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Abstract: Podoplanin is a sialomucin-like type I transmembrane receptor glycoprotein that is ex-
pressed specifically in lymphatic vessels, sebaceous glands, and hair follicles in normal skin. However,
under pathological conditions podoplanin expression is upregulated in various cells, such as ker-
atinocytes, fibroblasts, tumor cells, and inflammatory cells, and plays pivotal roles in different
diseases. In psoriasis, podoplanin expression is induced in basal keratinocytes via the JAK-STAT
pathway and contributes toward epidermal hyperproliferation. Podoplanin expression on ker-
atinocytes can also promote IL-17 secretion from lymphocytes, promoting chronic inflammation.
During wound healing, the podoplanin/CLEC-2 interaction between keratinocytes and platelets
regulates re-epithelialization at the wound edge. In skin cancers, podoplanin expresses on tumor cells
and promotes their migration and epithelial-mesenchymal transition, thereby accelerating invasion
and metastasis. Podoplanin is also expressed in normal peritumoral cells, such as cancer-associated
fibroblasts in melanoma and keratinocytes in extramammary Paget’s disease, which promote tumor
progression and predict aggressive behavior and poor prognosis. This review provides an overview
of our current understanding of the mechanisms via which podoplanin mediates these pathological
skin conditions.

Keywords: podoplanin; psoriasis; wound healing; melanoma; squamous cell carcinoma;
extramammary Paget’s disease

1. Introduction

Podoplanin, also known as gp36, T1α, D2-40, PA2.26, and aggrus, is a small sialomucin-
like type I transmembrane receptor glycoprotein composed of a heavily O-glycosylated
extracellular domain, a transmembrane domain, and a short intracellular domain [1–3].
The amino acid sequence of podoplanin is well conserved across different species [3,4]
and, although originally named due to its expression in renal podocytes, podoplanin is
now known to be expressed widely in different tissues and cells, including lymphatic
endothelial cells, type I alveolar cells, osteocytes, osteoblasts, choroid plexus epithelial cells,
mesothelial cells, glial cells, and stromal reticular cells in lymphoid organs [5]. In normal
skin, podoplanin is expressed in sebaceous glands, hair follicles, and lymphatic vessels [6],
where it exerts a variety of functions.

Studies in podoplanin-deficient mice have revealed that podoplanin plays impor-
tant roles in lymphatic vessel formation, lung cell proliferation, alveolus formation, and
myocardial differentiation during embryonic development [7,8]. After birth, podoplanin
plays crucial roles in several physiological conditions, such as platelet production, im-
mune responses, lymphangiogenesis, and hair growth [9,10]. Recent studies have shown
that in various pathological skin conditions, including inflammatory diseases and cancers,
podoplanin is upregulated in cells that do not normally express podoplanin and contributes
toward disease development and progression [11–13]. In this study, we manually searched
the literature available in Pubmed using the following keywords: podoplanin, skin, cuta-
neous, melanoma, squamous cell carcinoma, skin cancer, wound healing, psoriasis, and
dermatitis. Reports that evaluated any relationship between podoplanin and a skin disease
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and discussed the specific roles of podoplanin in skin diseases were included in this review.
We included all the reports irrespective of their year of publication.

2. Podoplanin Structure and Targeting Agents

Podoplanin consists of an extracellular domain of approximately 130 amino acids, a
transmembrane domain of approximately 25 amino acids, and a short intracellular domain
of approximately 10 amino acids [14]. A schematic overview of the structure of podoplanin
and its binding partners is shown in Figure 1.
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ing (PLAG) domains that can bind to and interact with C-type lectin-like receptor-2 
(CLEC-2) expressed on platelets or hematopoietic cells, such as monocytes, dendritic cells, 
natural killer cells, and granulocytes [9,15,16]. Since podoplanin is not expressed in blood 
vessels, platelet CLEC-2 cannot bind to podoplanin under normal conditions and, thus, 
cannot be activated. However, under pathological conditions or during organ develop-
ment, these two proteins can interact and induce platelet activation, thrombosis, lym-
phatic vessel development, and cancer invasion and metastasis [16–18]. The interaction 
between podoplanin and CLEC-2 positive dendritic cells has been well characterized [19–
21]. In particular, the CLEC-2-podoplanin interaction contributes toward the intravasation 
of dendritic cells into lymphatic vessels and their migration to lymph nodes when the 
immune response is initiated. 

Other proteins that bind to the extracellular domain of podoplanin include galectin-
8, heat-shock protein A9 (HSPA9), and CCL21 [22–25]. Galectin-8 is a tandem-repeat type 
galectin that interacts with glycoproteins on the cell surface and is highly expressed on 
lymphatic endothelial cells. By cooperating with podoplanin, galectin-8 supports the con-
nection between the lymphatic endothelium and the surrounding extracellular matrix 
[23]. Conversely, podoplanin interacts with HSPA9 on the surface of oral squamous cell 

Figure 1. Podoplanin structure and binding partners. PLAG: platelet aggregation-stimulating domain.
CLEC-2: C-type lectin-like receptor-2. HSPA9: heat shock protein A9. EMT: epithelial-mesenchymal
transition. ERM: ezrin/radixin/moesin. PKA: protein kinase A. CDK5: cyclin dependent kinase 5.
ROCK: Rho-associated coiled-coil kinase.

2.1. Extracellular Domain

The extracellular domain of podoplanin contains four platelet aggregation-stimulating
(PLAG) domains that can bind to and interact with C-type lectin-like receptor-2 (CLEC-2)
expressed on platelets or hematopoietic cells, such as monocytes, dendritic cells, natural
killer cells, and granulocytes [9,15,16]. Since podoplanin is not expressed in blood vessels,
platelet CLEC-2 cannot bind to podoplanin under normal conditions and, thus, cannot
be activated. However, under pathological conditions or during organ development,
these two proteins can interact and induce platelet activation, thrombosis, lymphatic
vessel development, and cancer invasion and metastasis [16–18]. The interaction between
podoplanin and CLEC-2 positive dendritic cells has been well characterized [19–21]. In
particular, the CLEC-2-podoplanin interaction contributes toward the intravasation of
dendritic cells into lymphatic vessels and their migration to lymph nodes when the immune
response is initiated.

Other proteins that bind to the extracellular domain of podoplanin include galectin-8,
heat-shock protein A9 (HSPA9), and CCL21 [22–25]. Galectin-8 is a tandem-repeat type
galectin that interacts with glycoproteins on the cell surface and is highly expressed on
lymphatic endothelial cells. By cooperating with podoplanin, galectin-8 supports the con-
nection between the lymphatic endothelium and the surrounding extracellular matrix [23].
Conversely, podoplanin interacts with HSPA9 on the surface of oral squamous cell carci-
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noma (SCC) cells. Tsuneki et al. reported the colocalization of HSPA9 and podoplanin at
the periphery of oral SCC foci and, since HSPA9 was secreted from the tumor cells, their
binding was thought to take place in an autocrine fashion. The authors also speculated
that the HSPA9-podoplanin complex may regulate SCC cell invasion activity; however,
the detailed molecular mechanisms were not evaluated [22]. CCL21 is a chemokine that is
produced specifically by lymphatic endothelial cells and high endothelial venules in lymph
nodes and other secondary lymphoid organs [26]. CCL21 and podoplanin form a complex
that is shed into the perivascular stroma and affects the migration of CCR7-positive cells.
In the tumor microenvironment, CCL21 acts as a potent chemoattractant for CCR7-positive
tumor cells by binding to podoplanin on cancer-associated fibroblasts (CAFs), thereby
promoting the stromal invasion of cancer cells [25].

2.2. Transmembrane Domain

The transmembrane domain of podoplanin is known to bind CD9 and CD44 [9,27,28].
CD9 is a cell surface protein of the tetraspanin family that has four transmembrane do-
mains. The homophilic interaction between podoplanin and CD9 transmembrane domains
1 and 2 is thought to suppress metastasis by neutralizing podoplanin-mediated platelet
aggregation [27]. CD44 is a non-kinase transmembrane glycoprotein adhesion molecule
that mediates lymphocyte homing to peripheral lymphoid tissues [29,30]. Since CD44 is
expressed in both embryonic stem cells and cancer cell subpopulations, it is also recognized
as a molecular marker for cancer stem cells [31]. The podoplanin-CD44 interaction is medi-
ated by transmembrane and cytosolic regions and is negatively modulated by glycosylation
of the extracellular domain [32]. In addition to their functions in cancer progression, CD9
and CD44 are differentially expressed by specific lymph node stromal cell populations and
can both suppress podoplanin-dependent contractility and contribute toward lymph node
expansion during adaptive immune activation [9].

2.3. Intracellular Domain

The intracellular domain of podoplanin consists of just nine amino acids; however,
ezrin/radixin/moesin (ERM) proteins can bind to the juxtamembrane region, leading to
RhoA protein activation and epithelial-mesenchymal transition (EMT) in cancer cells [33,34].
The intracellular domain contains two serine residues that are conserved between mice
and humans and can be phosphorylated by protein kinase A (PKA) and cyclin-dependent
kinase 5 (CDK5). This can reduce cell motility, presumably by blocking the binding of ERM
proteins that activate Rho GTPases and Rho-associated coiled-coil kinase (ROCK) [34,35].

3. Podoplanin in Normal Skin

In normal skin, podoplanin is highly expressed in lymphatic endothelial cells, the outer
root sheath cells of hair follicle keratinocytes, and the basal cell layer of sebaceous glands,
but not in interfollicular epidermis [6]. Interestingly, podoplanin expression correlates
with the expression of keratin 15 and CD34, which are putative markers of hair follicle
stem cells [10,36]. A recent study demonstrated that podoplanin is expressed in the dermal
component of hair follicles in the female scalp as well as in keratinocytes, with its expression
decreasing with aging [37]. However, the functional role of podoplanin in dermal papilla
cells has not yet been fully elucidated.

Podoplanin expression in lymphatic endothelial cells is thought to prevent the retro-
grade filling of blood from the circulatory system into the lymphatic system and promote
the trafficking of immune cells to lymph nodes [38]. Bianchi et al. generated a postnatal
lymphatic-specific podoplanin knockout mouse model in which they observed blood-filled
lymph nodes and vessels as well as reduced dendritic cell migration from ear skin to lymph
nodes [38]. However, the postnatal deletion of lymphatic-specific podoplanin did not
compromise lymph node organization. Together, these results highlight the importance of
the interaction between podoplanin in lymphatic cells and CLEC-2 in dendritic cells for
dendritic cell migration to lymph nodes.
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Yoon et al. investigated the roles of podoplanin in hair follicle growth using a mouse
model of hair depilation-induced anagen follicle growth [10]. In wild-type mice, podoplanin
expression was absent in keratinocytes in hair follicles during the early- to mid-anagen
phase (days 1–5 after depilation), was present during the late-anagen (days 8–12) to catagen
(day 18) phase, and then disappeared in the telogen phase. To evaluate the functional
effects of podoplanin on hair growth, the authors generated keratin-specific podoplanin
deletion mice (K5-Cre;PDPNflox/flox mice) which displayed a thicker hair bulb during the
mid-anagen to catagen phase, indicating that podoplanin deletion enhances anagen hair
growth. Moreover, hair follicle stem cells isolated from the K5-Cre;PDPNflox/flox mice
showed lower focal adhesion and extracellular matrix interaction than the wild-type mice,
suggesting that the loss of podoplanin increases the migration of hair follicle stem cells
towards the bulb area and promotes anagen hair growth.

4. Podoplanin in Inflammatory Skin Diseases
4.1. Psoriasis

Psoriasis is a common chronic inflammatory skin disease characterized by scaly ery-
thematous plaques and papules. The histopathology of psoriasis includes acanthosis with
regular epidermal elongation, a diminished or absent granular layer, dermal papilla elon-
gation and edema with dilated capillaries, and the infiltration of perivascular lymphocytes
and neutrophils into subcorneal epidermis (Munro microabscess) [39]. Thus, keratinocyte
proliferation and the inflammatory response appear to play pivotal roles in this disease.
Although the pathogenesis of psoriasis is not yet fully understood, recent studies have sug-
gested that disturbances in innate and adaptive cutaneous immune responses, especially
the interleukin (IL)-23/Th17 axis and TNF-α signaling, are critically involved in disease
development [40,41]. Since prominent epidermal hyperplasia is thought to result from the
interaction between keratinocytes and a complex cytokine network due to abnormal T-cell
regulation, many effective therapies targeting TNF-α, IL-23, or IL-17 have been developed
and used to treat patients with psoriasis [42].

Podoplanin is involved in both keratinocyte proliferation and inflammation during
the pathogenesis of psoriasis [43] because it is expressed in keratinocytes and inflammatory
cells such as monocytes and Th17 cells [6,43,44]. In psoriasis, podoplanin is expressed
in peripheral basal keratinocytes, particularly in highly proliferative lesions lacking a
granular layer. Ki-67 expression is also upregulated in these podoplanin-positive basal
cells without a granular layer, suggesting that podoplanin affects the migration of basal
keratinocytes [44–46]. In addition, studies of primary cultured human keratinocytes have
revealed that podoplanin is upregulated by transforming growth factor (TGF)-β and
interferon (IFN)-γ via the Smad2/3-Smad-4 and JAK-STAT signaling pathways, respectively.
Furthermore, IL-22 and IL-6, which play key roles in the pathological mechanism of
psoriasis, also induce podoplanin expression via STAT-3 phosphorylation [6].

Recent studies have also indicated that podoplanin contributes toward IL-17 secretion
in inflammatory skin diseases [43,47], such as psoriasis. For instance, Noack et al. investi-
gated the role of podoplanin in the interactions between lymphocytes and mesenchymal
cells derived from psoriatic skin [43]. High levels of IL-17 secretion were induced when
skin fibroblasts were co-cultured directly with activated peripheral blood mononuclear
cells (PBMCs), but IL-17 secretion was only slightly upregulated when these cells were
co-cultured using a Transwell system to inhibit cell-cell contact. Thus, a direct interac-
tion between PBMCs and fibroblasts is crucial for IL-17 secretion in psoriasis. Moreover,
preincubating PBMCs with anti-podoplanin antibodies inhibited the upregulation of IL-17
and the secretion of IL-1β, but not IL-8 or IL-6. Monocyte removal also inhibited IL-17
production, suggesting that monocytes and podoplanin strongly affect IL-17 secretion [43].
Conversely, another study reported that podoplanin is a negative regulator of Th17 inflam-
mation [47]. Nylander et al. demonstrated that podoplanin (+) Th17 cells were induced
under classic Th17 polarizing conditions, but did not produce IL-17, and had an upregu-
lated immunosuppressive gene profile (IL10, Ahr, Ikzf3, FOXO1, and FOXO3) after CD4 T
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cell activation [47,48]. These regulatory effects of podoplanin were also partially mediated
by the CLEC-2/podoplanin interaction, since CLEC-2 significantly increased IL-10 pro-
duction from polarizing Th17 cell cultures. Together, these observations indicate that the
CLEC-2/podoplanin interaction exerts nonpathogenic and possibly regulatory functions in
Th17-type inflammation.

4.2. Allergic Contact Dermatitis

Allergic contact dermatitis, also known as contact hypersensitivity, is one of the
most common skin diseases and is characterized by a delayed hypersensitivity reaction
with sensitization and solicitation phases [49]. When the skin comes into contact with
haptens, chemicals that induce contact hypersensitivity, antigen-presenting Langerhans
cells (LCs) in the epidermis and Langerin-positive dermal dendritic cells (dDCs) work
together to initiate sensitization. Once LCs and dDCs capture antigens, they begin to
mature and migrate toward draining lymph nodes, where they present the antigens to
naïve T cells, leading to sensitization. Recent studies have revealed that podoplanin plays
important roles in DC migration and lymph node expansion [9,20,21,50]. Acton et al.
demonstrated that CLEC-2 deficiency impairs the entry of DCs into the lymphatic system
and their trafficking to lymph nodes, suggesting that the CLEC-2-podoplanin interaction
is essential for DC migration to lymph nodes [20]. In addition, the activation of CLEC-2
by podoplanin was found to induce actin cytoskeleton rearrangement and promote the
motility of DCs [20]. de Winde et al. investigated the underlying mechanisms and reported
that tetraspanin CD37, a membrane-organizing protein, is required for CLEC-2 recruitment
to the membrane with podoplanin in order to control CLEC-2-dependent DC migration [9].
In lymph nodes, podoplanin is expressed by fibroblastic reticular cells (FRCs) which form
collagen-based reticular networks that act as a scaffold for DCs and T cells and as a conduit
for lymph fluid transportation from the subcapsular sinus into the parenchyma of lymph
nodes [51–54]. Podoplanin maintains the microarchitecture of lymph nodes by ensuring
the contraction of FRCs under non-inflammatory conditions via RhoA/C and downstream
Rho-associated protein kinase activation [21]. However, when DCs migrate into FRC
networks during inflammation, binding between CLEC-2 and podoplanin causes rapid
podoplanin clustering and prevents RhoA/C activation, thereby relaxing the cytoskeleton,
permitting FRC stretching, and resulting in lymph node expansion [21,50].

5. Podoplanin in Wound Healing

Wound healing is a dynamic, interactive process that involves various cell types,
growth factors, cytokines, and the extracellular matrix [55–57]. Wound healing consists
of three overlapping phases: inflammation, tissue formation, and tissue remodeling [58].
During inflammation, tissue injury disrupts blood vessels and causes the extravasation of
platelet-rich blood constituents that form blood clots and provide a provisional extracellular
matrix scaffold for cell migration. The secretion of different cytokines and growth factors
attracts and activates macrophages, fibroblasts, vascular endothelial cells, and several
bone marrow-derived stem/progenitor cells that promote the formation of granulation
tissue. Activated macrophages secrete VEGF-C, which induces lymphangiogenesis [39,40],
an important process for maintaining normal tissue pressure by draining lymph fluid
from the interstitial space. After blood clots have been replaced by mature, cell-rich
granulation tissue, these tissues are rearranged into collagenous scar tissue as part of the
tissue remodeling phase, during which re-epithelialization is also promoted.

Podoplanin is thought to contribute toward lymphangiogenesis and re-epithelialization
during wound healing [55,59]. Since lymphangiogenesis plays important roles in tissue
regeneration and angiogenesis, lymphatic dysfunction can prevent wound healing due
to impaired tissue fluid homeostasis [60]. Several studies have indicated that the induc-
tion of lymphangiogenesis could be a therapeutic target for impaired wound healing in
patients with diabetic ulcers [56,61]. Maruyama et al. demonstrated that podoplanin neu-
tralization by anti-podoplanin antibodies inhibited lymphangiogenesis in a model of ear
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skin wound healing and inhibited tube formation by human lymphatic endothelial cells
in vitro [59]. Thus, podoplanin may be involved in wound healing-associated lymphatic
vessel formation.

Podoplanin is expressed very weakly during the inflammatory phase of wound heal-
ing, is highly upregulated during the tissue formation-remodeling phase, and then de-
creases when the wound is completely closed. Thus, podoplanin expression in keratinocytes
occurs in parallel with re-epithelialization, suggesting that podoplanin plays a pivotal role
in this process [55]. Previously, we demonstrated that silencing podoplanin using siRNA in-
hibited keratinocyte motility and downregulated RhoA activity, suggesting that podoplanin
mediates keratinocyte motility partly via RhoA signaling. Furthermore, podoplanin and
E-cadherin expression in keratinocytes were inversely correlated at the wound edge in vivo
and E-cadherin was upregulated in podoplanin siRNA-transfected keratinocytes in vitro.
Thus, podoplanin downregulation also decreases keratinocyte motility by upregulating
E-cadherin, a cell-cell adhesion molecule. During the inflammatory phase, the wound
bed is covered with platelet-rich blood clots and is concaved due to limited granulation
tissue formation. Early re-epithelialization of this depressed wound bed without abundant
granulation tissue is undesirable as this would result in a dented scar. Platelets in blood
clots are thought to regulate re-epithelialization during the inflammatory phase in wound
healing. For instance, we previously demonstrated that platelets inhibit keratinocyte motil-
ity via the direct interaction between podoplanin and CLEC-2 [55]. Consequently, platelets
may inhibit re-epithelialization via podoplanin/CLEC-2 during the inflammatory phase
and re-epithelialization only proceeds after platelet-rich blood clots have been replaced by
mature granulation tissue and podoplanin expression on keratinocytes has been excessively
upregulated.

6. Podoplanin in Skin Malignancies

Podoplanin is expressed in tumor cells or peritumoral cells and its expression cor-
relates with tumor progression and prognosis in several malignancies of the skin and
other organs, including glioblastomas and SCC of the esophagus, head, and neck [62–70].
However, podoplanin expression correlates with a good prognosis in cancers such as SCC
of the uterus, cervix [71], and lung [72–74]. Podoplanin is a critical promoter of tumori-
genesis [75–78], migration [4,25,79], invasion [80,81], EMT [28,80,82], cancer-associated
thrombosis [78,83–87], and chemoresistance [88]. The role of podoplanin in skin malig-
nancies has been widely evaluated in melanomas and SCCs, because many cell lines are
commercially available and animal models have been established; however, its role in other
malignancies has been poorly evaluated, because of the lack of cell lines.

6.1. Melanoma

Malignant melanomas are highly aggressive skin cancers with an increasing incidence
worldwide. When melanomas occur in mucosal surfaces, the prognosis is very poor [89,90].
Despite remarkable progress in our understanding of tumor immunity and genomic anal-
ysis in recent decades, which has led to the development of novel immune checkpoint
inhibitor and BRAF/MEK inhibitor therapies for melanoma, the treatment of patients with
advanced melanoma remains challenging. Recently, podoplanin has attracted considerable
attention as a new therapeutic target for melanoma because both melanoma cells and CAFs
express podoplanin [64]. A retrospective analysis of 55 cases of melanoma revealed that
podoplanin was expressed in 69.1% of the tumor cells; however, its expression did not
correlate with tumor progression [64]. However, podoplanin was expressed in 45.5% of
CAFs and was associated with increased tumor thickness and sentinel lymph node metas-
tasis. Furthermore, patients with podoplanin (+) CAFs had a worse prognosis than those
with podoplanin (−) CAFs. Despite finding no significant correlation between podoplanin
expression and aggressive tumor behavior, several other studies have demonstrated that
podoplanin plays a key role in melanoma progression [9,91,92]. For instance, de Winde et al.
demonstrated that podoplanin can enhance amoeboid invasion and the dedifferentiation of
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melanoma cells [9]. Podoplanin expression is increased in metastatic human melanoma
cells which have a rounded and contracted morphology; however, podoplanin knockout
was found to dramatically alter the morphology of B16F10 murine melanoma cells by
increasing their spread and number of protrusions. In vivo, mice injected with podoplanin
(+) and podoplanin (−) melanoma cells (1:1 mix) produced tumors containing a higher
proportion of podoplanin (+) cells, which were observed beyond the tumor boundary as
single rounded cells. These results suggest that podoplanin may either confer a survival
advantage or increase the rate of proliferation and promote amoeboid motility [9]. Inter-
estingly, tumors derived from podoplanin (−) cells displayed more pigmentation than
podoplanin (+) tumors, suggesting that podoplanin knockout restores the characteristics of
non-invasive differentiated melanocytes.

Several preclinical studies have demonstrated that podoplanin could be a therapeutic
target in several malignancies, including melanomas [91–98]. For example, lectin ex-
tracted from the seeds of the legume tree, Maackia amurensis (MASL), has an affinity for
O-linked carbohydrate chains containing sialic acid and can bind to podoplanin to in-
hibit the growth and motility of B16 melanoma cells by inducing caspase-independent
necrosis [91]. Since MASL can survive gastrointestinal proteolysis to remain biologically
active in the circulatory system, it is able to inhibit melanoma cell migration when fed
to mice and inhibit melanoma growth from inoculated B16 melanoma cells by reducing
tumor vascularization [91]. Anti-podoplanin monoclonal antibodies are another candi-
date targeted therapy for melanoma [97,98]. Indeed, the intravenous injection of SZ168
anti-podoplanin monoclonal antibodies was found to significantly suppress pulmonary
metastasis in a murine xenograft model inoculated subcutaneously with human melanoma
cells [97]. Since melanoma growth is partially regulated via podoplanin-CLEC-2 medi-
ated platelet aggregation, SZ168 is thought to suppress tumor growth by inhibiting the
interaction between tumor podoplanin and platelet CLEC-2 [97].

Podoplanin also plays a crucial role in the progression of canine melanomas. Shi-
nada et al. demonstrated that podoplanin is expressed in 80% of canine melanomas and is
positively associated with Ki67, a marker of cell proliferation [93]. Moreover, the siRNA-
mediated knockdown of podoplanin in canine melanoma cells significantly reduced their
migration and invasion capacities. Interestingly, podoplanin knockdown also induced
apoptosis and cell cycle arrest at the G2/M phase; however, further studies are required
to clarify the underlying molecular mechanism. A cancer-specific mouse–dog chimeric
anti-podoplanin antibody, P38B, has also proceeded to phase I/II clinical trial in dogs
with melanomas [98] to investigate its safety and anti-tumor effects. In preclinical trials,
P38Bf was associated with no adverse events when administered to a healthy dog over two
months. In subsequent phase I/II clinical trials, no severe adverse events were observed in
three dogs with melanoma treated with P38Bf, and one dog exhibited stable disease [98].
Thus, targeted therapy with anti-podoplanin antibodies has therapeutic potential against
melanoma.

6.2. Cutaneous SCC

Cutaneous SCC is the second most common skin malignancy arising from epidermal
keratinocytes and several studies have evaluated the association between podoplanin
expression and the clinical progression of this disease [66,99–101]. Most studies have
suggested that tumor podoplanin expression correlates positively with aggressive tumor
behaviors such as lymph node metastasis, local aggression, and survival rate. Although
podoplanin is also expressed in stromal cells in SCC, its function has not been fully eluci-
dated [102].

During SCC development and progression, podoplanin is thought to mediate tu-
morigenesis, EMT, invadopodia, and cell migration [4,28,33,79,80,103,104]. Scholl et al.
demonstrated that the ectopic podoplanin expression in keratinocytes induced cell sur-
face extensions, increased motility, downregulated epithelial markers (basal keratin K14),
and upregulated mesenchymal markers (vimentin), suggesting that podoplanin induces
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EMT. Furthermore, ectopic podoplanin expression induced tumorigenic and metastatic
properties [104]. However, chemically-induced tumor development does not decrease in
mice with a specific podoplanin deletion in the epidermal keratinocytes, indicating that
podoplanin is dispensable in skin carcinogenesis [105].

Invadopodia are actin-rich cell membrane protrusions found in invasive cancer cells [106]
that can penetrate the basement membrane by degrading the extracellular matrix during
cancer invasion and metastasis. Podoplanin downregulation in SCC cells can decrease
invadopodia stability and impair extracellular matrix degradation [80]. Interestingly, the
podoplanin-CD44 interaction has been shown to play a pivotal role in SCC cell migration,
with their colocalization on cell surface protrusions mediating the directional motility of SCC
cells [28]. CD44v3-10, CD44v6-10, and CD44v8-10 are the major CD44 variant isoforms co-
expressed with the standard CD44 isoform and podoplanin in SCC cells, suggesting that both
the standard and variant isoforms may interact with podoplanin during the pathogenesis of
SCC [32].

6.3. Extramammary Paget’s Disease (EMPD)

EMPD is a rare skin cancer with an extremely poor prognosis in patients with metas-
tasis. In in situ EMPD, tumor cells are located in the epidermis just above the basal cell
layers, whereas tumor cells penetrate the basal cell layers into the dermis in invasive EMPD.
Previously, we reported that podoplanin expression in peritumoral basal keratinocytes,
but not in tumor cells, is associated with tumor thickness and dermal invasion [65]. The
downregulation of E-cadherin in podoplanin (+) keratinocytes may contribute toward
the dermal penetration of tumor cells by decreasing cell adhesion between basal cells to
create gaps for invasion. Moreover, podoplanin (+) keratinocytes possess invadopodia,
which may assist dermal invasion by degrading the extracellular matrix in basal cell layers.
Furthermore, EMPD cells are positive for TGF-β expression, suggesting that tumor cells
control peritumoral keratinocytes to assist tumor invasion by upregulating podoplanin via
TGF-β [65]. The lack of a useful model has greatly limited our ability to directly evaluate
EMPD pathogenesis; however, a method for the 3D culture of primary EMPD cells was
recently established for the first time and allowed the successful generation of xenograft
murine models [107]. Consequently, the mechanisms via which podoplanin mediates
tumor progression in EMPD could soon be clarified in vivo.

6.4. Mycosis Fungoides and Sezary Syndrome

Mycosis fungoides is the most common cutaneous T-cell lymphoma; it clinically
manifests as patches, plaques, tumors, and erythroderma [108]. The disease exhibits slow
progression and the clinical course is stable; however, in some cases, it manifests aggressive
behavior and disseminates to the lymph nodes and internal organs.

In mycosis fungoides, podoplanin is expressed in the basal cell layer of the epidermis,
the malignant lymphocytes in epidermis and dermis, and the lymphatic vessels in der-
mis [69,109]. There is a significant positive correlation between the intensity of podoplanin
expression in the basal cell layer of the epidermis, malignant lymphocytes, and lymphatic
vessels and the TNMB staging of mycosis fungoides [69]. Increased expression of VEGF-C
and lymphatic vascularization are observed in highly infiltrated and extensive cutaneous
lesions, indicating tumor-induced lymphangiogenesis; this contributes to the progression of
mycosis fungoides [109]. There is a positive correlation between the number of podoplanin-
positive vessels and disease progression in Sézary syndrome, which is considered the most
severe cutaneous lymphoma [110]. Therefore, podoplanin could be used as a predictive
marker for the aggressive behavior in mycosis fungoides and Sézary syndrome.

7. Conclusions

The roles of podoplanin in skin diseases are summarized in Table 1. In inflammatory
diseases, podoplanin is thought to control dendritic cell migration to lymph nodes and
to regulate Th17-type immune responses. In psoriasis, the effects of podoplanin on Th17
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inflammation are controversial and further studies are required to elucidate the podoplanin-
mediated cellular pathways that affect immune responses and, thus, the functional roles of
podoplanin during the pathogenesis of psoriasis. The roles of podoplanin in wound healing
are much clearer than that in the immune response; podoplanin promotes keratinocyte
migration. Therefore, podoplanin could have therapeutic potential in patients with im-
paired wound healing (e.g., diabetic foot ulcers) when upregulated in the keratinocytes
at the wound edge. However, the increased risk of carcinogenesis due to podoplanin
upregulation should be considered, because a chronic wound in itself is a risk factor for
skin cancers. The role of podoplanin has also been elucidated in various skin cancers and
the targeted therapy of melanomas using anti-podoplanin antibodies has already been
evaluated in preclinical trials. Future studies to elucidate the roles of podoplanin during
cancer invasion and metastasis could therefore help to establish new podoplanin-based
anti-cancer therapies.

Table 1. Role of podoplanin-expressing cells in skin diseases.

Disease Cell Type Role

Psoriasis Keratinocytes Epidermal elongation
Th17 cells IL-17 ↓
Monocytes IL-17 ↑

Allergic contact dermatitis LECs Mediate migration of DCs and LCs
FRCs Lymph node expansion

Wound healing LECs Lymphangiogenesis
Keratinocytes Re-epithelialization

Melanoma CAFs Biomarker

Tumor cells amoeboid invasion and
dedifferentiation

cSCC Tumor cells EMT, invadopodia

EMPD Keratinocytes Invadopodia

Mycosis fungoides
Basal cell layer

Malignant lymphocytes
LECs

lymphangiogenesis

Sézary syndrome LECs lymphangiogenesis
LECs: lymphatic endothelial cells. DCs: dendritic cells. LCs: Langerhans cells. FRCs: fibroblastic reticular cells.
CAFs: cancer-associated fibroblasts. cSCC: cutaneous squamous cell carcinoma. EMT: epithelial-mesenchymal
transition. EMPD: extramammary Paget’s disease. ↑: upregulation. ↓: downregulation.
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