective monitoring to avoid biases of self-reporting, is
attractive. A number of clinical studies have demonstrated that stress
management techniques do affect the metabolome in ways that suggest
stress reduction and health benefits [68, 69, 123]. Further work is
required to evaluate the potential for metabolomics as an objective
measure of the success of stress management in the workplace.

A significant barrier to the introduction of biological approaches to
stress management monitoring is the current definition of a biomarker
and more specifically the definition of an occupational biomarker.
Although occupational biomarkers are commonplace in certain in-
dustries for the risk assessment of exposure to chemicals and other haz-
ards [124], they have not been used to assess exposure to stress except in
academic studies. Given the health and financial consequences of occu-
pational stress, it is important that the definition of occupational bio-
markers is extended to include stress and stress management [124].
Another potential barrier to implementation is the acceptance of bio-
monitoring by employees. However, monitoring of physiological pa-
rameters is becoming commonplace with wearable technologies and is
breaking down this barrier. Finally, legal and ethical considerations of
employee monitoring must be considered and addressed.

Given the enormous and growing cost of occupational stress, there
may come a time in the future when the stress status of employees is
regularly monitored. Given the complexity of the stress response and the
differences in response to different stressors, a multi-variate and objec-
tive approach will be required to individualize the titration of stress

http://www.metaboage.info
http://www.metaboage.info


G.L. Shackleton Heliyon 7 (2021) e07175
levels and achieve optimum performance over the longer term. It is
envisaged that this will most likely involve systems biology and artificial
intelligence. However, the small number of existing studies demonstrate
that considerable methodological development is required to expand our
understanding of multivariate metabolomic changes occurring in many
life settings before it can be reliably applied to monitoring and managing
occupational stress.

6. Conclusion

The complexity of the occupational stress response merits a multi-
variate approach to investigation. Despite this, the literature on the
application of metabolomics to studying occupational stress is limited.
The studies that are available demonstrate the challenges of such an
approach but also demonstrate the versatility of the approach. Metab-
olomic studies are technically complex but allow a non-hypothesis driven
approach that could identify new biomarkers. The available studies
demonstrate the ability of this approach to discriminate between
different causes of stress that may not be possible with traditional stress
biomarkers or psychometric approaches. The multivariate nature of
metabolomics lends itself to combination with psychometrics in a way
that has not yet been studied to develop new models and understanding
of occupational stress.
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