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Abstract: The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear
transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles,
adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in
numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a
relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs
are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such
as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the
downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target
of miRNAs due to their regulatory function on AR gene expression. A deeper understanding
of the AR–miRNA interactions may contribute to the development of better diagnostic tools as
well as to providing new therapeutic approaches. While most studies usually focus on the role of
miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent
discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and
AR-independent diseases.

Keywords: microRNA; androgen receptor; cancer; prostate cancer; breast cancer

1. Introduction

The androgen receptor (AR), together with the estrogen, progesterone, and glucocor-
ticoid receptors, belongs to the steroid hormone receptor family, which acts as a ligand-
dependent transcription factor. The AR gene is a single gene that is ∼90 kbp in size
and located on the X-chromosome at Xq11–12 [1]. The AR is mainly present in the pri-
mary/secondary sexual organs, but is also present in the kidneys, skeletal muscles, adrenal
glands, skin, nervous system, and breast [2–4]. The AR ligands, testosterone and its metabo-
lite 5α-dihydrotestosterone, are the most active androgen hormones and are responsible
for various physiological effects on the reproductive and non-reproductive systems [5].
The circulating androgens bind to the androgen receptor that is located in the cytoplasm,
which is associated with heat shock proteins (HSP) and other chaperons, which, in turn,
initiates the transport of the AR dimers to the nucleus. There, AR activates or represses
its respective target genes, regulating mRNA expression [6,7]. Abnormal AR functioning
has been identified in numerous diseases, such as prostatic hyperplasia, prostate cancer,
androgen insensitivity syndrome, hypogonadism, or spinal bulbar muscular atrophy [8]. It
is therefore of critical importance to understand the molecular mechanisms governing AR
activity and regulation in these pathological states. Particularly, in many AR-associated
disease entities, the role of AR and its interaction with microRNA (miRNA) is still poorly
described and is rarely investigated. However, most recent studies provide new evidence
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for AR–miRNA crosstalk, even in diseases such as lung cancer, liver cancer, and renal
cancer, among others. In this review, we focused on the role of AR–miRNA interactions in
the progression of various diseases.

2. miRNA

MiRNAs are small (about 17–25 nucleotides in length), non-coding, single-stranded,
endogenous molecules that play an important role in the regulation of post-transcriptional
gene expression by interacting with the 3′ untranslated region (3′UTR) of its target mes-
senger RNA (mRNA) [9,10]. The complementary degree between the miRNA sequence
and its target mRNA determines the regulatory effect of miRNA [11]. The association of
miRNA with its target mRNA can result in mRNA cleavage, translational repression, or
mRNA deadenylation [12,13]. In rare cases, miRNA can activate mRNA translation and can
increase target protein levels [14]. A single miRNA can target and regulate several different
genes, and a single gene can be regulated by many miRNAs, creating a complex network
of interactions [15]. More than 50% of protein-coding genes are believed to be regulated
by miRNAs [16]. MiRNAs play a fundamental role in a large number of key processes,
such as development, proliferation, apoptosis, metabolism, differentiation, inflammation,
metastasis, angiogenesis, and tumorigenesis [10,17–19]. By 2002, it had already been shown
that miRNAs are involved in cancer [20]. In recent years, miRNAs have become useful
biomarkers for the diagnosis, prognosis, and therapy strategies in not only many types
of cancers, such as breast, prostate, and lung cancer or melanoma, but also in metabolic,
cardiovascular, and neuronal diseases [21–24]. MiRNAs can play a role as oncogenes
(oncomiRs) or as suppressors of oncogenic transformation [23]. OncomiRs are frequently
upregulated in cancer, and can promote tumour development by inhibiting the tumour
suppressor gene, hence stimulating tumorigenesis. In contrast, tumour suppressor miRNAs
are frequently downregulated in cancer and act by inhibiting oncogenes, repressing tumour
progression [25,26]. Therefore, the inhibition of oncomiRs and the overexpression of tumour
suppressor miRNAs may be a very promising strategy for targeted cancer therapies.

Most miRNA genes are transcribed by RNA polymerase II in the nucleus as primary
RNA (pri-miRNAs) (Figure 1). To form a precursor of miRNAs (pre-miRNAs), the stem–
loop structure of a pri-miRNA is cleaved by the enzyme Drosha. The pre-miRNA, which is
built from ∼70 nucleotides, is subsequently exported to the cytoplasm by the Exportin-5
protein. Once in the cytoplasm, the pre-miRNA is cleaved by the enzyme Dicer, which
splits it into double-stranded miRNA. Finally, one of the strands of miRNA is removed,
and another is bound to the AGO2 protein, which is a member of RISC (RNA-included
silencing complex). This complex can target the 3′ UTR region of the mRNA, which results
in mRNA deadenylation, translational repression, or mRNA cleavage [25,27,28].

Figure 1. MicroRNA (miRNA) biosynthesis and functions. MiRNA gene is transcribed by polymerase
II to primary RNA (pri-miRNA). The ribonuclease Drosha is involved in the process of changing pri-
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miRNA into pre-miRNA. Afterwards, pre-miRNA is transported via Exportin-5 from the nucleus to
the cytoplasm. Dicer is an endonuclease that splits pre-miRNAs into short miRNA duplexes. The
unknown helicase participates in the splitting of the miRNA duplexes. The mature miRNA binds to
the Argonaute (Ago) protein, creating a complex that targets the 3′ UTR region of targeted mRNA.
Illustration created using BioRender.com (access date: 28 December 2021).

3. miRNA and AR

Most recent research emphasizes the importance of the interactions between miRNAs.
AR expression can be regulated by different miRNAs directly or indirectly by affecting
the expression of co-regulators (co-activators and co-repressors), which can shape AR
functions [29–32] (Figure 2).

Figure 2. Main mechanisms of AR regulation by miRNA (A) and miRNA regulation by AR (B).
Illustration created using BioRender.com (access date: 28 December 2021).

For example, prohibitin is considered to be a corepressor of AR. Fletcher et al. showed
that prohibitin is targeted by miR-27a, which leads to the increased expression of AR
target genes and PCa cell growth [31]. Another study showed that miR-137 targets AR
co-activators, including an extended network of transcriptional coregulators, such as
Lysine Demethylase 1A (KDM1A), Mediator Complex Subunit 1 (MED1), or Nuclear
Receptor Coactivator 2 (TIF2) [32]. In PCa cell lines, miR-17-5p indirectly modulates the
transcriptional activity of AR by targeting the p300/CBP-associated factor (PCAF) [31].
In addition, miRNAs can target the factors that regulate AR gene expression. MiR-let-7c

BioRender.com
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indirectly represses AR activity by targeting the oncogenic transcription factor c-Myc [33].
The second regulatory mechanism of AR expression involves the direct targeting of AR or
the AR splice variants (ARVs) by miRNAs [34]. For example, miR488* directly affects AR
signalling by targeting the 3′ UTR of AR and downregulates AR protein expression in PCa
cells, which leads to apoptotic cell death [35].

On the other hand, under various conditions, the androgens and AR may be responsi-
ble for the downregulation or upregulation of specific miRNAs (Figure 2). AR can directly
regulate miRNAs by binding to specific DNA sequences, termed androgen response ele-
ments (AREs), in the regulatory region of the target genes. AREs are dihexameric motifs that
are located in the enhancers and promoters of their target genes. As a result, transcriptional
activation or, rarely, repression occurs. Wang et al. showed that AR upregulates miR-4496
expression by directly binding to the AREs of the miR-4496 promoter. Subsequently, the
miR-4496 decreases the expression of β-catenin by directly targeting the 3′ UTR of the
β-catenin-mRNA [36]. Another way that miRNA can be regulated by AR is through the
indirect regulation of epigenetic modifications. In PCa cells, AR associates with KDM1A
(lysine-specific demethylase 1), which enables the removal of repressive methyl marks in
AR-targeted genes [37]. This also modulates the methylation of the promoter elements of
AR-upregulated miRNAs (miR-22 and miR-29a) [38]. Finally, AR may modulate the biogen-
esis of miRNA. It has been shown that in PCa cells, AR can regulate the expression of the
crucial enzymes that are required for miRNA biogenesis, such as Dicer and Drosha [31,39].

4. miRNA and AR in Various Diseases

While AR is commonly associated with prostate cancer, recent studies indicate that
not only AR, but also the AR–miRNA interactions, play a key role in cancers, such as
liver cancer, genitourinary cancer, and pancreatic cancer, in other diseases, such as PCO
and cardiovascular disorders, and in normal processes, such as adipogenesis and placenta
development. Table 1 provides insight into the novel findings regarding the AR–miRNA
crosstalk that takes place during these processes.
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Table 1. The main new findings about miRNA–AR relation in different conditions in humans.

Condition miRNA Significant Findings and Implications Concerning AR–miRNA Interactions Year of Publication Reference

Breast cancer

miR-185, miR-205, miR-21 Disturbance of AR, miR-205, miR-185, and miR-21 expression may be the marker for the presence of
metastases depends on the tumour subtype. 2020 [40]

miR-21 AR downregulates miR-21 expression 2016 [41]

miR-100, miR-125 AR regulates the extracellular release of MMP13 via the regulation of miR-100 and miR-125 2017 [42]

miR-328-3p DHT regulates miR-328-3p expression via AR 2018 [43]

DHT controls chemo-response independently of ABCG2 and miR-328-3p 2021 [44]

miR-9-5p miR-9-5p acts as a tumour suppressor and downregulates AR 2020 [45]

153 DE miRNAs in AR- positive BC including miR-933,
miR-5793, miR-4792 miRNAs promote AR-mediated signalling BC progression 2017 [46]

Prostate cancer

miR-760 Downregulation of miR-760 promotes cancer cell growth by regulating IL-6 2021 [47]

miR-216a-5p, miR-183-5p, miR-206, miR-3160-5p,
miRNA-204-5p

Target prediction analysis for 5 circRNAs related to the AR signalling pathway showed
circRNA—miRNA regulatory network with more than 200 interactions 2021 [48]

miR-1-3p, miR-125b-5p, miR-145-5p, miR-182-5p,
miR-198, miR-24-3p, miR-34a-5p, miR-22-3p,

miR-499a-5p

miR-145-5p/NDRG2/AR and miR-145-5p/KLF5/AR axis were found to be potential mechanisms in
PCa development 2021 [49]

miR-210-3p, miR-23c, miR-592, miR-93-5 miR-210-3p, miR-23c, miR-592, and miR-93-5 as a potential diagnostic and aggressiveness biomarkers
for PCa 2021 [50]

miR-3195, miR-3687, miR-4417 Upregulation of miR-3195, miR-3687, and miR-4417 in PCa 2021 [51]

miR-1205 miR-1205 act as a tumour suppressor through the regulation of FRYL 2021 [52]

Renal cell carcinoma

miR-185-5p
AR elevates the expression of miR-185-5p, which suppresses VEGF-C and increases

HIF2α/VEGF-A expression 2017 [53]

AR affects RCC metastasis via regulation of miR-185-5p 2020 [54]

miR-34a-5p AR increases proliferation of RCC cells through regulation of ASS1P3/miR-34a-5p/ASS1 signalling 2019 [55]

miR-145 AR negatively regulates miR-145, which enhances RCC cell invasion and proliferation 2015 [56]

miR-195-5p, 29a-3p, 29c-3p AR promotes RCC cell migration and invasion by regulating
circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals 2017 [57]

miR-143-3p lncRNA-SARCC suppresses RCC progression via altering AR/miRNA-143-3p signalling 2017 [58]

Bladder cancer
miR-525-5p AR binds to different AREs on the miR-525-5p promoter region and increases metastasis in

bladder cancer 2020 [59]

miR-124 XIST inhibits miR-124 expression; miR-124 regulates AR expression 2017 [60]

Urothelial carcinoma miR-27a, miR-125b, miR-145, miR-200b, miR200c AR promote expansion of CSC 2016 [61]
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Table 1. Cont.

Condition miRNA Significant Findings and Implications Concerning AR–miRNA Interactions Year of Publication Reference

Liver cancer

miR-216a, miR-224 miR-216a and miR-224 are upregulated in HCC tissues 2012 [62]

miR-532-3p AR/circ-LNPEP/miR-532-3p/RAB9A signalling axis may be committed to hypoxia-induced cell
invasion of HCC cells 2021 [63]

miR-6511a-5p, miR-4667-5p Competing endogenous RNA network analysis indicates that some miRNAs and circRNAs are
connected to AR in HCC 2021 [64]

Thyroid cancer miR-124a AR is a target for miR-124a; miR-124a determines the expression of AR gene in human thyroid
cancer tissues 2012 [65]

Head and neck cancer 53 DE miRNAs A total of 16 miRNAs might be involved in the regulation of AR in head and neck cancer 2017 [66]

Pancreatic cancer
232 DE miRNAs including the miR-200 family and

miR-192/215 AR is targeted by miR-376b 2014 [67]

494 miRNAs PPI network analysis of target genes for miR-376b and miR-376c showed AR as a hub gene 2018 [68]

Lung cancer 59 DE miRNAs Transcriptional factor regulatory network showed miR-657 as regulator of AR expression 2017 [69]

IPAH, CTEPH, APTE 21 DE miRNAs including let-7i-5p, miR-320a
miR-320b-1, miR-320b-2, miR-1291 AR is a target gene for let-7i-5p and miR-320a 2021 [70]

CTEPH 46 DE miRNAs including miR-3148 AR is a target for miR-3148 2017 [71]

Ovarian cancer 137 DE miRNAs including miR-93-5p, miR-19a-3p,
miR-22-3p, miR-362-5p, miR-210-3p Most of tested miRNA target genes were connected to hypoxia and androgen pathways 2019 [72]

PCO

38 DE miRNAs included miR-30c-5p, miR-34c-5p,
miR-142-3p, miR-199a-3p, miR-224-3p, miR-548d-3p,

miR-597-5p, miR-598-3p, miR-1468-5p, miR-107,
miR-151a-3p, miR-199a-5p, miR-1539

AR is a target of miR-30c-5p, miR-199-5p, and miR-597; other miRNAs possibly involved
in AR signalling 2018 [73]

miR-1260a, miR-18b-5p, miR-424-5p, and miR-let-7b-3p miR-1260a corelate with androgen levels 2020 [74]

Early-onset preeclampsia
placentas miR-22 Production of androgen and estrogen is modulated by miR-22 2017 [75]

Placenta development let-7c LIN28 regulates AR expression via let-7c 2019 [76]

Adipogenesis

miR-130a, miR-301 miR-130a is upregulated under androgen stimulation in the adipogenesis; AR is a target
gene for miR-130a 2020 [77]

miR-375 miR-375 is upregulated during adipogenic differentiation and is downregulated after
androgen treatment 2015 [78]

Insulin resistance miRNA profile PPI network indicated that AR was regulated by 96 different miRNAs in subcutaneous
insulin resistance 2019 [79]

ABCG2: ATP-binding cassette subfamily G member 2; APTE: acute pulmonary embolism; BC: breast cancer; AR: androgen receptor; ARE: androgen response element; circRNA: circular
RNA;; CSC: cancer stem cells; CTEPH: chronic thromboembolic pulmonary hypertension; DE: differentially expressed; DHT: dihydrotestosterone; HCC: hepatocellular carcinoma;
HIF2α: hypoxia-inducible factor 2 alfa; IL-6: interleukin 6; IPAH: idiopathic pulmonary artery hypertension; MMP13: metalloprotease-13; PCa: prostate cancer; PPI: protein-protein
interaction;f;on; RCC: renal cell carcinoma; VEGF-A: vascular endothelial growth factor A; VEGF-C: vascular endothelial growth factor C.
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Table 2 presents the main oncomiRs and tumour suppressor miRNAs connected with
androgen receptors in the different types of cancer discussed in this paper.

Table 2. Key oncomiRs and suppressor miRNAs connected with androgen receptors in different
types of cancer.

Cancer Type miRNA miRNA Type Reference

Breast cancer

miR-185 suppresor [40]
miR-21 oncomiR [41]

miR-100 suppresor [80]
miR-328-3p suppresor [44]

miR-9-5p suppresor [45]

Prostate cancer

miR-760 suppresor [47]
miR-204-5p suppresor [48]

miR-34a-5p, miR-145-5p suppresor [49]
miR-93-5 oncomiR [50,81]
miR-1205 suppresor [52]

Renal cell carcinoma

miR-185-5p oncomiR [53]
miR-34a-5p suppresor/oncomiR [55]

miR-145 suppresor [56,82]
miR-195-5p, 29a-3p, 29c-3p suppresor [57]

miR-143-3p suppresor [58]

Bladder cancer
miR-525-5p suppresor [59]

miR-124 suppresor [60,83]

Urothelial carcinoma
miR-27a, miR-125b oncomiR [61]

miR-145, miR-200b, miR-200c suppresor [61]

Liver cancer
miR-216a oncomiR [62]

miR-532-3p oncomiR [63,84]

Thyroid cancer miR-124a suppresor [65,85]

Head and neck cancer miR-100 suppresor [66,86]

Pancreatic cancer miR-200 family suppresor [67,87]

Lung cancer miR-1197 oncomiR [88]

Ovarian cancer miR-93-5p suppresor [72,89]

4.1. AR and miRNA in Breast Cancer

In general, androgens are considered male hormones, but they are also present in
females. Androgens play a crucial role in female development and physiology [90,91], and a
vast majority of breast cancers (BC) are positive for AR [45,92,93]. An increasing number of
studies indicate a link between miRNA and AR in BC development and metastasis [94,95].
In many cases of triple-negative breast cancer (TNBC), the tumour cells show AR expression.
It is possible that AR promotes the progression of this type of cancer through controlling the
expression of miRNAs that are crucial for BC development, such as miR-125b, miR-21, and
let-7a. These miRNAs target particular mRNAs that affect the protein expression involved
in BC development, such as the transmembrane glycoprotein cluster of differentiation 44
(CD44), estrogen receptor (ER), progesterone receptor (PR), and receptor tyrosine-protein
kinase erbB-2 (HER-2) [96]. In a recent study, Kalinina et al. showed that the changes in
expression levels of AR, miR-185, miR-205, and miR-21 vary in specific BC subtypes [40].
MiR-185 and miR-205 were previously described as miRNAs that are able to directly
target AR expression [97,98]. Interestingly, AR regulates the transcription of miR-21, which
promotes PCa growth [99]. Huang et al. also confirmed a link between a miR-185-5p and AR
in clear cell renal cell carcinoma (ccRCC). AR elevates the expression of miR-185-5p, which
suppresses VEGF-C and increases HIF2α/VEGF-A expression [53]. In contrast, in breast
cancer, androgens have been reported to act as negative modulators of the miR-21, which
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results in a reduction in BC cells proliferation. In such cases, AR acts as a transcriptional
repressor of miR-21 expression [41]. MiR-21 often plays the role of the main onco-miRNA
in carcinogenesis, and its expression is consistently high in hormone-dependent cancers,
including PCa and BC [100,101]. MiR-206 is also regulated by hormones in both BC and
PCa, and may act as a tumour suppressor as well as an oncogene [102,103]. Ahram et al.
showed that AR may regulate the extracellular release of metalloprotease-13 (MMP13)
in the BC cell lines by controlling miRNA expression. In response to the AR agonist CI-
4AS-1, the expression of miR-100 and miR-125 was significantly reduced in MDA-MB-453
breast cancer cells, leading to the increased expression of miR-100 and miR-125 target
metalloprotease-13 (MMP13) [42]. MiR-328-3p can mediate the AR regulation of BC, and
AR controls the expression of CD44 via miRNA-dependent and independent mechanisms in
BC cells. In TNBC, exposure to DHT significantly upregulated the miR-328-3p level, leading
to decreased expression of the miR-328-3p target CD44 and the subsequent reduction in
cell adhesion and migration [43]. In contrast, Al-Momany et al. recently showed that
DHT was able to regulate the chemo-response in TNBC through a mechanism that was
independent of miR-328-3p and ABCG2 [44]. Studies report that miR-9-5p acts as both an
onco-miR and a tumour suppressor, and its role is still debated. However, a recent work
by Li et al. suggested that the miR-9 level, and its role in BC, depends on the stage of the
disease. MiR-9 may inhibit the occurrence of BC in the early stages of the disease, and may
also act as an onco-miR in metastatic BC with a higher malignancy [104]. Bandini et al.
suggested that miR-9-5p potentially targets AR and that it may play a key role as a regulator
of the AR pathways in BC cell lines. MiR-9-5p was downregulated in the BC cell lines
(T-47D, MDA-MB-453, and MCF-7). Transfection with miR-9-5p resulted in the significant
downregulation of AR, both at the mRNA and protein levels. Interestingly, miR-9-5p is
upregulated after androgen stimulation, which indicates a feedback loop between miR-9-5p
and AR [45]. MiR-18a belongs to a miR-17-92a cluster and is significantly upregulated
in BC [105,106]. Although the miR-17-92a cluster is upregulated by the AR, its exact
role in BC progression remains unknown. As shown by Ottman et al., cluster miR-17-
92a may induce prostate cell sensitivity to drugs (docetaxel, bicalutamide) and the AKT
inhibitor MK-2206 2HCl. The inhibition of this cluster seems to be a promising therapeutic
strategy [107]. Whether similar dependence also occurs in BC requires further investigation.
Shi et al. have provided additional insight into the interactions of miRNAs and AR in BC.
A comparison of the level of miRNA expression between AR-positive and AR-negative
BC cell lines uncovered more than 150 differentially expressed miRNAs in AR-positive BC
cells. The most significantly upregulated miRNAs were miR-933 and miR-5793, and the
most downregulated was miR-4792. Many of the upregulated miRNAs were connected to
BC cell proliferation, invasion, and drug resistance. Furthermore, networks of connection
for predicted target genes showed their involvement in VEGF (vascular endothelial growth
factor) and in the mammalian target of rapamycin (mTOR) signalling pathways, which are
significant in BC tumorigenesis [46].

4.2. AR and miRNA in Prostate Cancer

The androgen receptor plays an important role in both the normal development of the
prostate gland and its abnormal growth. The roles of AR in both miRNA regulation and
miRNA-mediated regulation have mostly been extensively studied and documented in
PCa studies. In 2007, Porkka et al. showed that androgens may regulate the expression of
specific miRNAs in PCa cell lines [108]. Later, Epis et al. demonstrated that AR signalling
was indirectly regulated by miR-331-3p in LNCaP cells [109]. In their studies, Stope et al.
have shown that tumour suppressor miR-1 and small heat shock protein beta-1 (HSPB1)
are involved in the development of PCa. The previously mentioned miR-21 is not only
important in BC but also in PCa progression. Ribas and colleagues indicated that AR
binds to miR-21 promoter and increases its expression, suggesting direct transcriptional
regulation in PCa cell lines [99]. In PCa cells, HSPB1 reduces the expression of miR-1
and subsequently restores the oncogenic signalling pathways of AR. Interestingly, miR-
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1 overexpression significantly decreased PCa cell proliferation [110–112]. MiR-3162-5p
has been shown to affect the proliferation and migration of PCa cells, while regulating
kallikrein-related peptidase (KLK) and AR, by directly targeting their expression [113]. In
contrast, AR may target AR/miR-4496/β-catenin signalling by regulating the expression
of miR-4496 via direct binding to ARE sequences within the miR-4496 promoter [36]. More
recently, miR-760 showed lowered expression in PCa tissues compared to in normal tissues.
It was proven that androgens inhibit the expression of this miRNA in the LNCaP and 22rv1
cell lines. The downregulation of miR-760 promoted proliferation and growth in the PCa
cell lines. Furthermore, miR-760 bound to the 3′UTR of interleukin-6 (IL-6) and inhibited
its expression. This study demonstrated that androgens downregulate miR-760 to promote
the growth of PCa cells by regulating IL-6 [47]. Another interesting study identified the key
miRNAs in PCa using bioinformatic analysis [49]. The authors integrated gene expression
and miRNA–mRNA association data to construct networks of hub miRNAs, and proposed
candidate miRNA molecules that were specific to PCa occurrence and progression. Seven
identified miRNAs (miR-1-3p, miR-125b-5p, miR-145-5p, miR-182-5p, miR-198, miR-24-3p,
and miR-34a-5p) have been previously described to be involved in PCa and AR functioning,
and two miRNAs, miR-22-3p and miR-499a-5p, have been proposed as candidates for
new PCa biomarkers [114–117]. In addition, using bioinformatic and molecular analysis,
Martinez-Gonzalez et al. indicated that miR-210-3p, miR-23c, miR-93-5p, and miR-592
were further potential non-invasive biomarkers for PCa. Interestingly, the implication of
miR-23c in PCa has been shown for the first time [50]. Castration-resistant prostate cancer
(CRPC) is a type of PCa that progresses despite medical or surgical castration [118]. In a
profiling study, Rönnau et al. demonstrated several novel miRNAs that were significantly
dysregulated in CRPC compared to in primary PCa tissue. MiR-3195, miR-3687, and miR-
4417 were upregulated, while miR-205 and miR-92b were downregulated, in CRPC [51].
Interestingly, cell culture experiments showed a reduction in the expression levels of miR-
3687 and miR-4417 in androgen-treated VCaP and LNCaP cell lines. MiR-1205 showed
lowered expression in the PCa cell lines and tissues when compared to normal prostate
epithelial cells and normal prostatic tissue. Furthermore, mice with CRPC treated with
the miR-1205 synthetic analog (NB1205) showed smaller volumes of prostate tumour,
which suggests that miR-1205 may have tumour suppressive properties in PCa. The
FRY-like transcription coactivator (FRYL) is a direct molecular target for miR-1205, and is
overexpressed in PCa tissue and in PCa cell line models. The overexpression of miR-1205
induces FRYL protein inhibition [52].

Circular RNA (circRNA) is an endogenous, non-coding, single-stranded RNA with
a covalently closed loop with no 5′ cap or 3′ poly(A) tail [119,120]. Most recent studies
indicate that the functioning of miRNA can be also regulated by circRNAs, which act as
sponges and compete with mRNAs to bind to miRNAs [121,122]. Zhang et al., identified
five circRNAs that were related to AR signalling and PCa progression [48]. Bioinformatic
analysis proposed a network of over 200 possible interactions for these circRNAs with
miRNAs, using the miRDB database for miRNA target prediction and functional annota-
tions. MiR-216a-5p, miR-183-5p, and miR-206 were previously reported as being important
components in PCa [123,124].

4.3. AR and miRNA in Other Genitourinary System Diseases

MiRNA expression is often altered not only in PCa, but also in other genitourinary
cancers [125,126]. Furthermore, in these types of cancers, abnormal miRNA interactions
with AR have also been described. Renal cell carcinoma (RCC) is the most common kidney
cancer and is formed from renal tubular epithelial cells [127,128]. In 2017, Huang et al.
indicated a unique mechanism by which AR increased or decreased clear cell RCC (ccRCC)
metastasis. The majority of ccRCC subtypes lack the VHL gene (von Hippel–Lindau),
which leads to the stabilization of hypoxia-inducible factors (HIF) and increased expression
of vascular endothelium growth factors (VEGFs). Interestingly, AR-positive ccRCC cells
preferably metastasize to the lung rather than to the lymph nodes. Moreover, AR may
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elevate the expression of miR-185-5p through binding to its AREs, which subsequently
suppresses the expression of VEGF-C (vascular endothelial growth factor C) and increases
the levels of HIF2α/VEGF-A (hypoxia-inducible factor 2 alfa/vascular endothelial growth
factor A) [53]. In addition, AR has been shown to affect the metastasis of VHL wild-type
clear cell RCC [54]. Depending on oxygen availability, AR transcriptionally suppresses or
promotes miR-185-5p expression, resulting in changes in the VEGF-C and HIF2α/VEGF-A
levels. A study by Wang et al. showed that AR may also increase the proliferation of
RCC cells independently of the VHL status. Moreover, the authors found that the growth
of RCC cells was promoted through the AR-dependent regulation of ASS1P3/miR-34a-
5p/ASS1 signalling [55]. MiR-34a-5p was previously described as a tumour suppressor
in RCC [129,130]. AR also negatively regulates the expression of miR-145, which leads
to increased RCC cell proliferation and invasion [56]. Another interesting study showing
the link between AR and miRNAs in RCC, indicated that AR effects ccRCC cell migration
and invasion by changing circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signalling [57].
The suppression of circulating RNA circHIAT1 by AR resulted in altered miR-195-5p/29a-
3p/29c-3p expression, which increased cell division cycle 42 protein (CDC42) expression,
leading to intensified cell migration and invasion. Other studies have shown that AR
may directly bind to the miR-143-3p promoter and potentially suppress its expression.
Correspondingly, the novel long non-coding RNA lncRNA-SARCC (lncRNA-suppressing
androgen receptor in renal cell carcinoma) has been shown to inhibit the AR protein by
binding to it and destabilizing it, thus increasing the miR-143-3p level in RCC. The authors
also found that Sunitinib (a protein tyrosine kinase inhibitor used in patients with RCC)
induces lncRNA-SARCC expression, decreasing the resistance of RCC cells to this drug.
These findings provide insight into the role of lncRNA-SARCC as a suppressor of RCC
progression and highlight new therapeutic strategies for RCC treatment in the context of
AR-miRNA regulation [58].

In bladder cancer, Yang et al. demonstrated that AR decreased the transcription of
miR-525-5p by binding to different AREs located at different positions of the miR-525-5p
precursor promoter, which subsequently altered miRNA-525-5p/SLPI (secretory leukocyte
peptidase inhibitor) signalling and increased cancer metastasis [59]. An important link
between miRNAs and AR involving lncRNA was presented by Xiong et al. LncRNA XIST
(X-inactive specific transcript) promoted bladder cancer growth invasion and migration
through the direct inhibition of miR-124, which is known to block AR expression by binding
to the 3′UTR of AR [60].

In upper urinary tract urothelial cell carcinoma (UUTUC), the presence of AR in the
CSC (cancer stem cell) population increased cell clonogenicity, in vitro spheroid formation,
and changed the miRNA profile. Oncomirs miR-27a and miR-125b were upregulated in
the BFTC hAR cells, while the tumour suppressors miR-145, miR-200b, and miR-200c were
downregulated. This indicates that, in UUTUC cells, AR may upregulate the miRNAs
that promote the expansion of the CSC population, and downregulate the miRNAs that
suppress CSC population expansion. Further studies are required to understand the exact
mechanism by which AR modulates CSCs by regulating miRNA networks. These findings
provide new insight into AR functions in UUTUC [61].

At this point, it is worth mentioning that kidney stone disease is a common urological
disorder [131]. Zhu et al. indicated that the loss of AR expression in renal tubular ep-
ithelial cells inhibits intrarenal calcium oxalate crystal deposition by altering macrophage
recruitment and M2 macrophages polarization. Research suggests that AR can suppress
macrophage colony-stimulating factor 1 (CSF-1) expression through the upregulation of
miR-185-5p [132].

4.4. AR and miRNA in Liver Cancer

There is an increasing amount of evidence linking the AR to liver cancer [133,134].
Similarly, miRNAs, such as miR-216a, miR-155, or miR-21, have been implicated in the
development of liver cancer [135]. Chen et al. showed that miR-216a and miR-224 were
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significantly upregulated in hepatocellular carcinoma (HCC), starting from the early stages
of carcinogenesis. Interestingly, miR-216a levels were elevated in male patients, and the
ligand-stimulated activation of AR led to the increased transcription of pri-miR-216a,
indicating the possible involvement of androgens in the regulation of miR-216a biogenesis.
It is important to note that this effect was not observed for miR-224 [62]. Another interesting
study indicated a new AR/circ-LNPEP/miR-532-3p/RAB9A (AR/circ-leucyl and cystinyl
aminopeptidase/miR-532-3p/ras-related protein rab-9a) signalling axis that is involved
in the hypoxia-induced invasion of HCC cells. The researchers reported that the loss of
AR under hypoxia increases HCC invasion via boost circ-LNPEP expression. This circular
RNA acts as a sponge for miR-532-3p and consequently enhances the expression of RAB9A.
This finding may help to provide new treatment strategies for HCC patients, which may
include enhancing AR expression [63].

In a more recent paper, Huang et al. described the use of multiple omics integration in
HCC research. The authors used miRanda software to predict the miRNA binding sites of
the circRNAs within the junction regions, and collected mRNA–miRNA interactions from
the miRTarBase database. A competing endogenous RNA network was then constructed
using the miRNAs and differentially expressed genes, and the circRNAs indicated that
some miRNAs (miR-6511a-5p and 4667-5p), as well as certain circRNAs (hsa_circ_0002130
and hsa_circ_0008774, hsa_circ_0008774), are connected to the AR in HCC [64].

4.5. AR and miRNA in Thyroid and Head and Neck Cancer

Stanley et al. reported a link between miR-124a and AR in thyroid cancer. In a target
prediction analysis, AR was identified as a direct target of miR-124a. Experimental analysis
confirmed that miR-124a determined the expression pattern of the AR gene in thyroid
cancer tissues. In addition, miR-124a is considered to be a potential factor underlying
the gender-specific expression of AR in thyroid cancer. The expression of AR mRNA
was elevated in men and lowered in women (excluding follicular thyroid carcinoma) and
showed a negative correlation with miR-124a expression. Interestingly, studies on cell lines
have indicated that miR-124a diminishes cell proliferation [65].

In head and neck squamous cell carcinoma, a meta-analysis of miRNA expression
combined with a protein–protein interaction network analysis identified over 50 differen-
tially expressed miRNAs, where 16 miRNAs were involved in the regulation of AR. The
analysis showed that some miRNAs are tumour-suppressing and that others play onco-
genic roles. The overexpression of miR-7, miR-9, miR-15, miR-18, miR-19, miR-21, miR-23,
miR-24, miR-93, miR-96, miR-99, miR-130, miR-139, miR-141, miR-155, miR-181, miR-195,
miR-196, miR-210, miR-211, miR-214, miR-222, miR-296, miR-302, miR-331, miR-345, and
miR-424 was associated with poor prognosis in head and neck squamous cell carcinoma.
Decreased expressions of miR-17, miR-26, miR-29, miR-31, miR-34, miR-125, miR-126, miR-
137, miR-138, miR-143, miR-152, miR-200, miR-203, miR-205, miR-206, miR-218, miR-324,
miR-363, miR-375, miR-451, miR-489, miR-491, miR-506, miR-519, miR-639, and let-7d were
correlated with lower survival and metastasis [66].

4.6. AR and miRNA in Pancreatic Cancer

Recent works have indicated the role of AR in the development of pancreatic can-
cer [136,137]. Rare solid-pseudopapillary neoplasms of the pancreas have been shown to
have upregulated Wnt/β-catenin, Hedgehog, and AR signalling pathways, and miRNA
profiling revealed that 17 miRNAs were associated with these pathways. Specifically, the
AR could be targeted by miR-376b [67]. Another analysis of the miRNA profile in pancreatic
cancer patients identified 10 miRNAs with the highest prognostic prediction values for
pancreatic adenocarcinoma. A protein–protein interaction network analysis of the target
genes for miR-376b and miR-376c indicated AR as a hub gene [68].
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4.7. AR and miRNA in Lung Cancer

AR was found to be expressed not only in normal tissue, but also in cancerous tissues
of the lungs [138,139]. Correspondingly, many studies emphasize the role of miRNAs as a
potential biomarker for lung cancer [136,140]. In addition, Bouhaddioui et al. showed that
the miRNAs involved in lung development in foetal mice were androgen-dependent [137].
In an interesting study by Jin et al., the authors analysed RNA sequencing data from
blood samples taken from lung cancer patients and healthy controls. They identified
59 differentially expressed miRNAs. Transcriptional factor regulatory network analysis
showed that the miR-657 target WT1 (Wilms’ tumour gene) and the miR-582-5p target ETV1
(ETS variant 1) regulate the AR gene at the same time [69]. These studies demonstrate the
need for further research on AR–miRNA regulation in lung cancer.

4.8. AR and miRNA in Cardiovascular Diseases

Cardiovascular disease is still the leading cause of mortality worldwide [141]. There
is substantial evidence regarding the relationships between AR and hypertension, stroke,
atherosclerosis, and myocardial infarction [142]. However, knowledge of AR–miRNA
interactions is still scarce. Research on mice with experimental autoimmune myocarditis
has indicated that the AR regulates cardiac fibrosis by increasing the expression of miR-
125b [143]. Idiopathic pulmonary artery hypertension, chronic thromboembolic pulmonary
hypertension, and acute pulmonary embolism are serious pulmonary vascular diseases.
Recently, through the use of small RNA sequencing, Fabro et al. identified several miRNAs
that were distinctly dysregulated in these diseases. Importantly, for two of them, let-7i-5p
and miR-320a, the AR was a target gene [70].

Chronic thromboembolic pulmonary hypertension (CTPH) is a potentially fatal disease
that may occur as a rare complication following acute pulmonary embolism. The main
cause of CTPH is a blockage in the blood vessels that may lead to heart failure [144].
Miao et al. identified miRNAs that are connected with CTPH [71]. MiR-3148, one of the
key differentially expressed miRNAs, was downregulated in CTPH patients compared to
in healthy donors. Importantly, the AR was found to be a target for miR-3148.

Shi et al. showed that hyperglycaemia triggered increased expression of miR-21-3p in
cardiac fibroblasts. Interestingly, miR-21-3p repressed the expression of AR by binding to
the 3′UTR of the AR gene. As a consequence, AR downregulation led to the pyroptosis of
the cardiac fibroblasts and collagen decomposition through caspase-1 activation [145].

4.9. AR and miRNA in Ovarian Cancer and Polycystic Ovary Syndrome

It has been shown that androgen signalling plays an important role in tumorigenesis
and metastasis in ovarian cancer [146–148]. MiRNA profiling of serum from patients
who were either at high or low risk of ovarian cancer development, revealed almost 140
differentially expressed miRNAs. Most of them were downregulated in patients with a
high risk of ovarian cancer, and in the targeted genes involved in hypoxia and androgen
signalling. The most downregulated and validated miRNAs were miR-93-5p, -19a-3p, -22-
3p, -362-5p, and -210-3p. The authors suggested that the alteration of miRNA levels may
contribute to the upregulation of genes involved in the androgen signalling pathway, such
as macrophage colony-stimulating factor (CSF-1), macrophage colony-stimulating factor
receptor (CSF-1R), and Erb-B2 receptor tyrosine kinase 4 (ErbB4), during the initial stages of
ovarian cancer [72]. AR–miRNA interactions have also been reported in polycystic ovarian
syndrome (PCO). Murri et al. identified 38 differentially expressed miRNAs in the serum
of patients with PCO. Moreover, a prediction of putative miRNA target genes showed
that several of these miRNAs, such as miR-30c-5p, miR-34c-5p, miR-142-3p, miR-199a-3p,
miR-224-3p, miR-548d-3p, miR-597-5p, miR-598-3p, miR-1468-5p, miR-107, miR-151a-
3p, miR-199a-5p, and miR-153, may participate in AR signalling. Additionally, AR was
predicted to be a target for miR-30c-5p, miR-199-5p, and miR-597 [73]. In another study,
researchers investigated the miRNA levels in women with PCO (without insulin resistance)
and estimated the free androgen index to determine androgen status. Importantly, studies
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have shown that the expression of miRNAs, such as miR-18b-5p, miR-424-5p, and let-7b-3p,
although upregulated in PCO, does not correlate with androgen levels. Only for miR-1260a
has a significant correlation with the free androgen index been demonstrated [74].

4.10. AR and miRNA in Trophoblast and Placenta Development

Shao et al. described a specific mechanism underlying the production of androgens
and estrogens in the human placenta, which is regulated by miR-22 [75]. A higher miR-
22 level was observed in early-onset preeclampsia placentas compared to unexplained
preterm labour placentas. In human placental trophoblasts, testosterone blocked estradiol
production by upregulating the miR-22 level [75]. Recently, McWhorter et al. reported
on the connection between let-7c miRNA and AR in the trophoblasts. In the human
first-trimester trophoblast cell line, a trophoblast differentiation-related RNA-binding
LIN28B protein was shown to regulate AR expression via let-7c. The inhibition of LIN28
resulted in reduced AR expression, increased levels of let-7, and increased trophoblast
differentiation [76]. These observations are crucial for understanding the mechanisms
underlying abnormalities in trophoblast cell differentiation, which can lead to placental
disorders, including preeclampsia.

4.11. AR and miRNA in Adipogenesis

The AR is present in preadipocytes, and adipocytes and androgens are involved in
adipose tissue functions and fat distribution in the body [149]. Recently, the interactions
of AR with several miRNAs have been described in human adipogenesis [150]. For exam-
ple, miR-130a was significantly upregulated under androgen stimulation during the early
phase of adipogenesis, and AR has been shown to be a target for miR-130a together with
adiponectin (ADIPOQ) and tumour necrosis factor alpha (TNFα) [77]. During adipogen-
esis, another miRNA, miR-375, is also regulated by androgen signalling; this miRNA is
upregulated during adipogenic differentiation and downregulated following androgen
treatment [78]. Interestingly, miR-375 was previously described as being upregulated in
PCa tissues [151], as an inhibitor of nasopharyngeal carcinoma cells [152], as well as being
related to diabetes [153]. The adipose tissue regulates insulin sensitivity, and the AR may
play a role with androgens in pancreatic islet β cells and diabetes [154]. Interestingly, a
bioinformatic analysis of the key genes and molecular mechanisms involved in insulin
resistance indicated that, among miRNAs that control differentially expressed genes in
patients with subcutaneous insulin resistance, 96 miRNAs are involved in the downregula-
tion of the AR, which was presented in the protein–protein interaction network [79]. This
study presented a new potential relationship between miRNAs and the AR that is worth
considering in further investigations into insulin resistance.

5. Is There a Potential for miRNA-Based Therapy in AR-Dependent Malignancies?

The above examples indicate a strong association between different miRNAs and
AR. Although further studies involving large groups of patients are needed to validate
the importance of these interactions, these works provide a hope for the development
of new treatment strategies that target both AR and miRNAs. The ability of miRNAs to
target multiple genes within a signalling pathway either in many types of cancer or in
other diseases makes them very promising targets for the development of new therapeutic
approaches. In general, miRNA-based therapeutics act as miRNA antagonists and mim-
ics [155]. MiRNA mimics are chemically modified, double-stranded RNAs that can imitate
endogenous mature miRNAs and restore their functionality [156]. MiRNA antagonists are
single-stranded, antisense oligonucleotides that can be applied to intercept and degrade
mature miRNAs [157]. The biggest challenge in this kind of therapy is deriving an efficient
delivery system and acquiring an exact understanding of miRNA function in a specific
disease. The delivery of synthetic miRNAs may be achieved through a few strategies,
including oligonucleotides with chemical modifications, liposomes, polymers, hydrogels,
nanoparticles, lentiviruses, and adenoviruses [18]. For example, Devulapally et al. pre-
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sented a model in which polymer nanoparticles could successfully deliver anti-miR-10b
and anti-miR-21 in TNBC to block apoptosis and metastasis [158]. Exosomes have been
shown to effectively deliver anti-miR-21 in PCa, allowing miR-21 downregulation and the
blockade of cancer progression in the PC-3 human prostate cancer cell line [159]. Successful
miR-155 and miR-124 delivery through the use of nanoparticles has also been described in
ovarian cancer [160,161]. Montgomery and colleagues applied cholesterol conjugates to
successfully deliver the miRNA-29 mimic to mouse lung tissue, which restored miRNA-29
function, decreased collagen expression, and repressed pulmonary fibrosis [162]. MiRNAs
are not only targets for new therapies, but may also serve as prognostic biomarkers for var-
ious diseases. The indisputable advantage of using miRNAs as biomarkers is that miRNAs
can be collected and detected in biofluids, such as serum, plasma, blood, tears, urine, or
saliva, in a minimally invasive way [163–165]. Additionally, these small particles are stable,
remaining so long after collection. The limitation of their usage is that the miRNA level
required could be dependent on age, gender, and previously applied treatments [166,167].

Regardless of the current limitations in the delivery of synthetic miRNAs to cells, one
can expect that the combined use of miRNA with standard chemotherapy targeting AR
may improve the outcome in future patients. Androgen deprivation therapy (ADT) is the
first-line treatment used for patients with PCa [168]. Lowering androgen levels or blocking
AR binding to testosterone prevents AR activation, and at least temporarily blocks PCa
progression [169].

Combinations of different therapies with standard ADT are highly investigated. Javed
et al. provide a summary of AR signalling in a normal and an aggressive form of PCa, and
its relationships with miRNA and curcumin in potential therapeutic approaches. Curcumin
is a compound of natural origin that has antioxidant, anti-inflammatory, and anti-cancer
properties like preventing metastasis or limiting cancer cell proliferation [170,171]. MiR-
NAs, such as miR-34a, miR-143, miR-770-5p, miR-1247, and miR-145, showed elevated
expression in the curcumin-treated PCa cell lines, and as a result, halted migration or cell
proliferation was observed [172]. Fletcher et al. showed that the inhibitors of miR-346,
miR-361-3p, and miR-197 were found to reduce the transcriptional activity of the AR,
mRNA, and protein levels, and to significantly inhibit migration and invasion in the PCa
cell culture. The inhibition of these miRNAs presents additive effects with antiandrogens
that might be promising for combination approaches in PCa treatment [173]. In their study,
Lin et al. used PCa and healthy prostate cell lines to examine the relationship between
miR-31 and AR. It was discovered that miR-31 targets AR, and that its upregulation inhibits
the expression of the AR at the protein and RNA levels, which suppresses PCa develop-
ment. MiRNA-31 inhibits AR expression by binding to the coding region of the AR mRNA.
Furthermore, the AR can suppress miR-31. These findings might help to design a therapy
that supports existing therapies that focus on blocking AR activity [174]. It has been proven
that miR-133a-5p targets fused in sarcoma (FUS) proteins and the AR in PCa cell lines. The
overexpression of miR-133a-5p significantly downregulated FUS and AR, and suppressed
the cell proliferation of the AR-positive PCa cell lines. Inversely, the inhibition of miR-133a-
5p enhanced the expression of FUS and AR, and consequently PCa cell proliferation [175].
Lyu et al. presented how DHT significantly upregulates let-7a expression and inhibits cell
proliferation in the ER-, PR-, and AR+ BC cell lines. The inhibition of let-7a expression by
antisense oligonucleotides revealed the upregulation of the MYC proto-oncogene (CMYC)
and KRAS proto-oncogene (KRAS) protein, and elevated BC cell growth [176]. Recent
results indicate that AR is able to suppress the formation of a new HCC vascularization pat-
tern (vasculogenic mimicry) by regulating the circRNA7/miR-7-5p/VE-cadherin/Notch4
(circulating RNA 7/miR7-5p/vascular endothelial cadherin/notch receptor 4) signalling
axis in HCC cell lines. The overexpression of AR upregulates miR-7-5p expression through
the inhibition of circRNA7 in HCC cell lines. MiR-7-5p directly targets VE-cadherin and
Notch4 and decreases their expression, which inhibits vasculogenic mimicry formation. To
block this abnormal vascularization, the pattern inhibition of circRNA7 expression, as well
as miR-7-5p expression recovery, could be effective [177].
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The above-mentioned studies showing the relationships between AR and miRNAs
in various diseases provide useful information for developing new therapies. Epigenetic
therapies can aid and enhance the effect of existing approaches.

6. Conclusions

A growing amount of evidence is produced each year regarding the importance of the
interactions that take place between miRNA and the AR. Although relationships between
the miRNAs and the AR are predominantly studied in relation to prostate cancer and
breast cancer, the role of miRNAs and the AR in other diseases has begun to emerge.
The knowledge of the molecular mechanisms governing the mutual regulation of the
AR and miRNAs will undoubtedly help us to design better therapeutic strategies and to
provide more accurate molecular diagnostic, prognostic, and predictive biomarkers for
specific diseases.
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