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Abstract: The mechanical properties of stone materials can be severely affected by exposure to high
temperatures. The effect of fire on stone buildings could cause irreversible damage and make it
necessary to retrofit the affected elements. Particularly, the strengthening of columns by confinement
with composites has been widely improved during the last decades. Today, fiber reinforced polymer
(FRP) confinement represents a very interesting alternative to traditional steel solutions. This work
studied the behavior of cylindrical stone specimens subjected to real fire action and confined by means
of CFRP or GFRP jackets, with the aim of assessing the effectiveness of these reinforcement systems
applied to a material that has previously been seriously damaged by high temperature exposure. In
general, the strengthened samples showed notable increases in strength and ductility. The response
seemed to depend basically on the FRP properties and not on the degree of damage that the stone core
may have suffered. Finally, the results obtained experimentally were compared with the confinement
models proposed by the available design guides, in order to evaluate the accuracy that these models
can offer under the different situations addressed in this research.
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1. Introduction

Stone is generally considered as one of the most robust building materials in terms of fire resistance.
However, recent episodes, such as the fires in Notre-Dame Cathedral in Paris or the National Museum
of Brazil in Rio de Janeiro, showed that the action of fire in historic buildings can have catastrophic
consequences and jeopardize the safety of people and the integrity of invaluable heritage. The alteration
of the physical, chemical, and mechanical properties of stone materials subjected to high temperatures
has been the subject of numerous studies in recent decades. Brotons et al. [1] worked with samples
of calcarenite that had been subjected to temperature levels between 200 and 600 ◦C in an electric
furnace, letting them cool slowly to room temperature in the laboratory or cooling them abruptly by
immersion in cold water. The results showed significant drops in the compressive strength of the rock
(up to 34% in the slowly cooled samples and 53% in the water cooled ones, for 600 ◦C exposure)
and, especially, in the modulus of elasticity, with reductions up to 85% (with both cooling systems).
Kumari et al. [2] proposed a similar experimental study with granite samples exposed to temperatures
between 100 and 800 ◦C, with slow and sudden cooling, obtaining strength decreases of up to 80% and
drops in the modulus of elasticity of around 90%, somewhat greater in the series subjected to quick
cooling. In other investigations published with different stone materials [3–5], similar results can be
observed, and, in general terms, the mechanical properties of rocks were seriously affected by exposure
to high temperatures.

Although the alteration of the properties of rocks exposed to high temperatures has been widely
studied during the last years, in most cases, the work is done under ideal laboratory conditions using

Polymers 2020, 12, 2367; doi:10.3390/polym12102367 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-4175-9182
https://orcid.org/0000-0002-6837-3423
https://orcid.org/0000-0001-7273-2823
https://orcid.org/0000-0002-8647-8173
http://dx.doi.org/10.3390/polym12102367
http://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/12/10/2367?type=check_update&version=2


Polymers 2020, 12, 2367 2 of 17

electric furnaces, while investigations with exposure to real fire are scarce and usually limited to
the analysis of historical buildings affected by fires [6]. It is clear that the use of electric furnaces in
the laboratory allows the simplification and standardization of tests in order to facilitate the comparison
of results with those of other investigations [7]. However, the atmosphere created inside the furnace
does not reflect the real conditions of a building during the fire event, largely because the main
mechanism of heat transmission is convection in the former case and radiation in the latter [8]. On
the other hand, the controlled heat gradients generated in the furnace have little to do with the effect of
a real fire, where the temperature distributions are variable and fluctuate rapidly; besides, smoke and
ash produced during combustion can also have an impact on the behavior of the material [9].

Chakrabarti et al. [10] studied the effects of fire on stone materials in some historic buildings in
the UK affected by fire. One example is St. Michael’s Church (Newquay), where the fire lasted for
three hours and it was estimated that the stone may have reached temperatures in the range of 300 ◦C,
causing crumbling of up to 3 cm deep in some columns, which later forced the complete replacement
of these elements with new material. Hajpál [11] analyzed some historical buildings in Hungary and
Germany affected by fires, and found that the stone elements suffered variable degrees of damage due
to the temperature gradients that occur between exposed and protected areas or between the slenderest
or most massive pieces, situations that are difficult to simulate in laboratory tests with rock samples
and electric furnaces. Koca et al. [12] studied two marble columns after the fire at Mithatpasa Technical
Junior High School in the city of Izmir, Turkey, which lasted two hours and produced temperatures in
the order of 700 ◦C inside the building. The mechanical behavior of the affected stone was analyzed by
extracting samples that were tested in the laboratory, obtaining strength losses of 25%. Some samples
were re-exposed to different temperature levels, and it was found that the material would disintegrate
at temperatures above 300 ◦C. This would show that the stone, seriously damaged after a first fire,
could hardly withstand the action of a fire again.

The main conclusion that can be drawn from all these investigations is that the effect of fire
on stone buildings can produce severe and irreversible damage and make it necessary to retrofit
the affected elements. In the particular case of the columns, the reinforcements have traditionally
been made by means of steel jackets, although along the last decades the technique of confinement
with composite materials has been notably developed, usually by wrapping with fiber reinforced
polymer (FRP) sheets. The behavior of concrete confined with composite materials has been widely
studied since the 1990s [13–15], and theoretical models allow estimating the mechanical performance
of strengthened elements with high accuracy [16,17]. Nevertheless, research with stone or masonry
elements is much scarcer for the moment.

Aiello et al. [18,19] tested small columns made of limestone blocks and CFRP confinement either
continuously or by means of horizontal stripes with different width and separation, obtaining strength
increases of up to 93% and ultimate deformations by almost 200% higher. It is interesting to see how
discrete jacketing was almost as effective as continuous wrapping, a matter of great importance in
case of columns exposed to moisture, where this solution would allow the stone core transpiration.
Regarding the confinement of square cross-section pieces, it was found that the efficiency of the jacket
was lower due to stress concentration at the corners, which could be improved by increasing the radius
of curvature of the samples. Faella et al. [20] proposed a study with square cross-section specimens
made of limestone or volcanic tuff blocks and confined with CFRP or GFRP continuous jackets.
In the case of specimens with a greater radius of curvature at the edges and with two layers of
reinforcement, the ultimate strength was doubled, with large increases in the ultimate strain. Micelli et
al. [21] presented a similar investigation to [18], in which they also incorporated hybrid solutions made
of glass fiber fabrics combined with shape memory alloys (SMA), in order to evaluate the capacity of
these materials to provide active confinements. Witzany and Zigler [22] worked with larger square
cross-section columns made of perfectly cut sandstone pieces or in the form of irregular blocks and
continuous or discontinuous CFRP reinforcements. Estevan et al. [23] proposed an experimental
investigation with cylindrical specimens formed by calcarenite samples similar to those presented
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in [1] and different strengthening systems: FRP with unidirectional or multidirectional carbon or glass
fabrics and FRCM (fabric reinforced cementitious matrix) with glass or basalt meshes. The results
clearly showed a higher efficiency of the FRP confinement, doubling the ultimate strength with respect
to the unreinforced samples and increasing the ultimate strain by more than 10 times in some series.
With respect to the FRCM strengthening, a smaller confinement capacity was observed, obtaining
strength increases of just 26% in the best of cases. In a subsequent study with the same type of rock,
Estevan et al. [24] studied the strengthening of samples subjected to moisture and preload with CFRP
and GFRP jackets. In general, the response of a retrofitted element seemed to depend fundamentally
on the properties of the FRP sheet and not on the degree of damage that the stone core might have
previously suffered.

Despite all the research presented above, the studies on structural elements retrofitted with FRP
confinement under compression after high temperature exposure is quite limited at the moment. Some
works have dealt with concrete specimens subjected to different temperature ranges under laboratory
conditions, i.e., using electric furnaces, and wrapping with CFRP [25,26]. Nonetheless, publications
about stone or masonry elements are practically non-existent. Estevan et al. [27,28] studied the behavior
of calcarenite samples exposed to temperatures of up to 600 ◦C in an electric furnace with slow and
quick cooling. The stone suffered notable losses of strength (around 40–50%) and a severe reduction of
its modulus of elasticity (over 80%). Subsequent confinement was performed wrapping with CFRP
and GFRP (one layer), and the results in the damaged specimens showed a behavior very similar to
undamaged rock samples with equivalent reinforcements. In other words, and in line with the results
obtained in [24], it can be concluded that the mechanical performance of the structural elements
retrofitted by FRP confinement seems to depend basically on the properties of the composite sheet and
not on any previous alteration suffered by the stone material.

As a summary of the research presented throughout this introduction, two main conclusions may
be highlighted. First, the mechanical properties of stone materials subjected to elevated temperatures
can be severely affected, although studies with exposure to real fire are very scarce at present. Second,
FRP confinement of structural members subjected to compression can be a very effective solution in
many cases, although, in the particular case of the strengthening of stone members damaged by fire,
hardly any previous studies are available in scientific literature. Therefore, the main objective of this
study aimed to expand with experimental results the state of knowledge in this field. In addition,
the current structural codes for masonry reinforcement do not include any comments regarding
the confinement of damaged materials. In fact, the efficiency of the FRP itself is a key parameter to
assess the strength gain of FRP confined columns, and it has been determined based on experimental
data. There is no consensus about its value for different fibers; hence, there is a great uncertainty
between codes. Therefore, a secondary objective was aimed at the evaluation of the current structural
codes for the reinforcement of masonry structures, in which mechanical properties had been damaged
by fire exposure. The experimental data will be compared with the values obtained with the formulation
given in the standards in order to check the accuracy of the prediction of the strength gain in the case
of FRP jackets for columns confinement.

2. Materials and Methods

2.1. Materials, Experimental Program and Test Setup

The stone material used in this research was a calcarenite known locally as Piedra de San Julián,
from a rock mass located by the sea northeast of the city of Alicante (Spain). This rock served as
base material for some of the previous studies presented in the state-of-the-art review [1,23,24,27,28].
The samples were collected from several geotechnical surveys carried out during the construction
of a railway tunnel through the mountain. A total of 50 cylindrical samples were prepared, 72 mm
diameter and 180 mm height, in order to keep the ratio 1:2.5 recommended by ASTM D7012-14e1
standard [29]. The main properties of the rock were (average ± standard deviation): bulk density
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1982 ± 28 kg/m3; compressive strength 19.99 ± 1.61 N/mm2; modulus of elasticity 11859 ± 475 N/mm2;
Poisson’s ratio 0.22 ± 0.03.

The retrofitting of the samples was made with CFRP and GFRP jacketing (one layer). For
determining the mechanical properties of the composites, 5 samples were prepared with each type of
fabric, with dimensions 25 × 250 mm, which were tested in tension in accordance with the procedure
defined in ASTM D7565/D7565M-10(2017) standard [30]. The tests were carried out in an electrical
press equipped with a load cell of 20 kN capacity; the deformation was registered with a LVDT device
located at the midpoint of the specimen. Table 1 summarizes the main properties of the materials: in
case of fabrics and epoxy resin, the data provided by the manufacturer are indicated; for composite
materials, the results obtained experimentally are reported (average of five specimens tested in each
series and coefficient of variation, in brackets).

Table 1. Main properties of raw materials and composite specimens.

Fabric
(Unidirectional) a Epoxy Resin a Composite b

Carbon Glass CFRP GFRP

Weight (g/m2) 300 900 - - -
Thickness (mm) 0.166 c 0.480 c - 0.81 (12.54%) d 1.08 (3.36%) d

Tensile strength (MPa) 4830 2560 40 637 (6.43%) 539 (7.48%)
Elastic modulus (MPa) 230,000 80,700 1400 56,078 (7.60%) 25,344 (6.06%)

Ultimate strain (%) 2 3–4 1.8 1.16 (6.01%) 2.21 (5.15%)
a Values provided by supplier. b Experimental average values from uniaxial tensile tests (coefficient of variation, in
brackets). c Dry fabric thickness. d Cured sheet thickness, measured with micrometer.

The procedure for applying the FRP confinement to the stone specimens can be summarized in
the following phases. First, cleaning with steel brush and compressed air. Afterwards, a layer of epoxy
resin was applied using a brush, evenly distributed on the surface of the specimen. Then, the fabric
was placed with fibers aligned with the transverse direction of the sample and an overlap length of
25% (60 mm, determined according to different tests carried out previously). Finally, an aluminum
grooved roller was used to apply lateral pressure, while a second layer of resin was added, checking
the removal of any crease or occluded air bubbles. All samples were cured at room temperature for at
least 7 days, in order to comply with the manufacturer’s specifications.

The tests were scheduled as shown in Table 2, where the specimens have been identified with
a five-digit code, A.BB.XX, in which:

• ‘A’ encodes the confinement solution: N (non-confined); C (CFRP); G (GFRP). All FRP jackets
comprised only one layer of fabric

• ‘BB’ encodes the treatment that the stone specimen had previously undergone: N (no treatment);
FD (real fire exposure with slow dry cooling); FW (real fire exposure and quick cooling by means
of water spraying).

• ‘XX’ encodes the specimen’s number within each series (01, 02, 03, or 04).



Polymers 2020, 12, 2367 5 of 17

Table 2. Identification of specimens.

Set. Label Confinement Layers Stone treatment Samples

01 N.N.XX - - - 4
02 C.N.XX CFRP 1 - 4
03 G.N.XX GFRP 1 - 4

04 N.FD.XX - - Fire exposure, slow dry cooling 4
05 C.FD.XX CFRP 1 Fire exposure, slow dry cooling 4
06 G.FD.XX GFRP 1 Fire exposure, slow dry cooling 4

07 N.FW.XX - - Fire exposure, quick water cooling 4
08 C.FW.XX CFRP 1 Fire exposure, quick water cooling 4
09 G.FW.XX GFRP 1 Fire exposure, quick water cooling 4

All samples were tested in uniaxial compression in an electric press equipped with a 300 kN load
cell. The lower plate of the press was fixed, while a spherical seat was incorporated in the upper
one. The tests were programmed with a constant stress rate of 0.5 MPa/s, until the specimen failed,
according to ASTM D7012-14e1 standard [29]. To register the axial strains, a rigid frame was screwed
to the lower plate of the press, on which two LVDTs were installed to measure the descent of the upper
plate. Transverse strains were measured by means of two strain gauges per specimen, located at
mid-height and diametrically opposite points. LVDTs are Novotechnik TEX Series position transducers,
with a measurement range of 50 mm; the strain gauges are linear HBM LY Series, with a measuring
length of 20 mm and a nominal resistance of 120 Ω. All tests were recorded with a HBM Spider data
acquisition equipment, programmed at 2 Hz frequency. Figure 1 shows a detail of the press used in
the tests and the deformation measurement devices.

Figure 1. Test setup: longitudinal deformations monitored with LVDT and transverse strains with
strain gauges.

2.2. Fire Exposure

The thermal treatment of the stone samples was carried out in the facilities of the Provincial Fire
Brigade Consortium of Alicante (Spain). In a container used for testing and training of the firemen,
a real fire was generated by the ignition of combustible material, composed basically of pieces of wood
and fiber or particle boards. The amount of material and its placement was determined according to
several tests carried out previously. The cabin had inner dimensions of 12 m (length), 2.4 m (width),
and 2.4 m (height). The specimens were placed at the top, about 40 cm from the ceiling, suspended
by metal chains. For temperature control inside the container, six thermocouples were installed,
evenly distributed among the stone samples, and connected to a data acquisition system controlled
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by a computer located outside. Figure 2 shows the floor plan and section of the container, with
the approximate location of the samples and temperature sensors for each fire exposure.

Figure 2. Cabin layout, showing the placement of stone samples and temperature sensors for both tests
(FD (real fire exposure with slow dry cooling) and FW (real fire exposure and quick cooling by means
of water spraying)).

Two different tests were carried out, in order to evaluate the influence of the extinguishing method
in case of a fire in a real building. In the first one (FD test, Table 2, series 04 to 06), the fire was naturally
put out, keeping the specimens inside the container for 24 h until an ambient temperature of around
20 ◦C was reached. In the second test (FW test, Table 2, series 07 to 09), the fire was extinguished when
the flames were fully developed (approximately 22 min from ignition) with the assistance of a firemen
team, who sprayed the specimens with water until their complete cooling.

Figure 3 shows some relevant pictures of the fire exposure. A general view of the container with
the stone samples and the combustible material prepared for ignition is included in Figure 3a. A
detail of thermocouples relative location can be seen in Figure 3b. All of the process was made with
the assistance of firefighters, including the ignition of combustible material (Figure 3c), the development
of the fire inside the cabin (Figure 3d), and the fire extinction (Figure 3e). In addition, a view of
the specimens at the instant immediately after being cooled is included in Figure 3f.

Figure 3. Real fire tests: (a) general view of the container; (b) detail of samples and thermocouples
attachment; (c) ignition of combustible material; (d) fully developed fire; (e) fire extinction; (f) view of
specimens after being cooled.
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Temperature recording curves inside the cabin are shown in Figure 4, for the two tests performed:
FD and FW. It should be noted that some temperature sensors did not provide reliable data during
the course of the tests, so only those considered valid have been represented (sensors S1, S2, S5, S6 in FD
test and sensors S2, S3, S4, S6 in FW test). Both graphs have been drawn with different time scales on
the abscissa axis, in order to facilitate the display of curves. As can be seen, the maximum temperature
inside the container was reached quickly, approximately 5 min after the ignition of the combustible
material. The average temperature with a fully developed fire was around 600 ◦C, although peaks
above 800 ◦C were registered in some sensors. In the FD test (Figure 4a), a generalized drop in
temperature can be appreciated from minutes 20 to 25, which corresponds to the gradual extinction
of the flames once most of the combustible material had been consumed. For this reason, it was
decided to intervene at the 22nd minute for the rapid cooling of the samples in the FW test, Figure 4b,
where EX represents the instant when the spraying with cold water was started with the assistance of
the firefighters team.

Figure 4. Temperature records inside the cabin for both tests performed: (a) FD and (b) FW.

After the fire exposure tests, some rock samples were cracked or even completely fractured,
especially in case of the quickly cooled ones. Once the specimens had been taken back to laboratory,
the least damaged were selected and FRP wrapping was done (in 05, 06, 08, and 09 sets), as detailed
above. The samples sprayed with water had been previously dried in an electric oven at a temperature
of 105 ◦C for a period of 24 h.
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3. Results and Discussion

In this section, the results of the uniaxial compression tests corresponding to the series of
unconfined samples (series 01, 04, and 07) and those obtained in the confined ones (series 02, 03, 05, 06,
08, and 09) are presented separately. Finally, the results obtained experimentally will be compared
with the predictions of the confinement models defined in the available design guidelines.

As explained above, two extensometers measured axial strains, while transverse strains were
obtained by means of two strain gauges per specimen. However, the stress-strain curves presented in
the following sections, include only axial strains, in order to facilitate their view and interpretation.
Nevertheless, the ultimate transverse deformation is required to calculate the FRP strain efficiency
factor (kε), and the values are given in the corresponding tables, as will be explained later. All graphs
include the average of four samples in each series as a dark line. In addition, the corresponding bilateral
confidence interval, which is shaded in a grey background, was added to evaluate the experimental
dispersions. Thus, 95% bidirectional confidence intervals were determined, considering mean values
and standard deviations of the stress, for each strain, according to UNE 66040:2003 standard [31].

The following notation has been used:

• fmo ultimate compressive strength of unconfined stone (MPa)
• fmc ultimate compressive strength of confined stone (MPa)
• εmo ultimate axial strain of unconfined stone
• εmc ultimate axial strain of confined stone
• εmc,t ultimate transverse strain of confined stone
• εfu ultimate strain of FRP, obtained in direct tensile tests (see Table 1)
• kε FRP strain efficiency factor (kε= εmc,t/εfu)
• Emo modulus of elasticity of unconfined stone (MPa), determined as the average slope of

the straight-line portion of the stress-strain curve, according to ASTM D7012-14e1 [29]
• Emc modulus of elasticity of confined stone (MPa), determined as Emo on the initial branch of

the bilinear stress-strain curve
• gm stone mass-density (kg/m3)

3.1. Unconfined Samples

The results corresponding to the unconfined samples are summarized in Table 3, and the axial
stress-strain curves of the three series tested are shown in Figure 5. As can be seen, the undamaged
specimens showed an approximately linear response with brittle failure, a common behavior in this
type of stone material. Exposure to real fire produced a notable decrease in the ultimate compressive
strength (65% and 70% in the samples with slow and quick cooling, respectively). The ultimate strain
increased in both series by more than 4 times with respect to the undamaged stone specimens, which
resulted in large reductions of the modulus of elasticity (about 90%), regardless the cooling system
used. It is worth noting the great homogeneity of the results obtained, in view of the confidence
intervals amplitude, considering that the tests deal with a natural material, such as stone is. As can be
seen, the greatest dispersions were obtained in the samples with quick water cooling.

Table 3. Unconfined samples: experimental results (coefficient of variation, in brackets).

Set Label gm (kg/m3) f mo (MPa) εmo Emo (MPa)

01 N.N.XX 1982 (1.41%) 19.99 (8.07%) 0.00212 (6.04%) 11859 (4.01%)
04 N.FD.XX 1988 (0.32%) 7.00 (8.36%) 0.00885 (5.81%) 1214 (9.69%)
07 N.FW.XX 1974 (1.98%) 6.00 (19.08%) 0.00918 (19.63%) 1162 (12.32%)
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Figure 5. Stress-strain curves of unconfined stone samples: (a) undamaged, or after fire exposure with
(b) slow air-cooling or (c) quick water-cooling.

Regarding the type of failure, some examples corresponding to the three series tested are shown
in Figure 6. The rock exhibited a brittle fracture, with the specimen cracking in the direction of the load
application, regardless of the heat treatment and cooling system used. Exposure to real fire produced
a change in the color of the stone material, which darkened and acquired brown and reddish tones.

Figure 6. Examples of failure of unconfined stone samples: (a) undamaged, or after fire exposure with
(b) slow air-cooling or (c) quick water-cooling.

3.2. FRP Confined Samples

The results obtained in the six series of CFRP and GFRP confined stone samples are reported in
Table 4, which includes the ultimate compressive strength, ultimate axial strain and the ratios fmc/ fmo

and εmc/εmo. These ratios are given in order to evaluate the efficiency of the retrofitting system
used. Table 4 also includes the modulus of elasticity of the FRP confined specimens, calculated as
the average slope of the straight-line portion on the initial branch of the bilinear stress-strain curve. For
the comparison of this modulus with that of unconfined samples, the Emc/Emo ratio is also provided.
The ultimate transverse strain εmc,t was obtained from the average data reported by the pair of strain
gauges attached to each specimen. This value allows the calculation of the FRP strain efficiency factor,
kε= εmc,t/εfu, where εfu represents the ultimate strain of the FRP sheet, obtained experimentally in
direct tensile tests with plane laminates samples and included in Table 1. This coefficient takes into
account the fact that the εfu strain is never reached in the FRP wrappings, as is reported in some detail
in most of the published works and available confinement models. This premature failure of the FRP
jacketing is mainly attributed to two reasons: (1) the wrapping is subjected to a triaxial stress state
that is not present in plane FRP laminates, tested in uniaxial tensile loading; (2) the microcracking of
the substrate generates small local discontinuities that may cause minor stress concentrations that may
lead to premature failure of the FRP jacket.
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Table 4. Fiber reinforced polymer (FRP) confined samples: experimental results (coefficient of variation,
in brackets).

Set Label f mc
(MPa) f mc/f mo εmc εmc/εmo

Emc
(MPa) Emc/Emo εmc,t εfu kε

02 C.N.XX 54.70
(5.4%) 2.74 0.03508

(15.4%) 16.55 12236
(17.3%) 1.03 a 0.0116

(6.0%)
a

03 G.N.XX 49.47
(9.2%) 2.47 0.04086

(23.7%) 19.27 10102
(8.7%) 0.85 0.01489

(10.1%)
0.0221
(5.2%) 0.67

05 C.FD.XX 52.23
(10.6%) 7.46 0.03642

(9.8%) 4.11 2592
(17.6%) 2.13 0.01122

(8.9%)
0.0116
(6.0%) 0.97

06 G.FD.XX 49.68
(8.5%) 7.10 0.04216

(12.6%) 4.76 2384
(4.3%) 1.96 0.01541

(12.6%)
0.0221
(5.2%) 0.70

08 C.FW.XX 52.40
(1.1%) 8.73 0.03627

(9.0%) 3.95 2545
(3.3%) 2.19 0.00995

(11.70%)
0.0116
(6.0%) 0.86

09 G.FW.XX 49.84
(7.4%) 8.31 0.03910

(7.1%) 4.26 2470
(8.9%) 2.13 0.01029

(19.16%)
0.0221
(5.2%) 0.47

a No data available in this set.

Figure 7 shows the stress-strain curves of the six series of stone samples confined with FRP.
The graphs also include in a red dashed line the curves for the equivalent series with unconfined
specimens, in order to facilitate the interpretation of the results. In case of undamaged stone specimens,
shown in Figure 7a,d, the graphs show the characteristic bilinear response of the FRP confined stone
(or concrete) elements that has been reported in most of the published research. In the first phase of
the test, the behavior of the reinforced specimen is similar to that of the unconfined stone, since at
reduced stress levels, the lateral expansion of the core is negligible, and the effect of the confinement
remains practically inactivated. Actually, the slope of the initial branch approximately coincides
with the modulus of elasticity of the undamaged stone. This initial branch extends now beyond
the ultimate compressive strength of the unconfined stone (about 30 to 35 MPa), as has been observed
in other published research with stone materials [18,21,23]. From this point, core cracking occurs,
and transverse expansion of the rock becomes much more pronounced; this deformation is limited
by the effect of the jacketing, which is rapidly activated. Finally, the curve is stabilized in a second
branch, approximately straight and flatter, until the specimen fails, with notable increases in strength
and ultimate strain with respect to the unconfined stone material. As can be seen, a slightly higher
ultimate strength is obtained in case of CFRP confinement (54.70 MPa) than in GFRP (49.47 MPa),
while the ultimate strain is somewhat greater in the latter case. These very small differences are due
to the weight of the fabrics used (300 g/m2 in case of carbon fiber fabrics and 900 g/m2 in case of
glass fabrics, as specified in Table 1). In this way, the smaller mechanical capacity of the GFRP is
compensated by its higher fiber content. In any case, the increases in strength (with fmc/ fmo ratios
between 2.47 and 2.74) and, above all, in ultimate strain (which increases almost 20 times with GFRP
jackets), are very remarkable.
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Figure 7. Stress-strain curves of FRP confined stone samples: CFRP, (a) undamaged, or after fire
exposure with (b) slow air-cooling or (c) quick water-cooling; GFRP, (d) undamaged, or after fire
exposure with (e) slow air-cooling or (f) quick water-cooling.

With respect to the series subjected to the action of fire, Figure 7b,c,e,f, it can be seen how
the stress-strain curves exhibit the bilinear behavior described above, although the transition between
the two branches occurs smoothly and a point as clearly marked as in case of undamaged series is not
detected. This behavior has been reported in previous studies with concrete samples [25,26]. In terms
of stress and strain at failure, it can be seen that the results are very similar to those of the equivalent
series without heat treatment, with differences below 5% in all cases. Therefore, it can be concluded
that the behavior of the confined specimen seems to depend basically on the properties of the FRP
wrapping and not on the degree of damage that the stone core may have suffered. In relative terms,
comparing the failures with those of the equivalent unconfined series, it can be seen that the ratio
fmc/ fmo increases in the quick cooled samples, the most damaged ones, while the ratio εmc/εmo results
in the same order, regardless of the cooling system.

The great difference that has been observed between the different series tested has to do with
the modulus of elasticity of the confined specimens. In the case of the undamaged stone, the slope
of the initial branch of the bilinear diagram approximately coincides with that of the unconfined
stone. This would mean that the jacket remains in a passive state at reduced levels of stress and
that the material basically behaves as if it was not confined. However, in the series subjected to real
fire, a clear improvement in the modulus of elasticity of the rock is observed from the very moment
the specimen is loaded. In general terms, the modulus of elasticity of confined damaged samples is
doubled with respect to the unconfined damaged ones, as the ratio Emc/Emo show, and no significant
differences being observed in relation to the cooling method used.

From the point of view of failure modes, Figure 8 shows some examples of the different series
tested. In general, there are no substantial differences between undamaged stone or those subjected to
the action of fire. Failure is determined by the tensile rupture of the FRP wrapping, producing a brittle
and explosive rupture, more violent in case of CFRP confinement. FRP sheet presents break lines
which follow the direction perpendicular to the fibers and, although they are usually concentrated in
the midheight of the specimen, in some cases they extend to the ends and the jacket suffers a complete
breakage. The stone shows a strong degradation, cracking in approximately conical shape at both ends
of the specimen, while the rest of the core appears completely disintegrated. In most cases, further
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degradation is observed with CFRP confinement, while the samples remain somewhat more intact with
the GFRP wrappings. A thin layer of stone material can always be seen adhering perfectly to the inner
side of the FRP sheet, which proves the high adhesion capacity of the epoxy resin. On the other hand,
it is important to note that in no case did the collapse occur in the area of the fabric overlap, which
may prove that the length of the overlap adopted (25% of the perimeter of the specimen, as described
previously) was sufficient in all the samples tested. Finally, it should be note that, despite their sudden
and explosive nature, breakages are generally predictable. In the final stages of the test, different noises
can be heard as a consequence of the cracking of the stone core or the occasional breakage of any of
the FRP fibers. Furthermore, in case of GFRP jackets (has not been observed with CFRP wrapping),
some white patches appear at about 70–80% of the ultimate load. These patches are attributed to
a plastic flow of the resin before the FRP failure and have also been observed in other previous studies
with both stone and concrete specimens.

Figure 8. Examples of failure of FRP confined stone samples: CFRP, (a) undamaged, or after fire
exposure with (b) slow air-cooling or (c) quick water-cooling; GFRP, (d) undamaged, or after fire
exposure with (e) slow air-cooling or (f) quick water-cooling.

3.3. Comparison with Design Guidelines

The principal guidelines for the design and construction of FRP systems for strengthening existing
structures are, at present, the North American ACI 440.2R-17 [32], the British TR-55 [33], the Italian
CNR-DT 200 R1/2013 [34] and the FIB Bulletin No. 14 [35]. These standards have been developed almost
exclusively for the reinforcement of concrete structures, and only the Italian guide includes specific
considerations for masonry and stone elements. In this section, the results obtained experimentally
will be compared with the predictions of the confinement model of CNR-DT 200 R1/2013, in order to
be able to assess its level of accuracy.

The compressive strength of confined stone with FRP jacketing ( fmc) can be obtained from that of
the unconfined stone ( fmo), using Equation (1):

fmc= f mo

[
1 + k′

(
fl,eff

fmo

)α1
]

(1)
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where fl,eff represents the effective confinement pressure; α1 is a coefficient equal to 0.5, if no experimental
data are available for its calibration; k′ is a non-dimensional coefficient that can be calculated with
Equation (2):

k′ = α2

( gm

1000

)α3
(2)

where gm is the stone mass-density (kg/m3), and α2 and α3 are coefficients equal to 1, if further
experimental data is not available.

The effective confinement pressure is a function of cross-sectional shape an also on the FRP
arrangement; it should be calculated with Equation (3):

fl,eff= keff fl (3)

where keff is a coefficient of efficiency equal to 1 for the specimens such as the ones that have been
used in these tests (cylindrical stone specimens with FRP continuous wrapping), and fl is the lateral
confining pressure, which may be obtained via equilibrium with Equation (4):

fl =
2 tf Ef εf,red

D
(4)

where tf is the FRP thickness; Ef is the modulus of elasticity of the FRP; D is the diameter of the cylindrical
specimen; εf,red represents the reduced value of the FRP strain measured at collapse, to be calculated
with Equation (5):

εf,red= min
{
ηaεfk

γf
; 0.004

}
(5)

where ηa is the environmental conversion factor (for indoor elements, this coefficient can be taken
as 0.95 or 0.75, for CFRP or GFRP, respectively); εfk is the ultimate strain of FRP, obtained in direct
tensile tests with plane laminates; γf is an additional partial factor equal to 1.10 that the guide sets
for the confinement model; the limited strain 0.004 is a conventional value adopted by the standard,
in order to avoid an excessive damage in the confined core which could compromise the structural
stability, especially under out-of-plane loads.

Table 5 shows the results obtained experimentally for the different series tested, together with
the respective predictions of the confinement model adopted in CNR-DT 200 R1/2013 [34]. The values
of coefficients α1, α2 and α3 specified in the standard have been maintained in the calculations. For
the FRP data (tf, Ef and εfk), the experimental results obtained in tensile tests are adopted (Table 1).
Regarding εf,red, the 0.004 limitation established in Equation (5) has not been considered, since it
constitutes a conventional strain limit defined by the standard for the design of the reinforcement.
Finally, it should be noted that, when considering the values indicated above, the ratio ηa/γf is equal
to 0.86 (CFRP) and 0.68 (GFRP). These values represent the FRP strain efficiency factor (kε), which has
been described in previous sections. It can be seen (Table 4) how the results determined experimentally
offer a good level of approach in series 03, 06, and 08, although in series 05 the value of kε is 13% higher,
and, in series, 09 it is 31% lower. In any case, in the predictions reported in Table 5, the coefficients
proposed by the standard have been used.
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Table 5. Experimental results versus theoretical CNR-DT 200 R1/2013 prediction.

Set Label
Experimental Prediction

fexp
mc /f

theo
mc

f mc (MPa) f mc/f mo f mc (MPa) f mc/f mo

02 C.N.XX 54.70 2.74 51.95 2.60 1.05
03 G.N.XX 49.47 2.47 50.09 2.51 0.98

05 C.FD.XX 52.23 7.46 25.75 3.68 2.03
06 G.FD.XX 49.68 7.10 24.95 3.57 1.99

08 C.FW.XX 52.40 8.73 23.73 3.95 2.21
09 G.FW.XX 49.84 8.31 22.65 3.78 2.20

It is clear that the confinement model of CNR-DT 200 R1/2013 provides a good approximation for
undamaged stone series, i.e., the stone samples that were not exposed to fire. The differences from
experimental results are less than 5% and with a very low dispersion index, as can be clearly seen in
the comparative graph in Figure 9. Nevertheless, in case of the series exposed to high temperature,
significant deviations and higher dispersions have been obtained. In these series, the standard provides
very conservative results, about half of the experimental results, and it can be seen how the differences
increase in the series with quick cooling, which are the most damaged. Therefore, in a first analysis, it
can be concluded that for a material so seriously affected by fire, the confinement model of the Italian
standard does not match the experimental results, although this discrepancy remains on the safety side.

Figure 9. Comparison of the strengthening ratios fmc/ fmo obtained experimentally and predicted by
the confinement model adopted in the Italian guideline for masonry or stone FRP wrapping.

The prediction of the standard of the strengthening ratio of Table 5 can be easily obtained with
Equation (1), which can be rewritten as:

fmc

fmo
=

[
1 + k′

(
fl,eff

fmo

)α1
]

(6)

The parameters k′ and α1 presented almost a constant value in the specimens tested in this
research. Hence, the reinforcement ratio depended on the strength of the base material, which in
this case was lower after fire exposure. If similar confinement is considered, weaker materials will
present higher strength gains. However, the effective confinement pressure is limited in the code
by the reduced strain value in Equation (5). This limitation is the minimum value of two possible
situations: first, the failure of the FRP (considering the efficiency factor) and second, a maximum limit



Polymers 2020, 12, 2367 15 of 17

to control the damage in the base material. This limitation intends to avoid an excessive damage
in the support, especially under transverse forces, which could compromise the lateral stability of
the structure. The experimental results and predictions in Table 5 showed that, as the material was
weakened, the expected strength gain prescribed in the Italian code tended to a value of 4 times. This
value will correspond to a situation of perfect confinement in which the stiffness of the confinement is
much higher than that of the reinforced material. For example, in a triaxial stress state, and considering
the Drucker Prager yield criterion, if a confinement pressure is applied in order to totally prevent
lateral strains, the longitudinal strength will be four times the unconfined strength of the material.
The samples tested in this work presented strength increases up to 8.7 times the unreinforced material’s
strength. Therefore, despite the FRP gave additional strength, the heated samples were expected to
suffer high degradation of the core, as shown in Figure 8, which is actually what the standard intends
to avoid.

4. Conclusions

Finally, the main conclusions derived from this research are summarized as follows:

• The action of fire on stone materials can seriously affect their mechanical properties. In this work,
samples of calcarenite exposed to real fire with different cooling solutions (slow and quick, by
spraying with cold water) have been studied, in order to evaluate the influence of the extinguishing
method in case of a possible fire in a building. Compared to the properties of the undamaged
stone, the results show large decreases in compressive strength (65% and 70%, with slow and
quick cooling, respectively). Regarding the modulus of elasticity, very significant reductions were
obtained (over 90%), regardless the cooling method used.

• The confinement of undamaged stone samples with FRP jacketing provides significant increases in
strength (about 2.5 to 2.75 times, with GFRP and CFRP, respectively) and especially in the ultimate
strain (which increases almost 20 times with glass fiber wrappings). With respect to the samples
exposed to real fire, a very similar behavior is observed after retrofitting, regardless of the heat
treatment and the cooling method used. In general, the response of the confined specimens
depends mainly on the properties of the FRP sheet and not on the degree of damage that the stone
core may have suffered.

• The experimental results have been compared with the predictions of the confinement model
adopted in the Italian standard CNR-DT 200 R1/2013, as it is the only one of the available design
guides that includes specific considerations for masonry and stone elements. This model provides
an excellent approach for undamaged stone samples. However, in the series exposed to the action
of fire, the values are very conservative, about half of the experimental results, and the differences
increase in case of samples cooled quickly, which are more damaged. Hence, the confinement
model of the Italian guideline shows notable deviations when faced with such a damaged material,
although it may still be on the safety side.
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