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Abstract: The Internet of Things (IoT) is a recent evolutionary technology that has been the primary
focus of researchers for the last two decades. In the IoT, an enormous number of objects are connected
together using diverse communications protocols. As a result of this massive object connectivity, a
search for the exact service from an object is difficult, and hence the issue of scalability arises. In
order to resolve this issue, the idea of integrating the social networking concept into the IoT, generally
referred as the Social Internet of Things (SIoT) was introduced. The SIoT is gaining popularity and
attracting the attention of the research community due to its flexible and spacious nature. In the SIoT,
objects have the ability to find a desired service in a distributed manner by using their neighbors.
Although the SIoT technique has been proven to be efficient, heterogeneous devices are growing
so exponentially that problems can exist in the search for the right object or service from a huge
number of devices. In order to better analyze the performance of services in an SIoT domain, there
is a need to impose a certain set of rules on these objects. Our novel contribution in this study is
to address the link selection problem in the SIoT by proposing an algorithm that follows the key
properties of navigability in small-world networks, such as clustering coefficients, path lengths, and
giant components. Our algorithm empowers object navigability in the SIoT by restricting the number
of connections for objects, eliminating old links or having fewer connections. We performed an
extensive series of experiments by using real network data sets from social networking sites like
Brightkite and Facebook. The expected results demonstrate that our algorithm is efficient, especially
in terms of reducing path length and increasing the average clustering coefficient. Finally, it reflects
overall results in terms of achieving easier network navigation. Our algorithm can easily be applied
to a single node or even an entire network.

Keywords: link selection; Internet of Things; Social Internet of Things; network navigability;
small world

1. Introduction

The Internet of Things (IoT) is a technology that connects a huge number of homogeneous and
heterogeneous objects. These objects have the ability to communicate and to provide a number
of services. These objects are also known as smart objects [1,2], as they continuously generate
information about the physical world. Additionally, they could be anything: a small sensor or a general
multipurpose computer. The information received from smart objects is accessed through several
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platforms and standard web servers. These web servers offer an application programming interface
(API) for the data retrieved from actuators and sensors [1].

Consequently, by using IoT-based technologies it is possible to provide various services to the
connected end-users in many fields, such as city management, home management, environmental
monitoring, or industrial monitoring [3]. Due to technology improvements, attached devices are
getting smarter. According to a recent survey, the number of devices connected to the internet will
exceed 30 billion by the year 2020 [4,5]. Therefore, searching for a service in IoT devices appears to be a
challenge [1]. Since a device can have numerous connections, it therefore requires a large search space
in order to find something in the entire network [5]. According to a study by Nitti et al. [1], after 2015
the number of radio frequency ID (RFID) devices will reach hundreds of billions, and hence search
results will increase network traffic. As search engines receive a number of queries simultaneously, it
is very difficult to manage and handle them efficiently by using currently available platforms. From
this perspective, there are several algorithms proposed for real-time systems [6,7]. One of the common
features of these approaches is to focus on centralized systems, and hence they cannot properly scale
up to the huge number of devices or receive several queries. In order to address and handle the
scalability issue of centralized systems, a new paradigm was introduced, called the Social Internet of
Things (SIoT) [8]. The SIoT is the addition of social networking to the IoT. Moreover, social networking
is limited not only to online social networking websites like Facebook and Twitter, but it can also
be applied to the natural sciences. The communications among these objects is improved by using
smart objects, especially when they are connected to others. These smart objects have the ability to
communicate directly or indirectly by utilizing their neighbors. One of the key features of the SIoT
is that every object can look for a desired service by using neighborhood relations, such as querying
neighbors or neighbors of neighbors, in a distributed manner. These objects directly communicate
with other objects, as demonstrated in the above scenario. These friendship links are established by
using a distributed approach. A friend request is sent to all nodes in a network without connecting to
a centralized search engine. Usually, in SIoT-based networks, every node is an object and is capable
of establishing social relations with others in an autonomous way according to the rules set by the
owner [1]. In the SIoT, objects become socially connected and smart [9]. Accordingly, they can provide
several benefits: (i) they interact with other objects independently with respect to their creator or
owner [9]; (ii) they have the ability to advertise their presence in the network, and this later results in
providing a number of services; and (iii) these objects are mobile, and hence can move easily anywhere
in the network [10]. Thus, we conclude that billions of objects in the IoT have the ability to discover
and disseminate information and services in a trustworthy manner [9]. Additionally, these objects have
the ability to collaborate with other objects in order to achieve a common objective. The assumption
is that the network will be navigable and based on the principle stated by the famous sociologist
Milligram about his study of small-world problems [11]. The term ‘small world’ includes a short
chain in the existence of small chains among individuals in societies [12]. Starting from the Milligram
experiment, Kleinberg concluded that there are a few structural clues that can help people to find a
short path efficiently, even without global knowledge of the network [13]. Each object can store and
manage the information related to friends, implement search functions, and eventually employ some
additional features, such as trustworthiness, that are useful in evaluating the reliability of a friend [14].
In a network, various connections affects the consumption of memory and computational power. In
addition, a service search depends upon a number of links between objects.

The motivation of our study is to find the desired service for objects in the IoT. In IoT, objects
usually reach out to neighbor objects in a decentralized manner to look up a service. The search
procedure goes through friends and friends of friends in a distributed manner. It is almost impossible
to make all objects into friends, because an object needs to store and manage information about its
neighborhood. We already know that IoT devices have limited memory and computational capabilities,
so it is difficult to store information about a number of attached devices. In order to provide a service
to these devices, we need to carefully think about the number of devices attached to a device, which
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should be chosen carefully and should be minimal. It has already been discussed in the literature that
the selection of neighbors for any device should bring reachability to other devices. The selection of
friends in the IoT was discussed [1,15]. By taking care of network navigability, this study analyzes a
few strategies to be implemented by each node when the node wishes to add new nodes. Our proposed
algorithm addresses some limitations in existing strategies. The major contributions of our study are
as follows.

(1) We address the problem of link selection by restricting the number of connections in a single
node by using a threshold, ‘r’, in order to increase the network navigability.

(2) We analyze the behavior of existing strategies and the routing performance of objects by
exploiting local information about links, referred to as degrees. In this way, each node is not obliged to
have the local network topology, i.e., reducing routing complexity. Then, we discovered that if we try
to minimize local clustering in the network, it will be beneficial in the achievement of best results in
terms of getting a small path length. The identified number of connections (hubs) is the motivation
for this discovery. Accordingly, we propose an advanced algorithm having a threshold value, and
can be adjusted dynamically on the basis of the number of hubs in a network. In this way, the degree
distribution is closer to the power law, and we are able to guarantee local network navigability.

(3) In existing studies, the authors focused on preferential attachment described by Barabasi–Albert
(BA) model [16]. However, this model generates smaller clustering coefficient. Hence, in our study, we
have used a modified version of the HK model known as power law [17] The power law supports an
extra step called triadic formation, which results in the achievement of larger clustering coefficient,
and is later helpful in getting shorten paths between nodes in a network. Finally, it reflects the overall
network, resulting in attaining of higher network navigability.

(4) We propose a link selection algorithm for the selection of appropriate links in a network. Our
algorithm is completely based on local network properties of small-world networks, such as local
clustering and neighborhood degrees. Our algorithm is used to rank the nodes in decreasing order
and to choose the ones that maximize the chosen algorithm. Its performance was analyzed in terms of
the giant component, the average path length, and the average clustering coefficient.

This paper is organized as follows. In Section 2, we present a review of service searches in the IoT
and the SIoT, we introduce a reference scenario for distributed search, and discuss current problems.
The current state of the art in network navigability and small-world networks is discussed in Section 3.
Section 4 describes the selection of network links from our proposed work. Section 5 describes an
experimental evaluation of our study, and Section 6 concludes the study with final remarks and
future work.

2. Background and Related Work

2.1. The SIoT and Service Search in the IoT

The SIoT can be described in terms of the IoT [8]. In the IoT, independent objects connect to each
other by using certain links. The connected objects may be anything, such as a computer or a user.
In the past, cloud computing was used to provide services to a number of users. The term ‘cloud’
computing refers to access to the computing resources across a network [18]. A social cloud is defined
as a resource- and service-sharing framework utilizing relationships established between the members
of a social network. These resources are not limited to networks, and include storage, servers, and
services. Cloud computing and social networking have intermingled in a variety of ways. One of
the advantages of the social cloud is scalability; typically, social clouds provide low-level abstraction
of computation or storage [18]. The benefit from its use is optional, as users may or may not wish
to share resources. Chard et al. designed a prototype of the social cloud [18], and their prototype is
based on a credit model. The credit model is used to regulate and exchange by preventing freeloading.
Their model is purely based on economic exchange and emphasizes user choice. Hence, their model
only fits from the perspective of selling resources using a social cloud, which is not a key aspect of
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the social cloud [19]. So, Chard [20] presented and deployed a method for Facebook, using a social
storage cloud. The storage cloud supports storage trading by using two protocols. The integrated
storage of the Facebook application allows users to discover and trade the storage contributed by their
friends, and takes advantage of pre-existing trust-based relationships. In order to handle trust relations,
they developed a credit-based trading approach to discourage freeloading. Their proposed model is
similar to the self-organization cloud. However, if the users in that organization are anonymous, and
hence cannot account for their actions, then accountability can be established by using existing friend
relations [21]. Hence, the social cloud is sometimes not an effective solution for service discovery, due
to connection dependency, loss of control, slow connections, etc. Thus, finding a service for objects and
making relations turns to other solutions, such as machine-to-machine (M2M) communications.

M2M refers to direct communications between devices using any communications channel,
either wireless or wired. The Example applications are smart grids or smart meters presented by
Tsiropoulou [22]. In these applications, objects usually make a point-to-point (P2P) connection for
communication. One of the benefits of M2M communication is to provide good connectivity between
large number of low-cost devices with the least amount of human intervention [22]. According to a
recent survey, more than 100 billion IoT devices are connected with each other worldwide. By 2025,
this number will increase (i.e., an addition of more than US$11 trillion [23]). Therefore, owing to
this huge number of connected devices, several issues arise, such as energy efficiency and wireless
access congestion [22]. In order to solve these problems in parallel, and improve energy efficiency,
numerous joint clustering schemes have been proposed. These methods are mainly based on resource
management and the interconnection of devices [23], or simply known as communication of interest
(CoI). According to a recent study [22], numerous M2M methods have been proposed in the past
and are based on different criteria, such as M2M achievable signal-to-interference-plus-noise ratio
(SINR). There are a few studies in which data priority was proposed [22]. Data priority is the flow
of data from a specific M2M device. The priority is set based on the transmitted and received data.
The collected data have a higher priority than received data. It has been observed in many cases that
joint consideration of cluster formation and power management demonstrates better results [14]. The
notion of communication interest among users is also helpful in creating homogeneous coalitions and
was discussed by Tsiropoulou et al. [22].

In that study, they discussed a coalition formation framework that is based on the problem of energy,
on interests, and that can be used for resource distribution among IoT applications. They assigned
a holistic, utility-based function to a number of attached IoT devices. This function appropriately
represents the degree of satisfaction with respect to QoS. Their framework is divided into two stages.
In the first stage, a time-based slot is assigned and a coalition head is determined [14]. In the second
stage, determining QoS prerequisites of M2M devices is performed with a prior holistic utility function.
The holistic function enables this framework to be used within different IoT applications due to
its generic form. The framework is energy-efficient and can be used for the coordination of many
devices. However, there is no security nor privacy-based criteria discussed by Tsiropoulou [22]. In [23],
Tsiropoulou and colleagues suggested a low complexity coalition formation mechanism among IoT
devices based on the Chinese Restaurant Process (CRP). The devices in the CRP can harvest energy
from RF signals and based on wireless powered communication (WPC) [23]. This approach enables the
use of clustering with the help of cluster heads and members. Their approach can harvest and stably
store energy via RF signals, by adopting the wireless rechargeable sensor network paradigm. There
is no real testbed used in this framework. Additionally, there is no discussion related to a security
paradigm [23]. The issues of a single point of failure in cluster heads and energy harvesting still persist
in cluster-based schemes. So, in order to handle these issues, considering the link selection algorithms
as a remedy in the social IoT is a good idea.

We refer readers to a recent study based on the social IoT [1]. In this model, the authors have
explained the basic architecture for the SIoT, as shown in Figure 1. The SIoT model is divided into
three major layers: base, component, and application [24]. The first layer is used to provide various
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services, such as databases, communications services, semantic engine services, etc. The middle layer
is the component layer and is used for satellite component implementation. The application layer acts
as an interface between humans and objects. Furthermore, it provides connection to the services. On
the left-hand side, the client-side module is divided into three layers: objects, object abstractions, and
a social agent. The objects layer comprises a collection of physical objects, and acts as an interface
between attached devices. The interface is controlled by using some common programming languages.
The upper layer is comprised of a number of agents, and the main function is to make new connections
between the attached objects and the social IoT. The service management layer provides two types
of service: the first one is an interface, and second monitors and controls the behavior of objects.
The benefit of this proposed model is to overcome various issues such as service composition and
service discovery.
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One of the benefits of the SIoT to allow objects to make new links in a network. It is mainly
based on the social relationships among the objects and has become popular in the last few years [1].
Our aim is to explore social networking and the discovery of numerous features, such as selection,
discovery, and composition. We already know that information is mostly provided to distributed
objects and networks are accessed from the physical world [25,26]. There are some real-world examples
in which various authors have explained the role of the service search in a network. For example,
studies deal with the representation of many objects by using a hierarchy of intermediator nodes [7,27].
These nodes are usually smaller and are responsible for the grouping of data in certain terrestrial
areas. A single mediator node is put at the top level, and will keep an aggregated view of the whole
network. These solutions are not good regarding scalability or in the case of a frequent change in data
rate [28]. They work well, especially with static metadata. an centralized prediction-based model was
proposed by Tie-li in [6], and calculations were performed based on the probability of a matching
query. The advantage of this method is that the search engine does not need to contact all of the
sensors available in a network. Hence, it results in the achievement of good scalability [29]. Due to
the increases in sizes of networks and in the number of objects in a social network, service selection
is going to be a difficult task, since an object is connected to millions of other objects in a network
in a heterogeneous manner [29]. Hence, the service search becomes difficult. The search service in
the SIoT is carried out using a two-step procedure: first, by performing some sensing procedure, and
second, to retrieve the data, which may reside on other devices. The requirements to search for an
object is divided into two main types: proximity and point [30]. In the first type, the search intention
of a particular device is performed (for example, monitoring the temperature at a fixed location).
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In proximity-based requirements, the search procedure is quite flexible, and can be carried out by
using certain variations. The advantage of this method is that a user may tolerate a small variation
while looking for a specific service.

In the IoT, usually objects look for services provided by other objects in a decentralized manner,
as shown in Figure 2. The search procedure is initiated by looking into the neighbor devices in an
intelligent manner. In this figure, the attached devices are represented in green; orange indicates a
service seeker and pink indicates a service provider. In this picture, we clearly observe a number of
devices attached between information seeker and service provider device. Additionally, we do not
know about the number of hops between the information seeker and information provider. Hence,
it is difficult to connect all devices between information seeker and information provider, and to
make several links between them. The question is why not all devices? The answer was addressed
in an earlier study [30], since a service seeker has the ability to save necessary information about its
neighbors. However, we already know that IoT devices have limited memory and computational
power; hence, it is technically impossible to save all information related to neighbors. Additionally,
achieving feature-based variations among neighbors is still difficult, because one device in an IoT
network holds data and information for several neighbors. Hence, the criteria should be based on the
selection of a minimal number of neighbors per device. If we choose the least number of devices for
one device, then it will definitely increase the reachability of a device to its nearest neighbors. So, in
this study, we explained how to achieve higher network navigability by restricting a node to the least
number of connections per device in a network.
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2.2. Distributed Search Referenced Scenario

There are different ways to search the contents of the internet, such as searching for a web
page or video. This procedure is very similar to the search for data from objects and sensors in the
IoT. In the near future, it is expected to be a major service area in the IoT. In the social IoT, objects
inherit some experiences of human behavior when they look for new services or friends [1]. In this
network, an owner usually sets certain rules and each object can create and manage several types of
relationships with itself and its neighbors [31]. Additionally, an object has the ability to ask friends
about providing services.

Figure 3 provides an exemplary scenario of a decentralized search and illustrates a search
mechanism. In this figure, links represent friendship ties and bold lines describe the best route. We
considered an IoT network as a visualized graph, and individual nodes are represented as friends.
The edges between friends are referred to as links. Some friends available in this network are higher
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in degree, and are represented at a bigger size (e.g., 8, 5, 2, and 13), while the rest of the friends are
smaller because they have a lower degree.
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In this figure, friends are numbered from 1 to 15. Suppose, a service seeker named friend 8 is
looking for a service, and it can be assumed that the required service resides on service provider 13 (the
service seeker, i.e., friend 8, does not know about the service provider), when an information seeker
requests a particular service, it does not need to send a request to a centralized search engine. Usually,
it uses its own first-hop friends and then looks for that service in a decentralized manner.

The search procedure for the information seeker is described as follows. In the first step, the
information seeker will search for a service among its neighborhood circle, such as friends 4, 5, and 11.
The property will guide the information seeker to select friend 5 as the next hop; it has a high degree of
centrality. So, friend 5 is selected because it represents a network hub (this friend is connected to many
friends). The ability for a friend to reach a network hub is assured by the existence of network clusters
where friends are highly interlinked. This feature is assured by using a high value for clustering. The
same procedure is repeated for the selection of the second hop, i.e., friends 2, 7, etc. Thus, friend 2
is selected. Finally, friend 2 checks its next-hop neighbors, i.e., friends 14 and 13. By repeating the
same procedure, finally, the information provider is selected. Hence, the search procedure is over and
a permanent link is created between information seeker and information provider, via the friendship
circle, i.e., 8, 5, 2, and 13.

In this section, our aim is to evaluate the effect of the current distributed search procedure in the
SIoT. In the next few paragraphs, we highlight and explain the importance of network navigability
with the help of real examples and a few studies in detail.

3. Network Navigability in Small-World Networks

Network navigability is not new; it has been widely studied in the past, especially in small-world
networks [32] proposed by Kleinberg et al. [13]. A small-world network is navigable if there exists
some short route to connect all pairs of nodes in the network. Kleinberg et al. presented the concept of
an infinite family of small-world networks that generalizes the Watts and Strogatz model [32]. The
former demonstrated that decentralized search algorithms are helpful in finding short paths with a
high probability. Usually, nodes in a network have the ability to make new connections by using their
neighbors. One of the advantages of network navigability is global knowledge of the network, in
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which each node has full information about network connections [33]. Another condition for network
navigability is the existence of a giant component in which a lot of nodes are connected.

Consider a network where each node has complete information about global network connectivity.
The distance between any pair of nodes should not exceed log2 (N), where N is the number of nodes.
In this network, a search of short communication paths is only a matter of distributed computation.
Hence, this solution is not practised as these should be applicable to a centralized engine. It might
be possible for a friend node to handle a request from neighbors by using local network navigability,
in which nodes need to communicate with each other by an exchange of information. Hence, the
problem of global network navigability turns into local network navigability. Once, studying Travers
and Milgram’s [34] and Kleinberg’s [13] experiments, we observed that both of them have the same
structure. These experiments are helpful for many people who intend to find the shortest paths in
a network, even without the global knowledge of the entire network. We then concluded from the
above studies that properties of social networks make the distributed search better. In the next few
paragraphs, we will discuss some new heuristics for attaining high network navigability.

3.1. Discussion of the Current State of the Art in Network Navigability

The objective of this study is to restrict the number of friends currently accessed by a network,
and to try to increase network navigability. Our intent is to increase reachability and to make shorter
links. Instead of using and traversing longer paths, shorter paths will reduce computer processing,
and make a search process faster. Additionally, the available friendship circle enhances the rise of
network navigability, and this will provide global information about the entire network, in which each
node uses only local information for access to services. The key properties of an object’s navigation in
a small-world network are as follows.

3.1.1. Average Degree

The degree of a network is represented by measuring the number of friends for a node. The
average degree is measured by taking the ratio for the number of degrees of each node to the total
number of nodes in network. It is observed that average degree is increased by growing the number of
relations inside of the nodes.

3.1.2. Average Clustering Coefficient

This was introduced by Watts and Strogatz [32], and is a measure of the closeness of nodes in
forming a clique. It is calculated by each node in a network, and can range from 0 to 1. The clustering
coefficient for an undirected and a directed network differs, and is written separately, as shown below.

For an undirected network:
Cn =

2en

(kn(kn − 1))
(1)

For a directed network:
Cn =

en

(kn(kn − 1))
(2)

where kn represents the number of connections and en represents connected pairs between neighbors [35].
The average clustering coefficient for all nodes in a network is

C =
1
n

n∑
i=0

Ci (3)

In Equation (3), n represents the number of nodes and Ci represents local clustering. Additionally,
local clustering for each node is computed separately. The algorithm is considered efficient, and tries
to achieve higher values for clustering.
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3.1.3. Average Path Length

The path length is represented by calculating the shortest distance between any two nodes in a
network. An efficient algorithm always tries to find a low average path length.

3.1.4. Giant Component

Usually, a group of nodes or the percentage of numerous nodes connected directly or indirectly
in a graph, is called a giant component. The giant component will be increased by increasing the
number of links in a network. It results in high network navigability. It is observed in many cases that
if a network has a higher giant component, it definitely has higher network navigability. If the giant
component is 100%, this means that all nodes are reachable by all other nodes in the network.

The heuristics proposed in earlier research [5,15] are given below. These heuristics try to achieve
some sort of tradeoff between several metrics discussed in the above section.

(a) Reject after Nmax: The objective of this strategy is to make static friends. A unique threshold,
Nmax, is assigned and the decision to accept or reject is purely based on Nmax.

(b) Maximize Neighborhood: If a new incoming request is made, and the node has already
reached Nmax, the node will immediately delete a friend with a minimum degree to make room for the
incoming request.

(c) Minimize Neighborhood: Once a threshold value is reached and an incoming request is made,
this strategy will find a node that has the maximum degree and will delete it immediately.

(d) Maximize clustering: Once Nmax is reached and a new incoming request is made, this strategy
will find a node with a minimum number of mutual friends and eliminates it.

(e) Minimize clustering: If a new request is made that reaches Nmax, this strategy selects a friend
that has the maximum number of mutual friends and later eliminates that friend.

We carefully performed an analysis by using five rules described in Arjunasamy et al. [5] and
Nitti et. al. in [15]. Maximum local clustering is achieved when strategy (d) is applied. However, it
suffers from a low percentage in the giant component. We already know that the presence of a low
giant component affects a service search such that search efficiency is reduced. Furthermore, it was
observed in many cases that it results in attaining a high clustering level.

These strategies still lack a few aspects, such as how to provide information to objects, and
how to build a reliable system. Hence, our proposed algorithm is helpful in reducing the number of
connections per node, in eliminating old mutual friends, and in making a new connection to a node
that has a high number of connections.

The proposed algorithm is discussed in the next section.

4. Selection of Network links

Our proposed algorithm addressed some limitations in current heuristics, and therefore we
suggest a new solution that works as a remedy. The explanation of our algorithm is given below.

Explanation

At the beginning of the Algorithm 1, the search for a friend is performed by looking into the
owner’s list, i.e., Node Nb is looking for service amongst its neighbors. During this lookup procedure,
the degree of each node is computed separately. We restricted r to a maximum number of neighbors
for each node, such as r = 5 in our list.
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Algorithm 1. Link Selection.

Input: Send a friend request
Output: Obtain Friendship circle “F”
Start ()

Step 1: Find a friend
If {P(k) of node Nb <= r}

{Decide mutual friends; M(x,y) of node Nb with minimum mutual friends}
{Remove node Nc from the list}
{Add node Nr to the list for hop12}

Else If {P(k) of node Nc = =1}
{Decide neighbor friends of Nb with minimum P(k)}
{Add node Nc to the list of Nb for hop12}

Step 2:
{Decide eldest friend from neighbors of node Nb with minimum P(k)}
{Remove node Np from the list}

Step 3:
{Decide eldest friend from neighbors of node; i.e. Nb as Np}
If {P(k) of node Np = =1}
{Search in first two-hop friends (Nhop12) of node Nb and P(k)< r;}
{Add node Np to the friend list of Nrhop12}

Step 4:
{Decide friend with least priority among all friends of node Nb}
{Eliminate node Nq from list}

End ( )

In Step 1, the search procedure for a new link is initiated, and the degree of each node is computed
until the friend count reaching r is finished. This is used to achieve the triadic closure. After that, if
the number of edges exceeds r, it simply refuses the incoming request; otherwise, the search in the
neighborhood for mutual friends continues. A minimum mutual friend node is selected by using
Equation (4):

M(x,y) =
∣∣∣N(X)

∣∣∣∣∣∣N(Y)
∣∣∣ (4)

After that, it simply removes Nr from the list. If the selected mutual friend Nc has a degree of zero, it
simply elimnates the old link and establishes a new link by using second-hop friends. In Step 2, the
search for the eldest friend is performed by looking into the first-hop neighbors; if successful, the eldest
friend will be eliminated. Our aim is to handle unexpected situations that arise, especially in the case of
a mobile device. Usually, mobile devices have a common mobility issue, since they are not fixed in one
place. So, our algorithm eliminates mobile mutual friends from the list and makes new connections.

This step is suitable for scale-free networks since we try to improve the object navigability in the
social network.

We will explain in the next few paragraphs how our proposed algorithm works with the help of
an example scenario.

Example Scenario

Let us consider a network of friends, N = {Na-Nq}, is connected to each other as described in
Figure 4. Suppose a service seeker, node Nr, is looking for a service and sends a friend request to node
Nb. The dotted line represents a friend request between node Nr and Nb, as shown in Figure 4.
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In order to accept the request, node Nb implements our algorithm. If the incoming request node,
Nr, is higher in degree, and node Nb has not reached r, then Nb finds a friend that has a minimum
number of mutual friends. This results in the selection of two nodes, such as Nc and Nq in the owner’s
list. Node Nr compares its own degree with nodes Nc and Nq. That results in the elimination of Nc

from the list, and in addition, creates a new node, Nr, on the owner’s list. If node Nc has a degree of
zero, node Nc will be suggested to one of the friends or the friend of a friend of node Nb, as a new link.
In this example, it has no effect, and hence, a friendship circle is established between nodes Nr and Nb.

In the second step; node Nb finds one of the oldest friends that has a minimum degree. This
results in the removal of the link between nodes Np and Nb. The objective in Step 3 is the search for
the eldest friend from among the neighbors. If a search of the first hop is unsuccessful, this process
will shift to the second hop. That results in making a new link between Np and Nr. In Step 4, node
Nb neighbors are selected based on certain priorities. These priorities are created by each node in the
network. This step is suitable for real-world scenarios. The priorities are purely based on the frequency
of communications and several security parameters, such as trustworthiness, etc. We already surveyed
these parameters in our earlier studies [14].

5. Experimental Evaluation

5.1. Experimental Parameters

In this paper, we want to study the impact our algorithm has on the objects’ navigability in the
network, in order to better understand the concept of object navigability in the SIoT. Initially, we
need basic information about the handling of a request for establishing new relations between objects.
Network information would be received based on profile, movement, and settings. Since the SIoT is
not completely deployed, most experiments are performed in an IoT environment by using several
tools; for instance, we used Network X in this study [36].

Work presented by Nitte et al. [1] relied on the scale-free Barabasi–Albert (BA) network model.
This model is mainly used for the generation of random scale-free networks and is based on preferential
attachment (PA) [6]. This network is initialized by using N nodes and m0 edges. The BA model has
two steps: the first is growth and the second is PA. Initially, the network grows from a few nodes, and
later, it adds a number of edges.
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In the PA step, a link is added to an old node that is in proportion to its connectivity. The
attachment probability for node w is described in Equation (5):

Pw =
Kw∑

v∈V Kv
(5)

Since the BA model generates a network with low clustering, we decided to use a modified version
named the Holme and Kim (HK) model [17]. This HK model is sometimes known as the power law
because it obeys the power law. The HK model works in two steps. In the first step, PA is performed,
and the second step is triadic formation. Triadic formation is performed by adding an edge between
nodes v and w that were added in the previous step for PA. Then, the model adds one more edge from
node v to a randomly chosen neighbor of node w. In this model, one incoming node is connected to the
maximum number of nodes in the network, and thus it has a greater probability of attaching incoming
nodes. The result of the HK model using 15k node edges, m = 5 (averaged over five runs) is described
in Table 1.

Table 1. Parameters of Barabasi–Albert, Brightkite, and Facebook.

Parameters HK Model Brightkite Facebook

Nodes 15,000 58,228 40,399
Edges 75,000 214,078 88,234

Average degree 9.99 7.35 43.69
Average clustering coefficient 0.03 0.1723 0.602

Average path length 3.781 0.247 3.686
Network diameter 5 14 8
Giant component 100% 92% 85%

In our study, besides one synthetic network, such as the HK model [17], we decided to use
and test our algorithm by using some real network data sets, such as Brightkite and Facebook [37].
The parameters we used in our experiments are listed in Table 1. We prefer the HK model due to the
performance and power-based settings and, secondly, it has the ability to run all nodes having a huge
number of connections, and is similar to those nodes that do not have any connections.

There are a few drawbacks that we examined in the current data set developed by Nitti et al.
in [1]. First, it is not publicly available, and second, it has a low clustering value. Third is the giant
component and average path length, with both parameters low at the local level. So, we decided to use
Facebook instead of using the SIoT. This is a good starting point for our work and experimentation.

Thanks to a high clustering coefficient and the scale-free degree distribution property, it makes it
possible to find the number of hubs in a network. The first step in this study is to calculate the degree
distribution for all data sets, such as Facebook, Brightkite, and the modified HK model. The degree
distribution is one of the primary properties of scale-free networks [16] and is calculated by using
Equation (6):

P(k) = CK−γ (6)

Figure 5 shows the degree distribution of the BA model by using a log scale in which the power–law
function is represented by using a straight red line. This figure indicates how the degrees of a node
are distributed. In the same way, we plotted the degree distribution for Brightkite and Facebook in
Figures 6 and 7.
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Figure 8 demonstrates the degree distribution comparison for the BA model and our modified
HK model. In this graph, cumulative degree distribution (CDF) is computed. We plotted both of these
functions on a log-x scale by using the Facebook data set. Our objective is to understand how well these
models fit into the central part of a distribution. We concluded that the behavior of the BA model is not
as good as our model, because our model values are about the median. On a log-log scale, we observed
that our model fits the tail of distribution reasonably well, compared to the current model. The graph
results demonstrate that our model is best suited to real data sets, such as Facebook and Brightkite.
Additionally, in Table 1, we see that the average path length of all three networks is even smaller than
the actual network, such as 3.69 [11]. So, plotting of the degree distribution proves it is a good point to
start our work and to carefully experiment with these networks by using our proposed algorithm.
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5.2. Experimental Results

This section demonstrates our experimental results. We computed these results in terms of local
clustering, average path length, clustering coefficient, and giant component. In order to find the
connected nodes in the network, first, we needed a standard slicing routine. Slicing is the process of
eliminating low-strength edges, sometimes known as weak ties. We performed network analysis based
on these slices. Usually, the slicing routine is important for networks, because if we keep all edges
(without slicing) we get a distorted view of our network; many algorithms do not discriminate edges
by weight. Additionally, if we do not keep the cut-off value in mind, we then get a few problems. If
the cut-off is too high, then the network falls apart into small disjointed fragments; if we keep it too
low, then the network becomes a hairball, and hence, we cannot analyze the structure of that network.

In order to avoid these situations, we chose a cut-off threshold, t = 1.0, 0.95, 0.9, 0.8, 0.7, and 0,
where t controls the density of the entire network. Each edge weight is compared to cut-off threshold t.
If edge weight is at or above t, the edge remains in that network; otherwise, it may be erased. Figure 9
shows the slicing routine of our proposed network model of 15k nodes and 75k edges. Due to the
huge number of nodes and edges, we cannot differentiate easily; hence, we decided to take a small
portion of nodes in a graph. In fact, the objective of this study to reduce the analysis complexity. The
experimental results demonstrate a deep understanding of the entire network. We completed a series
of tests by applying our algorithm, excluding Step 4. We generated a graph that is primarily based on
the parameters in Table 1:

• Suggest first hop.
• Suggest second hop.
• Select and eliminate an old mutual friend.
• Select and eliminate an old mutual friend and also suggest a new friend.
• Eliminate friends based on certain priorities.
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The obtained results are described in detail in the next few paragraphs.

5.2.1. Giant Component

Figure 10 represents the percentage of the giant component after applying different thresholds,
i.e., r = 10, 30, and 50. In fact, if we try to reduce the clustering value, we can easily get a large giant
component. The justification is that whenever a node having r edges gets a friend request from a node
(low connections), then it will simply accept it to the determinant of a node with a higher connection,
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and it has a high probability of remaining connected to the network. In this figure, we observe that
the probability of connected nodes increased by increasing the number of connections per node. The
vertical red line in this figure indicates a predicted critical value. We noticed that the giant component
gets larger when we use a high value for threshold t. Even in the first hop or second hop, it starts from
0 and will slightly increase up to 100%. For example, when we set threshold r at 10, we observed that it
slightly increases from fewer connections. At a certain level, it gets to 100%. Similarly, the highest
number for r improves the results, and hence achieves 100%.
Sensors 2019, 19, x FOR PEER REVIEW  16 of 20 

 

 

Figure 10. Giant component. 

5.2.2. Local Clustering Coefficient  

Figure 11 shows the result of the average local clustering coefficient. Generally, when the 
clustering value is 1, it denotes that each node is directly connected to every other node in that 
network. In this study, our aim is to restrict the number of connections per node, and thus, it results 
in a lower average clustering coefficient. The number of node connections makes it possible for a 
network to become a complete graph. There are some other factors, such as suggesting a friend and 
removal of an old friend instead of one, which are low in degree; the availability of a high number of 
connections affects the performance of the overall result in the graph. These results can be seen in 
Figure 11. In this figure, high clustering is due to the dynamic structure, because it can be applied to 
the first hop or second hop. Usually, average clustering is increased by increasing the number of 
connections per node. Afterward, it will suddenly decrease to a certain number of connections. The 
decrement value is in some ways negligible and admissible, since it is helpful in getting a higher 
giant component (as discussed in the above section). The obtaining of a higher clustering coefficient 
clearly indicates the effectiveness of our algorithm, and additionally proves that it is moving 
towards a clique. 

 
Figure 11. Average clustering coefficient. 

5.2.3. Average Path Length  

The average path length of our graph is shown in Figure 12. In this figure, we can clearly 
understand that it has a shorter path length and a high degree. This means that the number of hops 

Figure 10. Giant component.

5.2.2. Local Clustering Coefficient

Figure 11 shows the result of the average local clustering coefficient. Generally, when the clustering
value is 1, it denotes that each node is directly connected to every other node in that network. In this
study, our aim is to restrict the number of connections per node, and thus, it results in a lower average
clustering coefficient. The number of node connections makes it possible for a network to become a
complete graph. There are some other factors, such as suggesting a friend and removal of an old friend
instead of one, which are low in degree; the availability of a high number of connections affects the
performance of the overall result in the graph. These results can be seen in Figure 11. In this figure,
high clustering is due to the dynamic structure, because it can be applied to the first hop or second hop.
Usually, average clustering is increased by increasing the number of connections per node. Afterward,
it will suddenly decrease to a certain number of connections. The decrement value is in some ways
negligible and admissible, since it is helpful in getting a higher giant component (as discussed in the
above section). The obtaining of a higher clustering coefficient clearly indicates the effectiveness of our
algorithm, and additionally proves that it is moving towards a clique.
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5.2.3. Average Path Length

The average path length of our graph is shown in Figure 12. In this figure, we can clearly
understand that it has a shorter path length and a high degree. This means that the number of hops
between two nodes reduces slightly. The maximum path length of our graph is 3. We carefully
examined the current work and found that the maximum path length is from 4 to 4.5. The existence of
a shorter path in this graph proves the performance of our algorithm. The low average path length is
in fact due to the dynamic threshold adjustment and the ability of our algorithm to manage and create
long-distance relationships. Moreover, the search latency is decreased with a decrease in path length,
and hence our algorithm behaves efficiently compared to the earlier heuristics.
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After completing all experiments by using our algorithm, we can say that our proposed algorithm
is helpful in attaining high network navigability, and it later results in an increase in the giant component.
Our algorithm is suitable for first or second hops. Finally, applying our proposed algorithm to data
sets did not pull any parameters down.
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5.2.4. Execution Time

Figure 13 shows the overall execution time of our proposed algorithm. Usually, the execution
time totally depends upon the number of hubs, the number of receiving nodes, and the method that
is used for the representation of data in the network. In our case, linear dependence is determined
by the value of ‘r’. If the modified power law is strongly unbalanced, on average, it will take a few
steps for each search. The execution, in fact, depends upon the preferential attachment algorithm,
which requires O(N) iterations on average, and on the number of iterations selected, which is directly
proportional to the number of connections in r. The result reflects the fact that as the connections are
growing, the execution time increases. The number of connections grows over time, and it results in
the increase of execution time. We tested the algorithm only up to r = 10, 30, and 50. It should be noted
that the proposed algorithm is based on preferential attachment and triadic closure which are essential
parts of complex networks, thus can be applied in realistic IoT applications.
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6. Conclusion and Future Work

This paper presented the issue of link selection in the SIoT, where objects establish friendship
links with each other, thus creating a social network of objects. First, we analyzed network navigability
in social networks through example-based scenarios and simulation as this is important for service
discovery. Second, we proposed an advanced algorithm that has a threshold value and can be
adjusted dynamically on the basis of the number of hubs in a network. Our algorithm performs
service discovery, adding new links and removing old mutual friends in a decentralized manner. Once
discovery through one friend is finished, the search through a new friend in the second hop is performed.
This phenomenon helps one friend to connect with a high-degree friend, thus, results in an increase
in object navigability in the network. Our algorithm has a different impact on network structures by
utilizing small-world network properties, such as giant component, local clustering coefficient, and
path length. The experimental results prove that our algorithm performs well in terms of attaining
larger clustering, shorten path length and finally obtains a higher giant component. It should be noted
that the proposed algorithm is based on preferential attachment and triadic closure which are essential
parts of complex networks, thus, can be applied in realistic IoT applications. As future work, we plan
to focus on combining similarity features in the same scenario using trustworthiness.
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