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Abstract
Although psychiatric phenotypes are hypothesized to organize into a two-factor internalizing–externalizing structure,
few studies have evaluated the structure of psychopathology in older adults, nor explored whether genome-wide
polygenic scores (PGSs) are associated with psychopathology in a domain-specific manner. We used data from 6003
individuals of European ancestry from the Health and Retirement Study, a large population-based sample of older
adults in the United States. Confirmatory factor analyses were applied to validated measures of psychopathology and
PGSs were derived from well-powered genome-wide association studies (GWAS). Genomic SEM was implemented to
construct latent PGSs for internalizing, externalizing, and general psychopathology. Phenotypically, the data were best
characterized by a single general factor of psychopathology, a factor structure that was replicated across genders and
age groups. Although externalizing PGSs (cannabis use, antisocial behavior, alcohol dependence, attention deficit
hyperactivity disorder) were not associated with any phenotypes, PGSs for major depressive disorder, neuroticism, and
anxiety disorders were associated with both internalizing and externalizing phenotypes. Moreover, the variance
explained in the general factor of psychopathology increased by twofold (from 1% to 2%) using the latent
internalizing or latent one-factor PGSs, derived using weights from Genomic Structural Equation Modeling (SEM),
compared with any of the individual PGSs. Collectively, results suggest that genetic risk factors for and phenotypic
markers of psychiatric disorders are transdiagnostic in older adults of European ancestry. Alternative explanations are
discussed, including methodological limitations of GWAS and phenotypic measurement of psychiatric outcome in
large-scale population-based studies.

Introduction
Psychiatric disorders impact health, wealth, and well-

being across the life course1–3. In the United States,
common psychiatric disorders such as major depressive
disorder (MDD) are among the top 10 leading causes of
disability and injury4. Among older adults, psychiatric
disorders have pronounced effects on physical health and
mortality2,5. Moreover, the 12-month prevalence of hav-
ing any psychiatric disorder in older adulthood is sub-
stantial, with recent estimates of 11.5%6. As the number of

Americans older than 65 years is projected to double in
the coming decades7, more research is needed to under-
stand the presentation and etiology of psychiatric illness
in older adults.

Phenotypic structure of psychiatric disorders
Psychiatric disorders show marked comorbidity across

developmental stages8,9. A robust literature suggests that
this comorbidity may be explained by an overarching
phenotypic meta-structure that includes separate but
correlated internalizing (e.g., depression, anxiety) and
externalizing (e.g., substance use, attention deficit hyper-
activity disorder [ADHD]) factors10. These comorbidity
patterns align with phenotypic differences between
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internalizing disorders, characterized by elevations in
negative affect11, and externalizing disorders, character-
ized by behavioral disinhibition12. Alternatively, a single
factor (or a bifactor) model that explains shared variance
across all psychiatric disorders has also been sup-
ported10,13, and may emerge in developmental stages
where symptoms are less prevalent (e.g., early childhood,
older adulthood)14. Yet examinations of the meta-
structure of psychiatric comorbidity have focused pri-
marily on child and younger adult samples. The lack of
attention to older adults is a striking omission given the
still substantial and impairing rates of psychiatric dis-
orders in this population2,5,6. Moreover, given clear gen-
der (i.e., greater internalizing symptoms among women,
and greater externalizing symptoms among men) and age
(i.e., decreasing prevalence of psychiatric disorders across
both domains) differences in the prevalence of psychiatric
disorders6,15,16, more research is needed to determine how
the meta-structure of psychopathology varies across these
demographic groups in older adults.

Genetic architecture of psychiatric disorders
Genetic risk for psychiatric disorders may also align in a

two-factor meta-structure. Twin and family designs sug-
gest that additive genetic risk accounts for the two-factor
internalizing–externalizing meta-structure16,17, and data
from genome-wide association studies (GWAS) has been
leveraged to identify single-nucleotide polymorphisms
(SNPs) that are unique to internalizing or externalizing
disorders18. Yet, there is also evidence of shared genetic
risk across internalizing and externalizing domains14,19–21,
including data from a psychiatric cross-disorder GWAS
meta-analysis showing that genetic risk variants are
enriched for biological processes core to many psychiatric
conditions21.
As psychiatric disorders are highly polygenic (i.e.,

resulting from both common variants of small effect,
likely to impact many psychiatric disorders, and rare
variants of larger effect, possibly unique to certain phe-
notypes)22,23, polygenic score (PGS) estimation is one tool
that can be used to capture psychiatric polygenicity. A
PGS is constructed as sum score of risk alleles that an
individual has, weighted by the risk allele effect size from a
GWAS in an independent sample24. Although PGSs are
constructed for a specific phenotype (e.g., MDD), PGS
analyses have revealed widespread cross-phenotype cor-
relations25. For example, a phenome-wide analysis in
young adults indicated that a PGS of depressive symptoms
was associated with several phobias and generalized
anxiety disorder but not externalizing phenotypes,
whereas a PGS for smoking initiation was associated with
antisocial behavior but not internalizing phenotypes26.
For researchers studying the etiology of psychiatric
illnesses, such widespread associations present a

methodological challenge: which PGS best captures
genetic risk for a single psychiatric disorder? Given this
issue of overlapping genetic risk, quantitative approaches
to combining PGSs are needed. Recent methodological
innovations have enabled users to construct better-
performing PGSs by taking advantage of cross-trait cor-
relations27–29. However, such cross-trait “latent” PGSs
have only been applied to cohorts aggregated across age
groups21. In large, population-based samples of older
adults, the relative performance of individual PGSs and
latent PGSs for specific psychiatric outcomes and general
psychopathology is yet unknown.

Current study
We assessed the meta-structure of psychopathology in a

large population-based sample of 6003 older adults from
the Health and Retirement Study (HRS). We examined
whether two-factor phenotypic models fit the data better
than one-factor models and further probed the invariance
of these models across gender and age. Second, we
examined whether there was polygenic specificity in the
associations between PGSs for psychiatric (e.g., MDD,
ADHD) outcomes and behaviors indexing psychopathol-
ogy (e.g., cannabis use, antisocial behavior). Next, we
implemented Genomic SEM to derive latent PGSs based
on the genetic architecture of GWAS summary statistics
and present the first analyses of how these latent cross-
trait PGSs perform in a large population-based sample of
older adults. Based on research in younger samples, we
hypothesized that a two-factor model would fit the phe-
notypic data better than a one-factor model and that PGS-
phenotype associations would be hierarchically organized,
such that PGSs for internalizing disorders would be more
strongly associated with internalizing outcomes, and PGSs
for externalizing disorders would be more strongly asso-
ciated with externalizing outcomes.

Methods and materials
Sample
Data were drawn from the HRS, a nationally repre-

sentative longitudinal panel study of over 43,000 adults
over age 50 and their spouses30. Launched in 1992, the
HRS introduces a new cohort of participants every 6 years
and interviews ~20,000 participants every 2 years. Eligible
participants for the current study (N= 6003; 58.0%
female; mean age in years [SD]= 67.49 [8.14]) were of
genetically European ancestry (i.e., because PGSs were
constructed from European Ancestry GWAS) and parti-
cipated in the Leave-Behind Psychosocial Questionnaire31

in 2010 or 2012. Participants younger than 51 years were
excluded because they were not part of the original
sampling frame, as were participants who completed the
Leave-Behind Psychosocial Questionnaire in institutional
settings, and participants who were born before 1930 (i.e.,
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to address concerns for selective mortality32). Within the
analytic sample, 52% earned a high school diploma and
27.4% earned a four-year college degree or higher. Beyond
the exclusion criteria listed above, compared to the total
HRS, the analytic sample had a higher proportion of
women (χ²(1)= 11.085, p < 0.001), but did not differ on
years of schooling (t[38181]= 1.79, p > 0.05). Informed
consent was obtained for all participants, and study pro-
cedures were approved by the Institutional Review Board
at the University of Michigan. All HRS phenotypic data
and PGSs are publicly available at https://hrs.isr.umich.
edu/data-products. Quality-controlled genetic data are
available on dbGaP (https://www.ncbi.nlm.nih.gov/gap/).

Phenotypic measures
Although the HRS was not explicitly designed to study

psychiatric outcomes, several available measures capture
dimensional symptoms of psychopathology and related
traits. Measures were drawn from the Leave-Behind Psy-
chosocial Questionnaire, a self-reported questionnaire
administered to a random 50% of the core HRS partici-
pants at each biennial wave during face-to-face inter-
views31. A complete wave of data was constructed using
the 2010 and 2012 data collections. Depressive sympto-
matology and drinking frequency were taken from RAND
HRS 2010 and 2012 Fat Files33. All phenotypic data are
publicly available through the HRS website (http://
hrsonline.isr.umich.edu/).
Measures of internalizing psychopathology included

negative affect34, anxiety symptoms35, and depressive
symptoms36; externalizing psychopathology was captured
by impulsivity37, trait and state anger38, and the number
of drinks per day (Supplemental Table 1). Although some
of these measures (e.g., impulsivity) do not capture psy-
chopathology per se, the constructs are consistent with a
dimensional model of psychopathology (e.g., Hierarchical
Taxonomy of Psychopathology (HiTOP)) and the
Research Domain Criteria (RDoC) framework39,40. See
Supplemental Table 1 for details.

Genetic data and PGSs
A random subset of the ~26,000 total participants was

selected to participate in enhanced face-to-face interviews
and saliva specimen collection (for DNA) in 2006, 2008,
2010, and 2012. Genotyping was conducted by the Center
for Inherited Disease Research (CIDR) in 2011, 2012, and
2015. Genotype data on over 15,000 HRS participants was
obtained using the llumina HumanOmni2.5 BeadChips
(HumanOmni2.5-4v1, HumanOmni2.5-8v1, and Huma-
nOmni2.5-9v1.1), which measures ~2.4 million SNPs.
Individuals with missing call rates >2%, SNPs with call
rates <98%, HWE p value <0.0001, chromosomal
anomalies, and first-degree relatives in the HRS were
removed. The current paper uses data from unrelated

HRS participants of European genetic ancestry (n= 9991)
from the genetic data collection years of 2006, 2008, and
2010. Genetic ancestry was determined in a two-stage
PCA process wherein the final European American sam-
ple included all self-reported non-Hispanic whites that
had PC loadings within ±1 SD of the mean for eigenvec-
tors 1 and 2 in the PC analysis of all unrelated study
subjects. PCA was then used again within the European
American sample to estimate the top 10 “ancestry-spe-
cific” PCs (see Supplemental Methods for more detail).
PGSs of internalizing (neuroticism41, any anxiety dis-

order42, MDD43) and externalizing (alcohol dependence44,
ADHDH45, cannabis use46, and antisocial behavior47)
psychopathology were constructed using well-powered,
European ancestry GWAS summary statistics (Table 1). If
the original GWAS included the HRS, we obtained
summary statistics with the HRS sample removed (for
more detail, see https://hrs.isr.umich.edu/data-products/
genetic-data;48). Although GWAS summary statistics are
available for other psychiatric disorders (e.g., schizo-
phrenia, bipolar disorder), we did not construct these
PGSs because these phenotypes were not measured in the
HRS. A PGS for height was included as a negative con-
trol49. To construct PGSs, SNPs in the HRS genetic data
were matched to SNPs with reported results in each
GWAS (see Table 1 for the number of SNPs that con-
tributed to each PGS). As we only used genotyped SNPs
(i.e., no imputation) to construct PGSs, we did not trim
based on linkage disequilibrium, nor did we impose a
GWAS p value threshold/cutoff for included SNPs48. The
PGSs were calculated as weighted sums of the number of
phenotype-associated alleles (zero, one, or two) at each
SNP, multiplied by the effect size for that SNP estimated
from the GWAS meta-analysis. All SNPs were coded to be
associated with increasing disease risk. To simplify
interpretation, the PGSs were normalized within the
European ancestry sample. All analyses in which PGSs
were combined with phenotypes included the top 10
ancestry-specific genetic principal components as
covariates.

Genomic SEM
To complement our analyses using individual PGSs

within the HRS, we implemented Genomic Structural
Equation Model (SEM) to construct latent PGSs28.
Genomic SEM models the genetic covariance structure of
GWAS summary statistics and allows for model com-
parison of different confirmatory factor models (e.g., one
factor versus two factor). SNPs can be integrated into the
modeling framework to estimate new SNP effects on
cross-trait genetic liability, thus allowing for the genera-
tion of new PGSs for latent traits. Using the same GWAS
summary statistics used to construct PGSs in the HRS, we
estimated and compared one-factor and two-factor
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models of genetic risk for psychopathology. Following
Genomic SEM, we constructed models of latent PGSs
within the HRS, using the same methods described above.
It is important to note that traditional confirmatory factor
analyses could not be used to evaluate the structure of
PGSs because many of the original GWAS included the
same participants. Although LD-score regression20 can be
used to determine cryptic relatedness by evaluating the
cross-trait LD-score regression intercepts, our analyses
revealed substantial sample overlap (Supplemental Fig. 1).
By contrast, Genomic SEM produces model parameters
and test statistics that are unbiased by patterns of shared
estimate error across the original GWASs28.

Analytic strategy
Analytic code for the current paper is available at

https://osf.io/c9uj8/. All analyses and visualizations were
conducted in R Statistical Software50. To increase gen-
eralizability and avoid overfitting the data, the analytic
sample (N= 6003) was divided into two random samples
of n= 3002 and n= 3001. One data set (i.e., the “test
sample”) was used to estimate phenotypic one-factor and
two-factor models using confirmatory factor analyses; the
second data set (i.e., “the hold-out sample”) was used to
replicate the best-fitting factor structure. Confirmatory
factor analysis is a theory-driven form of structural
equation modeling that can be used to capture the shared
variance among observed correlated variables to estimate
unobserved latent factors51. The model fitting procedure
compares the model implied covariance matrix to the
observed covariance matrix, allowing users to compare
model fit using several indices. We considered model fit
acceptable if the root mean square error of approximation
(RMSEA) < 0.06, and the Comparative Fit Index (CFI) and
Tucker Lewis Index (TLI) >0.9052. One-factor and two-
factor models were compared using ΔCFI and ΔRMSEA
as alternatives to chi-square difference testing, which is
sensitive to large sample sizes53; a ΔCFI >−0.01 and
ΔRMSEA > 0.015 indicates significant depreciation of
model fit54,55. All models were estimated using maximum
likelihood estimation with robust standard errors in the
lavaan package56. Maximum likelihood estimation can be
used to account for missing data (in the current study,
there was <5% missing phenotypic data and no missing
genetic data) and outperforms other approaches to
missing data such as listwise deletion and multiple
imputation57.
The semTools package58 was used to estimate mea-

surement invariance across gender (1=male, 2= female)
and age. To examine invariance across age, we split the
sample into three groups: middle age (51–64 years),
young–old (65–74), and old–old (75–83). Previous
research has documented developmental differences by
these age groupings, including environmental effects onTa
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depressive symptoms59, self-rated health60, and familial
social support61. Increasingly stringent models of invar-
iance across groups are tested: (a) configural invariance—
same underlying structure with all parameters freely
estimated across groups, (b) metric invariance—invariant
loadings across groups, (c) scalar invariance—invariant
factor loadings and intercepts across groups, and (d)
residual invariance—invariant factor loadings, intercepts,
and unique factor variances across groups62.
Linear regression was used to examine the effects of the

individual PGSs and the latent PGSs (estimated using
GWAS summary statistics within Genomic SEM) on
latent phenotypic factors, controlling for the top 10
ancestry principal components. These analyses were
conducted within the hold-out sample only (n= 3001). In
large sample sizes, most estimates will be significant at the
95% confidence level. Therefore, we used G*Power63 to
estimate expected effect sizes; assuming 80% statistical
power, an alpha error probability of 0.05, and a sample
size of N= 3003, we are statistically powered to interpret
models with an adjusted R2 ≥ 0.008.

Results
Correlations revealed greater within-domain associa-

tions among internalizing phenotypes (0.48 < r < 0.64)
than externalizing phenotypes (0.05 < r < 0.22; Fig. 1).
However, there were also significant positive cross-
domain associations (0.16 < r < 0.34). For example,
depressive symptoms were positively associated with all
the externalizing phenotypes except drinking frequency
(Fig. 1). We used the effectsize package64 to compare the
effect sizes of the correlations among and between HRS
phenotypes to the effect sizes reported in a previous study

that relied on structured clinical interviews in a sample of
older adults9. Most associations observed in the HRS were
similar in effect size; the only effects that were sub-
stantially weaker in the HRS were the associations
between drinking frequency and the other externalizing
and internalizing measures. Of note, drinking frequency
was the only measure for which reliability could not be
estimated; all other HRS measures have Cronbach’s
alphas of 0.96–0.97 (Supplemental Table 1).

Phenotypic models
Next, we evaluated one-factor and two-factor pheno-

typic models. In the test sample (n= 3002), drinking
frequency loaded negatively on the latent factor(s) and
was dropped from subsequent analyses (results available
upon request). Figure 2A, B displays the one-factor and
two-factor phenotypic models in the test sample (n=
3002), which both fit the data well. Although the relative
fit indices suggested that the two-factor model fit the data
better than the one-factor model (i.e., larger CFI and TLI,
smaller RMSEA), the ΔCFI and ΔRMSEA were smaller
than suggested values54,55, indicative of equivalent model
fit. The association between the internalizing and exter-
nalizing latent factors in the two-factor model was very
large (r= 0.82), whereas previous work in younger sam-
ples reports that the cross-domain correlation hovers
~0.5010. These results suggest that the internalizing and
externalizing factors do not represent unique constructs
in this sample of older adults in the HRS. Thus, we
accepted the one-factor phenotypic model in the test
sample. Figure 2C shows the one-factor model in the
hold-out sample (n= 3001). The largest loadings for the
general factor of psychopathology were negative affect
(β= 0.88, p < 0.001) and trait anger (β= 0.38, p < 0.001).
The general factor explained far more variance in the
internalizing indicators (0.40 < R2 < 0.78) than the exter-
nalizing indicators (0.08 < R2 < 0.15).
We found evidence for metric invariance of the one-

factor model of general psychopathology by gender and
age group: fixing the indicator loadings to be equivalent
across groups did not significantly degrade model fit (see
Supplemental Fig. 2). As expected, given significant mean-
level gender- and age-differences in internalizing and
externalizing behaviors (see Supplemental Results),
models did not meet criteria for scalar measurement
invariance (i.e., equivalent intercepts across groups).

PGS associations with psychopathology
To address a critical issue in the field, we evaluated

polygenic specificity by examining the associations
between each PGS and each phenotypic measure, con-
trolling for the first 10 ancestry-specific principal com-
ponents. Across all phenotypic outcomes, the predictive
power of the externalizing PGSs was low in the HRS

Fig. 1 Within- and across-domain correlations among
phenotypes in the Health and Retirement Study. 5873 < N < 5965.
Associations that were not significant at p < 0.05 are marked with an
“X”.
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sample (Fig. 3A). The only significant association between
an externalizing PGS and a phenotypic outcome was a
negative association between the PGS for antisocial
behavior and impulsivity in older HRS participants. By
contrast, the PGSs for neuroticism, MDD, and anxiety
were significantly positively associated with anxiety,
depressive symptoms, negative affect, and the general
latent factor of psychopathology (R2 values ~1%). The
PGS for height was not associated with any phenotypic
measures.

Genomic SEM and latent PGSs for psychopathology
Genomic SEM was used to fit one-factor and two-factor

models of genetic risk for psychopathology, using GWAS
summary statistics from well-powered studies of neuro-
ticism41, any anxiety disorder42, MDD43, alcohol depen-
dence44, ADHD45, cannabis use46, and antisocial
behavior47. Estimated SNP effects were then used to
generate PGSs for latent traits in the HRS sample of older
adults. Although both the one-factor and two-factor
models fit the data well (Fig. 4, Supplemental Fig. 3),
model fit comparisons indicated superior model fit of the
two-factor model of genetic risk for psychopathology (Δχ²
= 30.691, p < 0.001, ΔCFI > 0.01, lower Akakie Information

Criterion [AIC]). Moreover, the cross-trait correlation was
r= 0.64, indicating that the internalizing and externalizing
latent genetic factors, though correlated, capture different
underlying constructs. Owing to small negative residual
variance in the two-factor model, the loading for MDD
was fixed to 1. The largest loadings on the latent exter-
nalizing factor were alcohol dependence (β= 0.81) and
antisocial behavior (β= 0.79). The largest loading on the
latent internalizing factor, aside from MDD, was anxiety
(β= 0.88). As the model fit for the one-factor model was
excellent (χ²14= 76.762, p < 0.001, AIC= 104.762, CFI=
0.962, SRMR= 0.127), we constructed both the latent one-
factor PGS and latent internalizing and externalizing
PGSs.
Associations between the latent PGSs and phenotypic

outcomes indicated that the latent internalizing PGS and
latent one-factor PGS explained 1% more variance in the
general factor of psychopathology than any of the indi-
vidual PGSs that were used to construct these latent
measures of polygenic risk (i.e., R2= 2% versus R2= 1%;
Fig. 3B). There were no differences in the predictive
power of the latent internalizing PGS and the latent one-
factor PGS, as indicated by non-overlapping confidence
intervals of the standardized effects. Pooling the summary

Fig. 2 High correlation between internalizing and externalizing factors suggests a one-factor model of psychopathology among older
adults in the Health and Retirement Study. INT internalizing, EXT externalizing. Standardized estimates are shown. A, B Confirmatory one-factor
(model fit: χ²(9)= 70.37, p < 0.001; CFI= 0.980; TLI= 0.967; RMSEA= 0.052, 90% CI [0.041, 0.064]) and two-factor (model fit: χ²(8)= 46.71, p < 0.001;
CFI= 0.988; TLI= 0.977; RMSEA= 0.044, 90% CI [0.032, 0.056]) phenotypic models in the test sample (n= 3002). C Confirmatory one-factor
phenotypic model in the hold-out sample (n= 3001; model fit: χ²(9)= 61.96, p < 0.001; CFI= 0.983; TLI= 0.972; RMSEA= 0.048, 90% CI [0.037, 0.059]).
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statistics of the externalizing GWAS (i.e., alcohol depen-
dence, cannabis use, ADHD, antisocial behavior) similarly
resulted in novel associations with internalizing pheno-
types and the general factor of psychopathology, as

compared with any of the individual externalizing PGSs.
However, the model R2 was <1% and there were no
associations between the latent externalizing PGS and any
of the externalizing outcomes.

Fig. 3 Polygenic scores for internalizing, but not externalizing, disorders are associated with internalizing and externalizing behaviors in
the Health and Retirement Study. N= 3001. Associations between polygenic scores (PGS) and phenotypic outcomes, accounting for the top 10
ancestry principal components. Estimates are unstandardized and error bars are standard errors. A Individual PGSs as predictors; B Latent PGSs, where
SNP weights were estimated using Genomic SEM. In both panels, error bars are standard errors around the estimate.
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Discussion
We evaluated both the phenotypic and polygenic

structure of psychopathology in a large population-based
sample of older adults. In models that replicated using a
split-half design, phenotypes were organized in a one-

factor model of psychopathology rather than the two-
factor internalizing–externalizing structure more com-
mon in younger samples10,13. The general factor of psy-
chopathology was further equivalent across gender and
age groupings as indicated by invariant factor structure

Fig. 4 Genomic SEM one-factor and two-factor model. Confirmatory factor analyses were conducted on the GWAS summary statistics in Table 1,
using the Genomic SEM package in R Statistical Software (Grotzinger et al., 2019). Standardized estimates are shown. See Supplemental Fig. 3 for
unstandardized estimates. In both the one-factor and two-factor models, the residual variance of MDD was fixed to zero. Model fit comparisons
between the one-factor model (χ²(14)= 76.762, p < 0.001, AIC= 104.762, CFI= 0.962, SRMR= 0.127) and two-factor model (χ²(13)= 46.072, p < 0.001,
AIC= 76.072, CFI= 0.980, SRMR= 0.084) indicated superior model fit of the two-factor model (Δχ²= 30.69(1), p < 0.001, ΔCFI > 0.01, lower AIC).
Single-nucleotide polymorphism effects were then integrated into the model to derive new SNP weights for the construction of latent polygenic
scores (see Supplemental Methods).
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and loadings, suggesting that the structure of psychiatric
phenotypes in the HRS is replicable across demographic
groups. PGS analyses revealed that genetic risk scores
derived from GWAS of externalizing psychopathology are
not portable to older adults in the HRS: none of the
externalizing PGSs were associated with externalizing or
internalizing phenotypes. By contrast, the internalizing
PGSs were predictive of internalizing phenotypes and the
general factor of psychopathology in the current sample.
Perhaps most importantly, using Genomic SEM29, we
found that the latent internalizing PGS and the latent one-
factor PGS explained double the variance than any of the
individual PGSs in models predicting internalizing phe-
notypes and the general factor of psychopathology. Col-
lectively, these results make important contributions to
our understanding of transdiagnostic risk for psycho-
pathology—at phenotypic and genetic levels of analysis.
For researchers and clinicians interested in the etiology
and course of psychopathology in older adults, modeling
general psychopathology is likely to improve predictive
accuracy and may be important in developing interven-
tions to reduce the burden of mental illness in the second
half of the lifespan.
In contrast to research in children and adults10,13, psy-

chiatric phenotypes in the HRS sample of older adults
organized into one general factor of psychopathology
rather than a two-factor internalizing–externalizing factor
structure. Identification of the meta-structure of psy-
chiatric phenotypes in older adults has both etiological
and clinical implications. First, the largest loading on the
general factor was negative affect. Negative affect or
negative emotionality is thought to be a non-specific
vulnerability factor for multiple forms of psychopathol-
ogy65, is correlated with both internalizing and externa-
lizing disorders66, and is oftentimes the first factor
extracted from individual differences in dispositional
traits65,67,68. That negative affect as a dispositional con-
struct is robustly associated with multiple symptom
domains13 supports the RDoC framework from the
National Institute of Mental Health, in which the biolo-
gical origins of intermediate phenotypes are linked to
multiple categorical disorders40. Our results further sup-
port the HiTOP approach39, which advocates for dimen-
sional approaches that better characterize psychiatric
comorbidity across symptom domains compared to tra-
ditional categorical nosologies. Clinically, interventions
designed for one disorder have widespread effects on
multiple disorders within the same domain69. For exam-
ple, pharmacological and psychosocial interventions
designed to treat depression are also effective in treating
some forms of anxiety70, which has led to transdiagnostic
interventions for emotional disorders broadly71.
One major contribution of our results is the lack of

specificity in PGS prediction of psychiatric phenotypes. It

is surprising that a PGS designed to capture genome-wide
genetic risk for a single disorder (e.g., MDD) was no better
at predicting within a domain (e.g., depressive symptoms)
than cross-domain (e.g., state anger) phenotypes. One
explanation for these results is that psychiatric GWAS
rarely account for comorbidity (e.g., MDD cases without
comorbid substance use disorder). By ignoring psychiatric
comorbidity, GWAS may be identifying genetic risk fac-
tors for multiple phenotypes or clinical severity instead of
a single phenotype. Examples of psychiatric genetic stu-
dies that account for comorbidity include a study of
bipolar disorder and schizophrenia72 and a GWAS of
comorbid depression and alcohol dependence73. Precision
phenotyping of homogenous subgroups (e.g., stratification
by age of disorder onset) is also likely to improve to
GWAS and resultant PGSs74,75.
Using Genomic SEM, polygenic risk organized into a

two-factor internalizing–externalizing structure, although
the one-factor model also fit the data well. Importantly,
these latent PGSs that aggregated genetic effects across
multiple GWAS explained 1% more variation in the
general factor of psychopathology. As MDD was the lar-
gest loading in both the one-factor and two-factor
Genomic SEM models (Fig. 4), it may not be surprising
that there were no differences in the predictive power of
the latent internalizing PGS and the latent one-factor
PGS. Collectively, our results reiterate the power of
aggregating genetic effects across multiple related phe-
notypes29 and suggest that any researcher interested in
capturing genome-wide genetic risk for psychopathology
should implement methods to aggregate GWAS summary
statistics of similar phenotypes rather than rely on PGSs
of individual disorders.
In addition to practical implications, our results

demonstrate that genetic risk for psychiatric phenotypes
is transdiagnostic. Psychiatric GWAS repeatedly show
that associated SNPs tend to cluster in genes underlying
neurodevelopmental processes, signal transduction, and
synaptic plasticity21,41,43, all processes common to com-
plex diseases. Moreover, biometric analyses in behavioral
genetic/family designs demonstrate that a general genetic
factor influences multiple psychiatric disorders (and their
overlap) and explains more of the variation in psychiatric
outcomes than the unique internalizing and externalizing
genetic effects19,76. More research is needed to under-
stand whether psychiatric polygenic risk is pleiotropic and
if so, what kind of pleiotropic processes are at play. For
example, biological pleiotropy would suggest that a
genetic risk variant for neuroticism (or another inter-
mediate transdiagnostic phenotype) predicts multiple
disorders77. By contrast, mediated pleiotropy would sug-
gest that a genetic risk variant predicts one phenotype
(e.g., neuroticism), which subsequently predicts the onset
of other phenotypes (e.g., alcohol use). Longitudinal
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phenotypic data and causal inferences techniques78 are
needed to evaluate these hypotheses.
A second explanation for low polygenic specificity in the

current study is that PGSs are derived from GWAS of
common genetic variation—most often SNPs with minor
allele frequencies >1%79. An “omnigenic model of com-
plex traits” suggests that SNPs that contribute to the bulk
of heritability in complex disorders are spread across the
genome as common variants of small effect that con-
tribute to cellular processes (e.g., protein binding,
sequence-specific DNA binding) relevant to many com-
plex disorders. Disease-specific genetic risk variants, by
contrast, are likely to be rare variants of large effect that
are often not captured in GWAS of common genetic
variation22,23. Moreover, GWAS do not capture copy
number variants, which are also linked to psychiatric
disorders and may function in a disease-specific man-
ner80. Thus, it may also be that PGSs derived from GWAS
of common genetic variants are not appropriate for
examinations of disorder-specific etiology.
Collectively, these results challenge the notion of spe-

cificity in the phenotypic and genetic presentation of
psychopathology in older adults. The still impairing rates
of internalizing and externalizing disorders during the
second half of the lifespan necessitate discussion regard-
ing the clinical utility of current diagnostic categories,
particularly as we investigate psychiatric etiology using
biological approaches such as genetics and neuroscience.

Limitations
Although the current study is the first to evaluate the

meta-structure of phenotypic and genetic risk for psy-
chopathology in older adults using a large, population-
based sample, several limitations are worth noting. First,
the estimation of latent factors in confirmatory factor
analysis is dependent upon the quality of the indicators.
Based on previous recommendations48,81, we only con-
structed PGSs based on large GWAS meta-analyses with
independent replication samples. As a result, we did not
include PGSs derived from smaller GWAS of relevant
phenotypes, including several studies of externalizing
disorders82,83. Relatedly, the phenotypic measures avail-
able in the HRS are abbreviated scales, as is common in
large surveys. Thus, one alternative phenotypic model that
we were unable to fit is a bifactor model of psychiatric
outcomes (our models did not converge, likely owing to
the sparse measurement of symptoms), which posits that
there are internalizing and externalizing factors as well as
a higher-order bifactor that captures shared variance
between the lower-order factors10,13,39; more recent
empirical work further suggests that there may be several
higher-order bifactors that capture severity in symp-
toms84. Indeed, we observed a high correlation between
the internalizing and externalizing factors in the HRS

sample, which is thought to indicate the presence of a
higher-order bifactor13,85. Moreover, the gold standard for
measuring psychiatric symptoms and disorders is through
structured clinical interviews—e.g., the Structured Clin-
ical Interview for DSM Disorders86—or via questionnaires
administered to multiple informants87. For example,
several previous investigations of the structure of psy-
chopathology in younger samples14,16 have relied on
structured clinical interviews to measure symptoms of
MDD, generalized anxiety disorder, multiple types of
phobias, and panic disorder for internalizing psycho-
pathology, and symptoms of alcohol use disorder, drug
use disorder, conduct disorder, and antisocial personality
disorders for externalizing psychopathology. Yet con-
ducting structured clinical interviews is not feasible in
large population-based data sets with multiple project
aims. Thus, we relied on the available self-reported
measures and included some constructs that capture
dimensional psychopathology rather than psychiatric
symptoms per se (e.g., impulsivity). These limitations are
especially pronounced in the HRS measures of externa-
lizing psychopathology, likely because behaviors like
aggression and rule-breaking are less among older adults.
Antisocial behavior in childhood further places indivi-
duals at risk of early mortality or long-term incarcera-
tion88, suggesting that individuals with the highest levels
of externalizing behavior may not be represented in the
HRS. Nevertheless, externalizing disorders such as ADHD
and substance use disorder are still common: between 3%
and 4% of adults aged 55–85 meet the criteria for
ADHD89 and 3.8% of adults over aged 55 meet the criteria
for substance use disorder6. The non-significant associa-
tions between polygenic risk and externalizing behaviors
in the HRS may be owing to limited measures (e.g.,
impulsivity, trait anger, state anger, number of drinks
per day) that do not adequately capture the complexity of
externalizing behaviors in this age group. Although the
HRS is a large population-based study, future studies are
needed to determine whether the factor structure and
genetic associations reported in the current study are
generalizable to the broader population of older adults or
reflect artifacts of the limited phenotypic measures
available in the HRS.
Second, the GWAS summary statistics that we used to

construct PGSs did not exclusively focus on older adults.
Although maximizing statistical power through increasing
sample size is a key consideration in GWAS, PGSs con-
structed from GWAS in younger samples may not gen-
eralize to older adults. This is particularly relevant
considering the negative association we observed between
impulsivity in the current sample and the PGS of anti-
social behavior, constructed from a GWAS of adolescents
and young-to-middle age adults47. GWAS of psychiatric
outcomes in pediatric cohorts83,90 are beginning to show
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that genetic risk alleles may vary by developmental stage.
As the availability of genomic data increases, future
research should consider age-stratified GWAS.
Third, our analyses only focused on a subset of the

population: older US adults of European ancestry. Though
the focus on older adults is a critical addition to research
on the meta-structure of psychiatric disorders in adult-
hood, psychiatric genetics, and human genetics studies
overall, are overwhelmingly Eurocentric91—a trend that
reduces generalizability of all genetic work and is likely to
exacerbate health disparities92. We did not include par-
ticipants of African ancestry in the current study because
the available GWAS were conducted in European samples
and, thus, would not be comparable for methodological
rather than substantive reasons.

Conclusion
Using multiple genome-wide PGSs for psychiatric out-

comes, validated phenotypic measures, and novel analytic
techniques in a relatively large, population-based sample
of older adults, we showed that a single general factor of
psychopathology best explained the phenotypic meta-
structure of psychopathology in older adults in the HRS.
Moreover, although PGSs were non-specific in their
associations with internalizing and externalizing out-
comes, latent PGSs that aggregated genetic effects across
several disorders explained more transdiagnostic variation
than any individual PGS alone. These results inform a
changing conceptualization of psychiatric diagnoses and
their genetic etiology—from disorder-specific to trans-
diagnostic and dimensional.
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