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Abstract

Our ability to effectively prevent the transmission of the dengue virus through targeted con-

trol of its vector, Aedes aegypti, depends critically on our understanding of the link between

mosquito abundance and human disease risk. Mosquito and clinical surveillance data are

widely collected, but linking them requires a modeling framework that accounts for the com-

plex non-linear mechanisms involved in transmission. Most critical are the bottleneck in

transmission imposed by mosquito lifespan relative to the virus’ extrinsic incubation period,

and the dynamics of human immunity. We developed a differential equation model of den-

gue transmission and embedded it in a Bayesian hierarchical framework that allowed us to

estimate latent time series of mosquito demographic rates from mosquito trap counts and

dengue case reports from the city of Vitória, Brazil. We used the fitted model to explore how

the timing of a pulse of adult mosquito control influences its effect on the human disease bur-

den in the following year. We found that control was generally more effective when imple-

mented in periods of relatively low mosquito mortality (when mosquito abundance was also

generally low). In particular, control implemented in early September (week 34 of the year)

produced the largest reduction in predicted human case reports over the following year.

This highlights the potential long-term utility of broad, off-peak-season mosquito control in

addition to existing, locally targeted within-season efforts. Further, uncertainty in the effec-

tiveness of control interventions was driven largely by posterior variation in the average

mosquito mortality rate (closely tied to total mosquito abundance) with lower mosquito mor-

tality generating systems more vulnerable to control. Broadly, these correlations suggest

that mosquito control is most effective in situations in which transmission is already limited

by mosquito abundance.
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Author summary

The contribution of the mosquito vector Aedes aegypti to the spread of dengue fever

depends not only on their abundance, but also on the likelihood of an exposed mosquito

living long enough to incubate the dengue virus and subsequently transmit it to a suscepti-

ble human host. We developed a mechanistic model that accounts for the role of this pro-

cess in the dynamics of dengue fever and fit the model to a time series of human case

reports and mosquito trap counts from the city of Vitória, Brazil. We then used this fitted

model to simulate the effect of mosquito control implemented at different times of the

year and found that mosquito control leads to the largest reduction in human dengue

cases over the following year when implemented in early September, during the dengue

off-season. Further, the effectiveness of mosquito control was strongly negatively corre-

lated with the overall average abundance of mosquitoes. Together with the timing of effec-

tive control, these results suggest that mosquito control is most effective when mosquitoes

are already limiting to transmission.

Introduction

Dengue fever is a massive global public health burden, with millions of cases per year [1].

Because the dengue virus (DENV) is transmitted by the mosquito Aedes aegypti, dengue fever

is prevented primarily through mosquito control programs [2]. Though there have been docu-

mented successes, there is limited evidence for the long-term sustainability and effectiveness of

these control programs [3]. As a result, there is a growing recognition that effective control

needs to be guided by high quality vector surveillance, together with quantitative tools that

synthesize vector surveillance with clinical surveillance, account for local epidemiology, and

facilitate local decision making [3, 4]. Moreover, mosquito control needs to be guided by an

understanding of the link between mosquito abundance and disease risk so that the mosqui-

toes most responsible for transmission can be targeted [4, 5].

Many of the attempts to establish this link have found a weak relationship between mos-

quito abundance indices and incidence of disease in humans [6–8]. However, these attempts

often do not account for the complex, non-linear interactions that mediate the relationship

between mosquito abundance and human disease. In particular, host immunity is a key intrin-

sic driver of infectious disease dynamics, and conditions favorable for transmission can only

lead to an outbreak of disease when there is a sufficiently large population of susceptible hosts

[9, 10]. As such, the ability of mosquitoes to contribute to DENV transmission depends criti-

cally on the level of immunity in the human population [5]. Further, the cycle of transmission

between humans and mosquitoes is influenced not just by mosquito abundance, but also by

mosquito survival relative to the virus incubation period in mosquitoes [11]. In fact, whether

or not an exposed mosquito will survive long enough to become infectious represents a critical

bottleneck in the transmission process and leads to nonlinear dependence of transmission on

mosquito survival [11].

The importance of intrinsic nonlinearities, potentially alongside seasonality and stochastic

forcing [9, 12, 13], in governing human disease risk highlights the need to integrate mechanis-

tic modeling into the quantitative tools used to understand the effects of control interventions.

Such mechanistic models can often perform better than complex autoregressive statistical

models in describing and forecasting population dynamics [14]. Moreover, in the absence of

case-control studies, mechanistic models can provide scenario-based tools that can be used to

predict the effect of management actions [15].
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Differential equation models provide a natural way to describe mechanistic processes, but

that description must also account for sources of uncertainty [16, 17]. In particular, the values

of parameters (e.g., the average length of time for which a host is infectious) are often uncer-

tain, which can lead to large uncertainty about the effects of management actions [18]. The

structure of the processes themselves can be uncertain [12], and needs to be informed by avail-

able, often noisy, data. Bayesian hierarchical modeling provides a coherent framework to

account for and integrate this uncertainty across the three levels of the model (data, process,

and parameters [19, 20]).

In what follows, we integrate these elements—a detailed mechanistic model of dengue

transmission with a full Bayesian accounting of uncertainty—to better understand the inter-

play of forces governing dengue dynamics and their interaction with potential vector control

interventions. We apply this framework to clinical and entomological surveillance data from

the city of Vitória, Brazil. These data allow us to estimate a latent time series of mosquito mor-

tality rates that modulate the transmission process and link mosquito abundance to human

disease. We then use the fitted model to explore how perturbations to the mosquito population

propagate and interact with the nonlinearities of dengue transmission to better inform mos-

quito control efforts.

Methods

Ethics statement

We did not obtain Institutional Review Board (IRB) approval for this work as the data we

worked with were received by us as aggregated data at the weekly and neighborhood level.

Hence, this research does not meet the definition of human subjects research requiring IRB

approval. The data were analyzed in the aggregated form, which protects the anonymity of

individuals.

Study system and data

Vitória is a coastal city and the capital of the state of Espı́rito Santo, Brazil, with a population

of 327,801 as of 2010 [21]. Since 2008, the company Ecovec has monitored mosquito abun-

dance for the city using approximately 1327 sticky traps (MosquiTRAP, [22]) arranged in a

roughly 250m grid across the city [7, 23]. Each trap is checked weekly and the mosquitoes

inside counted and identified, with the results sent to a central database that city managers

then use to map mosquito infestations and target control. These data comprise 243 weeks

(week 1 of 2008 through week 34 of 2012) of total city-wide counts of trapped gravid female

Aedes aegypti. It is important to note that this time series reflects both natural fluctuations in

mosquito density and fluctuations driven by the city’s existing mosquito control program. In

addition, dengue fever is a mandatory notifiable disease, and thus the city’s Ministry of Health

Secretary maintains a database of weekly notified probable dengue cases (i.e., medical care

sought for dengue-like symptoms) for the same time period.

Process model

Dengue epidemiology is complicated considerably by the presence of four simultaneously cir-

culating serotypes. Infection with one serotype confers life-long immunity to that serotype,

along with temporary immunity to other serotypes [24]. As this cross-immunity wanes, anti-

bodies from the previous infection can result in antibody-dependent enhancement (ADE),

wherein human hosts are more susceptible to infection with the other serotypes and more

likely to develop severe symptoms (i.e., dengue hemorrhagic fever or dengue shock syndrome)
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[24]. The strength and duration of these different inter-serotype interactions are not well

understood, although different models suggest that temporary cross-immunity alone (without

ADE) is sufficient to reproduce observed multi-annual dynamics in Thailand [24, 25].

Explicitly capturing the cross-immune interactions among all four serotypes, or even only

two of the four [26], leads to a large and complex mechanistic model. Moreover, because den-

gue case reports do not identify serotype, there is not enough information in our data to

inform the dynamics of individual serotypes. As such, we captured temporary cross-immunity,

and the potential for multiple sequential infections, as simply and tractably as possible in a sus-

ceptible–exposed–infectious–recovered–susceptible (SEIRS) compartment model, similar to

[27–30]. Although it captures the critical influence of temporary immunity, this framework

does not account for the potential relationship between an individual’s infection history and

the likelihood that a new infection will be symptomatic (and thus reported). In particular, sec-

ondary infections appear more likely to be symptomatic than primary infections [31, 32],

while third and fourth infections appear much less likely to be symptomatic [33] (but see [34]

who found similar rates of symptomatic cases across infection number). Despite these poten-

tial differences in reporting rate, modeling work has suggested that the dynamics of primary

and secondary infections are closely coupled (and thus not dynamically distinct) under many

conditions [35]. Moreover, given the short time scale of our data (5 years) relative to the period

of cross-immunity (roughly 2 years [25]), we expect that third and fourth infections will be rel-

atively rare. We thus expect the SEIRS framework, and the assumption of equal symptomatic

rates across infection number, to be sufficient for capturing the dengue dynamics of Vitória

and the relationship between mosquito abundance and human disease.

In the SEIRS framework, the total human population of Vitória (N) is divided into suscepti-

ble (S), exposed (E), infectious (I), and immune (R) classes. Susceptible humans (S) become

exposed (E) through contact with infectious mosquitoes (VI). Following a latent period (1

r
),

exposed humans become infectious (I) at which point they can infect susceptible mosquitoes

(VS). Infectious humans recover at rate γ and subsequently remain immune (R) for a period (1

d
)

after which they re-enter the susceptible class. Similarly, susceptible mosquitoes (VS) become

exposed (VE) by biting infectious humans and pass through a temperature-dependent incuba-

tion period ( 1

rvðtÞ
) before becoming infectious (VI). Because the assumption of an exponentially

distributed incubation period (implicit in the specification of a differential equation model) is

a poor fit to laboratory observations [36], we instead implemented a gamma-distributed incu-

bation period by chaining together multiple exposed classes (VEj, taking advantage of the fact

that a gamma-distributed random variable can be generated through the sum of exponential

random variables with the same rate parameter) [37]. Total mosquito population size (VN) is

controlled by a forced, seasonally varying growth rate (r(t)), while the transmission bottleneck

is captured with a forced, seasonally varying mortality rate (d(t)). Captured mosquitoes (VC)

accumulate at rate ϕqτ(t), where ϕq is the per-trap capture rate, and τ(t) is the number of traps

deployed in week t.
We specified the differential equations governing the human population as:

dS
dt
¼ bN � bS � l

VI

N
Sþ dR ð1Þ

dE
dt
¼ l

VI

N
S � ðrþ bÞE ð2Þ

dI
dt
¼ rE � ðgþ bÞI ð3Þ
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dR
dt
¼ gI � ðdþ bÞR ð4Þ

while the equations governing the mosquito (vector) population are:

dVN

dt
¼ rðtÞVN � �qtðtÞVN ð5Þ

dVE1

dt
¼ l

I
N

VS � ð4rvðtÞ þ dðtÞ þ �qtðtÞÞVE1 ð6Þ

dVE2

dt
¼ 4rvðtÞVE1 � ð4rvðtÞ þ dðtÞ þ �qtðtÞÞVE2 ð7Þ

dVE3

dt
¼ 4rvðtÞVE2 � ð4rvðtÞ þ dðtÞ þ �qtðtÞÞVE3 ð8Þ

dVE4

dt
¼ 4rvðtÞVE3 � ð4rvðtÞ þ dðtÞ þ �qtðtÞÞVE4 ð9Þ

dVI

dt
¼ 4rvðtÞVE4 � ðdðtÞ þ �qtðtÞÞVI ð10Þ

dVC

dt
¼ �qtðtÞVN ð11Þ

VS ¼ VN � VE � VI: ð12Þ

We modeled the centered and log-transformed mosquito mortality rate (ν) and the per-cap-

ita mosquito growth rate (r) as forced harmonic oscillators with natural periods of one year:

d2n

dt2
¼ � o2nþ �nt ð13Þ

d2r
dt2
¼ � o2r þ �rt; ð14Þ

where the angular frequency of the oscillator, ω = 2π/52, the mosquito death rate

d(t) = d0 exp(ν(t)), and

�nt � Normalð0;s2

n
Þ ð15Þ

�rt � Normalð0;s2

r Þ; ð16Þ

for each week t = 1, . . ., 243. These stochastically-forced harmonic oscillators provide a flexible

framework for generating smooth seasonal oscillations in the latent mosquito processes [38].

Data model

To connect the differential equation model to the observed case reports, we added an extra

state, C, that collects the cumulative number of transitions from the exposed to infectious class

(assuming that case reporting coincides with the onset of symptoms). We then modeled the
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number of new cases reported in week t (yt) as:

yt � NegBinð�yðCðtÞ � Cðt � 1ÞÞ; ZyÞ; ð17Þ

where ϕy is the reporting probability, C(t) − C(t − 1) is the number of new infectious humans

in week t, and ηy controls the overdispersion relative to the Poisson distribution.

We similarly modeled the number of mosquitoes trapped in week t (qt) as:

qt � NegBinðVCðtÞ � VCðt � 1Þ; ZqÞ; ð18Þ

where VC(t) − VC(t − 1) is the number of new mosquitoes captured in week t, and ηq controls

overdispersion relative to the Poisson distribution.

Parameterization and priors

Several of the parameters in this model are assumed to be fixed and known (Table 1). The

human population size and average life span (which we use to parameterize the birth/death

rate) for Vitória were taken from the 2010 census. To maintain identifiability, the transmission

rate (λ) was also fixed at literature values. Lastly, the extrinsic incubation period in mosquitoes

was modeled as a function of weekly mean temperature and forced with weather station data

obtained from WeatherUnderground [39].

The remaining parameters include the epidemiological parameters controlling the average

latent, infectious, and immune periods (ρ, γ, δ) and average mosquito lifespan (d0), the initial

Table 1. Model parameters and their values. The values in parentheses after the posterior means give the 80% credible interval. See S1 Text for a full description of all

prior distributions.

Parameter Description Prior mean Posterior mean Citation

N Human population size in Vitória, Brazil 327801 [21]

1/d Human life-span 76 years [40]

λ Transmission rate 4.87 week−1 [41]

1/ρv(t) Extrinsic incubation period 1

7
exp 7:9 � 0:21T tð Þð Þ weeks [36]

VE0 Initial exposed mosquitoes 0

VI0 Initial infectious mosquitoes 0

d0 Baseline mosquito mortality rate 1.47 week−1 0.88 (0.7, 1.1) [42]

1/ρ Latent period in host 0.87 weeks 1.72 (1.2, 2.3) [36]

γ Rate of loss of infectiousness 3.5 week−1 3.6 (3.2, 4.1) [43]

1/δ Period of cross-immunity 97 weeks 114 (72, 160) [25]

σr Standard deviation of mosquito growth rate forcing 0� 0.013 (0.01, 0.02)

σν Standard deviation of mosquito mortality rate forcing 0� 0.0005 (0.0004, 0.0008)

S0 Proportion initially susceptible 0.4 0.42 (0.28, 0.57) [44]

E0 Number initially exposed 100 148 (104, 196)

I0 Number initially infectious 60 79 (45, 116)

r0 Initial mosquito population growth rate 0 0.008 (-0.01, 0.02)

ν0 Initial unconstrained mosquito mortality rate 0 -0.16 (-0.4, 0.08)

VN0 Initial mosquito population size 2N 1.5N (1.1N, 1.9N)

ϕy Reporting probability 0.083 0.14 (0.1, 0.18) [45]

log(ϕq) Log per-trap mosquito capture rate −13 -13.2 (-13.6, -13)

ηy Overdispersion of case reports 0� 0.12 (0.1, 0.13)

ηq Overdispersion of mosquito trap counts 0� 0.14 (0.12, 0.16)

� indicates prior mode, rather than mean.

https://doi.org/10.1371/journal.pntd.0008868.t001
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conditions of the model (S0, E0, I0, R0, VN0, ν0, r0), the variances of the latent mosquito pro-

cesses (s2
r , s2

n
), and the remaining measurement parameters (ϕy, ϕq, ηy, ηq). Where possible, we

specified informative prior distributions for these parameters based on existing laboratory and

field studies (see Table 1 for means and S1 Text for detailed explanations).

Implementation

Combining the data, process, and parameter models [19], we summarize the full hierarchical

model as:

ytj� � NegBinð�yðCðtÞ � Cðt � 1ÞÞ; ZyÞ; ð19Þ

qtj� � NegBinðVCðtÞ � VCðt � 1Þ; ZqÞ ð20Þ

ðC;VCÞ ¼Mðϵr; ϵν; θÞ ð21Þ

�rt � Normalð0; s2

r Þ ð22Þ

�nt � Normalð0;s2

n
Þ ð23Þ

θ � ½θ� ð24Þ

where θ is a vector of all the model parameters and initial conditions, and Mðϵr; ϵν; yÞ repre-

sents the (numeric) solution to the differential equation model (Eqs 1–14) as a function of θ
and the weekly stochastic forcing terms (ϵr, ϵν). Sampling from the posterior distribution of

the parameters in a mechanistic model is difficult due to multimodality, variable parameter

sensitivities (e.g., small changes in one parameter may lead to large changes in output, while

similar changes in another parameter may have little effect), and potentially strong posterior

correlations induced by the nonlinearity of the differential equation model [14, 46, 47]. How-

ever, the variable �t introduces flexibility to the mechanistic model that remedies lack-of-fit

when the process parameters are far from optimal [48], thereby reducing multimodality and

helping to smooth the posterior surface. Gradient-based methods like Hamiltonian Monte

Carlo (HMC) can then more easily and efficiently traverse the posterior. Samples from the

posterior distribution were generated using HMC implemented in the rstan package [49, 50]

for R [51]. We ran 3 chains with different starting values for 4,000 iterations each, discarding

the first 2,000 as burn-in. Convergence diagnostics and mixing were evaluated using the shiny-

stan package [52]. In our implementation, the solution to the differential equation model was

approximated with an Euler scheme with a time step of 1 day. Timesteps as small as 1/8 of a

day were explored and did not qualitatively change the modeled dynamics. Code is available

from https://github.com/clint-leach/mosquito-recon.

Mosquito control simulations

Given a subset of the samples from the posterior distribution as obtained above (2000, taken

to reduce computation time), we simulated the effects of a single pulse of mosquito control

applied in each week of the first three years of the time series. Because the city already imple-

ments responsive, targeted control with the aim of reducing local mosquito density during an

existing outbreak, we focused our simulations on exploring the longer-term feedbacks induced

by mosquito control and the ability of an intervention to reduce the disease burden over the

following year. For each week and each posterior sample, we simulated the dynamics resulting
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from a 5% reduction in the mosquito population implemented at the beginning of that week

(affecting susceptible, exposed, and infectious mosquitoes equally). To capture the likely rapid

rebound in mosquito abundance following a single pulse of control [28, 53], we also simulated

a 5% increase in mosquito birth rate in the following week to return mosquito abundance to

its previous trajectory (without this, the 5% reduction in abundance persists indefinitely). We

then compared the number of cases produced over the year following the control intervention

in the control scenario to the same number in the uncontrolled scenario. A 5% reduction in

mosquito abundance was chosen to keep our simulations conservative relative to field esti-

mates of the mortality induced by spraying [54], and to avoid pushing the model into the unre-

alistic range of dengue eradication.

Results

The model captured the observed dynamics of both case reports and mosquito trap counts

(Fig 1). The estimated posterior median case reports explained 91% of the variation in the

observed time series, while the posterior median mosquito trap counts explained 46% of the

variation in the observed time series. In addition, posterior predictive checks showed that the

model reproduced the total number of cases reported and mosquitoes captured as well as the

autocorrelation structure of both time series (with the exception of slightly underestimating

the autocorrelation for short lags, S6, S7 and S8 Figs). The posterior distributions of the rate of

infectious decay (γ) and the period of cross-immunity (1/δ) did not differ substantially from

their priors, suggesting that the Vitória data contained little additional information about

these parameters (S3 Fig). The estimated latent period in a human host (1/ρ, the expected time

it takes for an exposed human to become infectious to biting mosquitoes) was influenced

more strongly by the data, with a posterior mean of 1.73 weeks compared to a prior mean of

0.87 weeks. Further, the posterior mean case reporting rate (ϕ) was 0.14, larger than the prior

mean of 0.08.

The estimated weekly mosquito mortality rate varied seasonally, with generally high

mortality early in the year and low mortality in August to October (Fig 1). This seasonal

trend broadly tracked seasonal variation in temperature (Fig 2, correlation coefficient of

0.64) and mosquito trap counts (Fig 1), though the shape of the annual trajectory differed

from year to year. The posterior distribution of the baseline mortality rate (d0) had a mean

of 0.88/week, roughly 60% of the prior mean. The marginal posterior means of the �νt forc-

ing the mosquito mortality process exhibited a higher-frequency periodic oscillation (S1

Fig), although the marginal posterior distribution of each �νt overlapped zero. In addition,

the standard deviation of the mortality forcing terms was small relative to the weak prior

(E(σν|y) = 0.01, S2 Fig).

The effect of a given mosquito control intervention (i.e., the temporary removal of 5% of

the adult population in a given week) on the number of cases in the following year (relative to

no control) varied both seasonally and interannually (Fig 3). This variation in the effect of con-

trol was tightly correlated with the estimated mosquito mortality, with a median posterior cor-

relation between the two time series of 0.96. As such, the seasonal variation in the effectiveness

of control followed the same trend as mosquito mortality rate (although the annual minima in

the case ratio time series generally fell 1 to 2 weeks before the minima in the mosquito mortal-

ity time series), with the largest reductions in case load resulting from interventions during the

dengue off-season (early September for 2008 and 2009, and mid-July for 2010). Summing over

the interannual variation to compute the overall effect of control implemented in a given week

of the year, we found that mosquito control was most effective when implemented around

week 34 (late August/early September), reducing the estimated case load by roughly 14%
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(Fig 3). This broadly corresponds to the end of the dry season in Vitória, when both dengue

case reports and mosquito trap counts are low.

The variation associated with the posterior predicted effect of control implemented in week

34 of the year (i.e., the width of ribbon in Fig 3) was correlated with the baseline mosquito

mortality rate (d0, posterior correlation coefficient of 0.65) and the case reporting probability

(ϕ, posterior correlation coefficient of -0.19). Simulated mosquito control created the largest

reduction in case reports in posterior samples with low baseline mosquito mortality rate and/

or high reporting probability, while control was relatively less effective in simulations from

samples with high mosquito mortality or low reporting probability (Fig 4). Thus mosquito

control was more effective at reducing disease burden in simulations with long average mos-

quito lifespans (i.e., low mosquito mortality rates) or low overall prevalence (i.e., fewer unde-

tected cases).

Fig 1. Vitória data and model estimates. A: weekly observed case reports (points), with corresponding posterior

median (black line) and 80% posterior credible interval (gray band). B: weekly mosquito trap counts (points), with

posterior median (black line) and 80% posterior credible interval (gray band). C: extrinsic incubation period (EIP;

weeks), computed from weekly mean temperature data. D: estimated weekly mosquito mortality rate, with the

posterior median (black line) and the 80% posterior credible interval (gray band).

https://doi.org/10.1371/journal.pntd.0008868.g001
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Fig 2. Mosquito mortality and temperature. Posterior median mosquito mortality rate as a function of weekly mean

temperature (degrees Celsius).

https://doi.org/10.1371/journal.pntd.0008868.g002

Fig 3. The effect of mosquito control as a function of the week in which it was applied. Summary of the posterior

predicted effect of mosquito control implemented in a given week of the year on the number of cases in the following

year (relative to the number of cases expected without control). Black lines indicate the posterior median, while gray

ribbons indicate the 80% credible interval. The first three panels show the results for control implemented in the years

2008-2010, and the last panel shows the overall effect of control impelmented in a given week of the year, summing

over all three years. For example, mosquito control applied in week 37 of 2008 would have prevented about 13% of the

human cases over the following year (i.e., the caseload would have been 87% of the expectation without control).

https://doi.org/10.1371/journal.pntd.0008868.g003
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Discussion

Processes driving effect of mosquito control

The dynamics of dengue fever, like those of many infectious diseases [9, 12] and ecological sys-

tems [55], are driven by the combined efforts of intrinsic non-linearities, seasonality, and sto-

chasticity. Seasonality, in particular, is an important factor in capturing the annual cycle of

dengue outbreaks [24, 25, 56]. However, the observed seasonality in transmission likely

emerges from the combined effects of multiple seasonally-varying components that may be

driven by different environmental factors that oscillate in different phases (e.g., mosquito

abundance seems to lag slightly behind temperature-driven variation in extrinsic incubation

period, Fig 1). Integrating these seasonally-varying components into a synthetic measure of

transmission potential (e.g., a temperature-dependent effective reproduction number, [57]), or

more specifically, a measure of the transmission potential of mosquitoes, is difficult.

We positioned the latent mosquito mortality as the link between mosquito abundance,

the extrinsic incubation period, and human cases. In this way, the estimated mosquito mor-

tality rate serves as an index of transmission potential, opening or closing the mosquito life

history bottleneck [11] as necessary to fit to the case reports data. The resulting seasonality in

the estimated trajectory suggests that the seasonality in mosquito abundance and the extrin-

sic incubation period was not sufficient to capture the observed case reports. In particular,

when mosquitoes were relatively scarce and transmission limited, we estimated a relatively

low mosquito mortality, suggesting that long-lived mosquitoes were required to maintain

observed levels of transmission through the off-season. On the other hand, when mosquitoes

were abundant, we estimated relatively high mosquito mortality rates, suggesting that trans-

mission needed to be damped.

The importance of mosquito longevity in driving disease dynamics highlights the potential

effectiveness of control efforts that target adult mosquitoes and disrupt transmission by pre-

venting mosquitoes from living long enough to progress through the extrinsic incubation

period to the infectious state and bite a susceptible human. In fact, this forms the basis for

much of the theory of adult mosquito control [3, 11, 28]. The high correlation between our

estimated mosquito mortality and the effect of control confirms this theory, suggesting that

control is most effective when it targets long-lived mosquitoes. Specifically, our simulated

mosquito control interventions were most effective at reducing the disease burden when

applied around week 34 (i.e., early September), in the dengue off-season. The effectiveness of

this control was likely driven by the fact that transmission during the off-season was already

limited by low mosquito abundance and a relatively high extrinsic incubation period. Given

that limitation, transmission was maintained by relatively few long-lived mosquitoes, making

the system vulnerable to perturbation.

On the other hand, we found that a single pulse of control was relatively less effective when

implemented during an outbreak, when mosquitoes were abundant (and unlikely to be limit-

ing transmission) but short-lived. Given the relatively high mosquito mortality rates during

this time, exposed and infectious mosquitoes were already fairly ephemeral, such that the rela-

tively small disruption induced by control likely made little difference. Moreover, due to the

large number of infectious human hosts available to transmit to the remaining (and rapidly

rebounding) mosquito population, the population of exposed mosquitoes likely recovered

quickly [27, 28]. Barsante et al. [58] and Oki et al. [59] similarly found that control was most

effective when applied well before peak prevalence, either during the dry season [58] or early

in the rainy season [59] (September is near the end of the dry season in Vitória). While the

immediate effects of mosquito control implemented during the decline phase of an outbreak

may be masked by the natually fading transmission intensity [60], our results nonetheless
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indicated that disrupting inter-seasonal transmission can be an effective longer-term strategy

[61]. Further, although large pulses of imported cases could potentially swamp the effects of

early control, in additional simulations we found that our results were robust to the import of

10 infectious humans (roughly the same order as the number of locally reported cases) just

before the annual outbreak.

The Bayesian framework allowed us to account for uncertainty across the data, process, and

parameter levels of our model [19]. We carried this uncertainty through to our simulations of

control interventions [18] and found that there was substantial uncertainty in the proportion

of cases prevented by a control intervention (i.e., the width of the ribbons in Fig 3). Much of

this uncertainty could be attributed to posterior uncertainty in the case reporting rate (ϕ) and

the average mosquito mortality rate (d0). Specifically, we found that control implemented at

the overall optimum (week 34) had the largest impact (i.e., the lowest case ratio) in simulations

with a low average mosquito mortality and/or a high case reporting rate (Fig 4). Mosquito

mortality and the case reporting rate were correlated with the overall level of mosquito abun-

dance and the overall size of the susceptible population, respectively, suggesting that control

was most effective in simulations with fewer mosquitoes and more susceptible humans. Hlad-

ish et al. [61] similarly found that simulated indoor residual spraying was more effective when

the modeled mosquito abundance was already low. This suggests that control efforts that

reduce the ability of mosquitoes to transmit DENV are most effective for situations in which

mosquito abundance is already the limiting component to maintaining transmission (relative

to other factors like human immunity).

The posterior correlation between the effectiveness of control, the case reporting rate, and

the average mosquito mortality rate emphasizes that the impact of mosquito control is jointly

regulated by both mosquito population dynamics and human immune processes. Similar

observations were made by ten Bosch et al. [62] who found that models with longer periods of

cross-immunity (such that susceptibles replenished more slowly) generated systems in which

transmission was more difficult to disrupt with control actions. As a result of these relation-

ships, efficient deployment of mosquito control, and accurate prediction of its effects, is likely

to depend in part on our ability to monitor and predict the dynamics of human immunity. To

Fig 4. Posterior correlation between system parameters and the effectiveness of control. The y-axis represents the

effectiveness of optimally timed control, i.e., the effect of control implmented in the 34th week of the year on the

relative number of cases in the following year, summed over 2008, 2009, and 2010. Each point represets a single sample

from the posterior distribution, giving the number of cases in the controlled simulation (relative to the number of cases

expected without control) as a function of A: the mean mosquito mortality rate, d0, and B: the case reporting

probability, ϕ, from that posterior sample.

https://doi.org/10.1371/journal.pntd.0008868.g004
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meet these needs, existing mosquito monitoring efforts need to be paired with more detailed

clinical surveillance [3] and tighter estimates of the period of cross-immunity [62] and the

number of unreported cases [45]. In the absence of, or as a supplement to, such data, mecha-

nistic models like the one developed here, or so-called TSIR (Time-series Susceptiple-Infected-

Recovered) frameworks that reconstruct the dynamics of the susceptible class [25, 63], need to

be further developed to better inform and understand mosquito control efforts.

Interpretation of the estimated mosquito mortality rate

The positive correlation between the estimated mosquito mortality rate and the simulated

effect of control suggests that mosquito control was most effective when it targeted long-lived

mosquitoes during the inter-epidemic periods when mosquito abundance was low. However,

the fact that the mosquito mortality forcing terms (�ν, Eqs 13 and 16) were the only source of

variability in the transmission process implies that the estimated mosquito mortality time

series could have absorbed other sources of stochasticity or model misspecification. Hooker

and Ellner [64] provide a framework for diagnosing such model misspecification in differential

equation models using forcing functions similar to our implementation of the �ν. In that

framework, Hooker and Ellner [64] estimate nonparametric forcing functions that modify a

fitted differential equation model to provide a good fit to the data. These forcing functions

serve as residuals on the time derivatives, and can be more readily interpreted as indicators of

lack-of-fit than residuals on the state variables [16, 64]. We do not employ the same explicit

goodness-of-fit testing framework as [64], but we can inspect our estimated �ν forcing terms in

the same spirit.

The periodic structure in the time series of the posterior means of the �ν (S1 Fig) suggests

that these terms were accounting for more than just noise, and there may have been some

unmodeled process influencing fluctuations in mosquito mortality and/or transmission. Fol-

lowing Hooker and Ellner, we can explore whether this process is likely to result from misspe-

cification of the rates of change of the existing state variables (indicated by a dependence of �νt

on other state variables), or from missing state variables altogether (indicated by an additional

dependence of �νt on its own lagged values). The lack of any apparent relationship between the

forcing terms and any of the estimated state variables, combined with the dependence of �νt on

previous values (as apparent through the periodic structure), suggest that unmodeled state var-

iables may be the more likely driver of model misspecification. These unmodeled components

could include additional mosquito population dynamic processes (e.g., aquatic stage dynamics,

environmental drivers, or control interventions), or epidemiological processes (e.g., multiple

circulating serotypes of the dengue virus, subsets of the population with different mixing or

risk levels).

Despite these potential sources of model misspecification, our estimated mosquito mortali-

ties nonetheless fell within the reasonable range from the literature [42, 65]. Moreover, the fact

that our estimated mortality rate increased with temperature also broadly agrees with the

empirical literature on mosquito survival [42, 66, 67]. This suggests that regardless of unex-

plained structure in the forcing terms, the pattern of case reports was still very well described

by realistic seasonal fluctuations in the mosquito mortality rate. As demonstrated by Reiner

et al. [68] for malaria transmission, estimates of transmission potential can be sensitive to fluc-

tuations in mosquito abundance and age structure. Moreover, given the broad importance of

seasonality in understanding dengue epidemiology [62], and the role of mosquito mortality

and age in driving the effect of control interventions, future work should focus on developing

a more complete, predictive understanding of the seasonal drivers of mosquito mortality

(including, potentially, control itself).
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Additional considerations and extensions

In addition to epidemiological complexity, dengue dynamics are further complicated by the

reporting process. We estimated a relatively long average intrinsic incubation period (1/ρ, pos-

terior mean of 1.7 weeks) relative to our prior mean (0.87 weeks), suggesting possible reporting

delays [69]. Moreover, the case data to which we fit the model represent reports of “dengue-

like illness,” without laboratory confirmation, and as such could include cases of other diseases

with similar symptoms (e.g., chikungunya or Zika). However, neither chikungunya nor Zika

had emerged as substantial public health threats in Brazil by the end of our time series in late

2012 [70, 71]. In addition, given the high underreporting rate expected for dengue fever [45],

and the uncertainty incorporated into the measurement model, we expect misreported cases

to have a small effect on our analyses.

Mosquito control interventions can prevent cases by acting on any of the components of

vectorial capacity. We focused on the direct effect of killing adult mosquitoes on transmission,

but adult control can also act by reducing egg laying and the number of mosquitoes in the

next generation [72]. Given the relative simplicity of our mosquito model, we were unable to

explore the feedbacks that adult control may induce in mosquito population dynamics, and

instead assumed that mosquito populations quickly rebound from any perturbations [53]. We

expect that capturing these feedbacks would likely reinforce our conclusions about the utility

of off-season control, as the disruption to mosquito population dynamics would more strongly

limit the ability of the mosquito population to maintain transmission through the off-season.

Although our results suggest that a pulse of adult control in the off-season may be an effec-

tive tool for preventing human cases, achieving particular control thresholds or policy goals

will likely require deploying a combination of control interventions [72]. In fact, it is impor-

tant to note that the data to which we fit our model implicitly reflect the control efforts already

enacted by the city (the effects of which may have influenced our estimates of mosquito demo-

graphic rates). Thus, our mosquito control simulations should be interepreted as exploring the

effect of an additional pulse of city-wide control in addition to the existing control activities.

These control efforts are guided by the MI-Dengue system, which uses the trap-level mosquito

surveillance data to target areas of high mosquito infestation for control (including source

reduction, larvacide, and adulticide) [22]. Although these targeted, reactive interventions are

necessary to help reduce local disease risk at times and locations of high mosquito abundance

[73], our results suggest that an additional pulse of proactive control in the off-season when

mosquitoes are less abundant would minimize human cases.

The frequent use of spatially-targeted mosquito control highlights the potential for spatial

heterogeneities in disease risk within a city. In particular, structured human movement within

the city is likely to induce heterogeneous human-mosquito mixing [74–76]. In addition, spatial

variability in socioeconomic factors within the city may also modulate the extent to which

mosquitoes in different parts of the city contribute to disease spread [77–80]. Although our

model does not account for these heterogeneities, it was nonetheless able to capture the city-

wide dynamics well, suggesting that there may be sufficient mixing to appear homogeneous at

the city scale. Further, although our mechanistic model may be able to suggest when a city-

wide intervention is likely to be effective, to make the best use of limited resources, spatial pri-

oritization may still be necessary.

Conclusions

Efforts to connect mosquito abundance to human disease are often hampered by the con-

founding influences of human immunity and mosquito survival. The challenges presented by

these confounding factors highlight the value of mechanistic information in studying the effect
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of mosquito control on disease spread. In the Bayesian context we deployed, this mechanistic

knowledge, as formalized in the specification of a differential equation model, can be viewed

as part of the prior knowledge on the relationship between mosquito abundance and human

disease [12, 17]. As such, we should neither ignore this mechanistic information, nor encode it

so rigidly that it overwhelms the signal in our data.

We developed a simple yet realistic mechanistic model of dengue fever spread that repre-

sents the fundamental elements of our prior understanding of dengue epidemiology, while

also allowing for uncertainty and flexibility in the fluctuations of mosquito demographic rates.

This mechanistic framework allowed us to capture the critical contribution of long-lived, off-

season mosquitoes to the maintenance of transmission and to identify critical intervention

points that would not be apparent otherwise. The fully hierarchical Bayesian framework in

which we embedded the mechanistic model allowed for a thorough accounting of uncertainty

that was carried through to the evaluation of different control strategies. This combination of

model features helps to meet the need for more effective, biologically grounded, and data-

driven dengue control policies and offers a building block on which these tools can be further

developed in the future.

Supporting information

S1 Fig. Posterior estimates of harmonic oscillator forcing functions. A: mosquito mortality

forcing. B: mosquito growth forcing. Median posterior estimate (black line) and 80% credible

interval (gray band).

(EPS)

S2 Fig. Posterior distribution of variances on forcing terms. A: mosquito mortality forcing.

B: mosquito growth forcing.

(EPS)

S3 Fig. Posterior distribution of epidemiological parameters. The black line indicates the

prior density. A: scaled latent period in human host (1/ρ). B: scaled rate of infectious decay in

human host (γ). C: scaled period of cross-immunity (1/δ). D: scaled baseline mosquito mortal-

ity rate (d0).

(EPS)

S4 Fig. Posterior distribution of initial conditions. The black line indicates the prior density.

A: initial proportion of the human population that is susceptible. B: initial number of exposed

individuals. C: initial number of infectious individuals. D: log initial number of mosquitoes-

per-person. E: initial value of centered mosquito mortality rate oscillator. F: initial value of

mosquito population growth rate oscillator.

(EPS)

S5 Fig. Posterior distribution of measurement parameters. The black line shows the prior

density. A: log of the mosquito trap capture rate (which is strongly correlated with initial mos-

quito abundance). B: human case reporting probability. C: mosquito trap count measurement

over-dispersion (prior density too low to be visible). D: case report measurement over-disper-

sion (prior density too low to be visible).

(EPS)

S6 Fig. Posterior check of autocorrelation structure in data. A: autocorrelation in case

report time series. B: autocorrelation in trapped mosquito time series. Points indicate the

observed autocorrelation at the given lag, and vertical lines give the 80% posterior credible
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interval of the autocorrelation in the estimated time series.

(EPS)

S7 Fig. Posterior distribution of the total number of cases reported (A) and the total num-

ber of mosquitoes captured (B). The thick line indicates the observed totals.

(EPS)

S8 Fig. Posterior distributions of the minimum and maximum weekly reported cases (A

and C) and trapped mosquitoes (B and D). The thick line indicates the observed minima and

maxima.

(EPS)

S9 Fig. Posterior estimates of the mosquito mortality rate and the probability of a mosquito

surving the external incubation period. The black line indicates the posterior median, while

the gray ribbon shows the 80% credible interval. The probability of surviving the extrinsic incu-

bation period (bottom panel) was computed by taking the ratio of the number of mosquitoes

that entered the infectious class in a week over the total number of mosquitoes that exited the

exposed class that week. That is, the probability of surviving the extrinsic incubatio period rep-

resents the fraction of mosquitoes leaving the exposed class that enter the infectious class.

(EPS)

S1 Text. Full specification of the model and prior distributions.

(PDF)
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