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ABSTRACT

BACKGROUND/OBJECTIVES: Nobiletin (NOB), a citrus flavonoid, is reported to have 
beneficial effects on cardiovascular and metabolic health. However, there is limited research 
investigating the effect of long-term supplementation with low-dose NOB on high-
cholesterol diet (HCD)-induced hypercholesterolemia and non-obese nonalcoholic fatty liver 
disease (NAFLD). Therefore, we investigated the influence of NOB on hypercholesterolemia 
and NAFLD in HCD-fed mice.
SUBJECTS/METHODS: C57BL/6J mice were fed a normal diet (ND) or HCD (35 kcal% fat, 
1.25% cholesterol, 0.5% cholic acid) with or without NOB (0.02%) for 20 weeks.
RESULTS: HCD feeding markedly reduced the final body weight compared to ND feeding, 
with no apparent energy intake differences. NOB supplementation suppressed HCD-induced 
weight loss without altering energy intake. Moreover, NOB significantly decreased the total 
cholesterol (TC) levels and the low-density lipoprotein (LDL)/very-LDL-cholesterol to TC 
ratio, and increased the high-density lipoprotein-cholesterol/TC ratio in plasma, compared 
to those for HCD feeding alone. The plasma levels of inflammatory and atherosclerosis 
markers (C-reactive protein, oxidized LDL, interleukin [IL]-1β, IL-6, and plasminogen 
activator inhibitor-1) were significantly lower, whereas those of anti-atherogenic adiponectin 
and paraoxonase were higher in the NOB-supplemented group than in the HCD control 
group. Furthermore, NOB significantly decreased liver weight, hepatic cholesterol and 
triglyceride contents, and lipid droplet accumulation by inhibiting messenger RNA 
expression of hepatic genes and activity levels of cholesterol synthesis-, esterification-, and 
fatty acid synthesis-associated enzymes, concomitantly enhancing fatty acid oxidation-
related gene expression and enzyme activities. Dietary NOB supplementation may protect 
against hypercholesterolemia and NAFLD via regulation of hepatic lipid metabolism in HCD-
fed mice; these effects are associated with the amelioration of inflammation and reductions 
in the levels of atherosclerosis-associated cardiovascular markers.
CONCLUSIONS: The present study suggests that NOB may serve as a potential therapeutic 
agent for the treatment of HCD-induced hypercholesterolemia and NAFLD.
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INTRODUCTION

Cholesterol is necessary for good health. However, hypercholesterolemia, defined as an 
abnormally increased level of cholesterol in blood, is a serious health condition. It is a major 
risk factor for the development of cardiovascular diseases, such as atherosclerosis and 
its complications. In addition, many studies suggest an association of dietary cholesterol 
intake with the risk of nonalcoholic fatty liver disease (NAFLD), a broad spectrum of liver 
diseases, ranging from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer 
[1-5]. Although most patients with NAFLD are obese, NAFLD is also observed in non-obese 
subjects [1]. Epidemiologic studies suggest that a high-cholesterol diet (HCD) is a critical 
factor in non-obese NAFLD [1,2]. In a small Italy-based study, normal-weight patients with 
steatohepatitis showed higher cholesterol consumption than that of BMI-matched healthy 
controls [3]. Yasutake et al. [1] also reported that cholesterol intake in non-obese NAFLD 
patients was notably high compared to that in obese NAFLD patients and healthy volunteers, 
although dietary intake levels of total energy, fat, and carbohydrate were not excessive in 
the non-obese patients. Animal studies using cholesterol-rich diets support the results 
obtained in non-obese NAFLD patients [4,5]. C57BL/6J mice fed an HCD (containing 1.25% 
cholesterol and 0.5% cholic acid) developed progressive steatosis, inflammation, and fibrosis 
without obesity [4]. Recently, Tu et al. [5] also demonstrated that HCD-induced non-obese 
NAFLD might be distinct from obese NAFLD occurring as a consequence of metabolic 
syndrome. Moreover, patients with NAFLD are at an increased risk of cardiovascular disease, 
and NAFLD is proposed as an independent risk factor for cardiovascular disease [6,7].

Nobiletin (5,6,7,8,3′,4′-hexamethoxyflavone, NOB) is a flavonoid present in the peel of 
citrus fruits such as Citrus depressa (shiikuwasa), Citrus sinensis (oranges), and Citrus limon 
(lemons) [8]. It has been reported that NOB has various pharmacological activities, 
such as anti-inflammation, antioxidation, anti-cancer, and neuroprotection effects [8]. 
Hepatoprotective, cardioprotective, and metabolically beneficial properties of NOB have also 
been demonstrated [9-11]. In vitro, NOB inhibited hepatic lipogenesis in HepG2 hepatocytes 
via modulation of the AMPK signaling pathway and exerted cardiovascular protective effects 
by preventing the oxidized low-density lipoprotein (oxLDL)-mediated expression of Tissue 
Factor in human endothelial cells through the inhibition of nuclear factor-κB [9,10]. In 
vivo studies support a link between NOB and anti-metabolic effects [11-13]. NOB (0.1% or 
0.3%) prevented dyslipidemia, hepatic triglyceride accumulation, and atherosclerotic lesion 
development in high-fat diet (HFD, 42 kcal% fat, no added cholesterol or cholic acid)-fed 
low-density lipoprotein receptor (Ldlr)−/− mice [11]. In other research conducted in their 
laboratory, Ldlr−/− mice were initially fed an HFD (42 kcal% fat, 0.2% cholesterol) over 12 
weeks and received an HFD supplemented with 0.3% NOB for the subsequent 12 weeks [12]. 
NOB attenuated obesity, insulin resistance, hyperlipidemia, and hepatic steatosis, and it 
favorably altered aortic sinus atherosclerotic plaque composition [12]. Similarly, our previous 
study demonstrated that NOB supplementation (0.02%, approximately 17 mg/kg body 
weight/day) for 16 weeks attenuated dyslipidemia, hepatic steatosis, insulin resistance, and 
inflammation without altering adiposity in HFD (45 kcal% fat, no added cholesterol or cholic 
acid)-induced obese mice [13]. However, there is limited research investigating the effect of 
long-term supplementation with low-dose NOB on HCD-induced hypercholesterolemia and 
non-obese NAFLD.

In the present study, we hypothesized that long-term supplementation with low-dose NOB 
might exert protective effects against HCD-induced hypercholesterolemia and non-obese 
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NAFLD by regulating lipogenesis and fatty acid oxidation in the liver, and these beneficial 
effects might be associated with the anti-inflammatory and cardiovascular protective 
effects of NOB. Therefore, we investigated the effects of NOB on plasma levels of lipids 
and inflammatory and atherosclerosis markers, as well as on hepatic morphology and lipid 
content in HCD-fed C57BL/6J mice. The enzyme activities and messenger RNA (mRNA) 
expression levels of genes involved in lipid metabolism were also evaluated. In particular, the 
present study focused on evaluating the effects of NOB on hepatic cholesterol metabolism, 
including cholesterol synthesis, esterification, and influx.

MATERIALS AND METHODS

Animals and experimental diets
Four-week-old male C57BL/6J mice were obtained from Jackson Laboratories (Bar Harbor, 
ME, USA) and housed under standard conditions with free access to chow and water. All 
animals were acclimated for 1 week before use. At 5 weeks of age, they were randomly divided 
into three groups (n = 12 in each group). The first group was fed a normal diet (ND). The 
second group was considered the negative control group and was fed only an HCD (D12336; 
Research Diets, New Brunswick, NJ, USA). The third group was fed the HCD and received 
dietary supplementation with NOB (0.02%). NOB was isolated from the peels of shiikuwasa 
(C. depressa) by performing methanol extraction followed by two chromatographic steps; 
its purity was verified by nuclear magnetic resonance and mass spectroscopy, as previously 
described [13]. The HCD contained 16% fat (5% soybean oil, 7.5% cocoa butter, 3.5% coconut 
oil; 35 kcal% fat), 1.25% cholesterol, and 0.5% cholic acid. Mice were provided access to food 
and water ad libitum during the 20-week study period. All animal procedures related to the 
animal studies were approved by the Ethics Committee at Kyungpook National University 
(approval No. KNU-2014-45).

Food consumption and body weight were measured daily and weekly, respectively. At the end 
of the experimental period, the mice were anesthetized with isoflurane (5 mg/kg body weight; 
Baxter, USA) following a 12-h fast. Blood samples were collected from the inferior vena cava 
into a heparin-coated tube for plasma biochemical analysis. Liver and white adipose tissue 
were excised, weighed, and snap-frozen in liquid nitrogen. All tissues were stored at −70°C 
until further analyses.

Plasma biochemical analysis
The plasma levels of total cholesterol (TC) and triglycerides were determined using enzymatic 
kits (Asan, Seoul, Republic of Korea). The levels of high-density lipoprotein (HDL) and low-
density lipoprotein (LDL)/very-LDL (VLDL) in plasma were measured using an HDL and LDL/
VLDL-cholesterol assay kit (Abcam, Cambridge, MA, UK). Plasma C-reactive protein (CRP; 
R&D systems, Minneapolis, NE, USA) and oxLDL (MyBioSource, San Diego, CA, USA) levels 
were assessed using commercial assay kits. Plasma levels of adipocytokines (adiponectin, 
plasminogen activator inhibitor-1 [PAI-1], interleukin [IL]-1β, and IL-6) were determined 
using a multiplex detection kit (Bio-Rad, Hercules, CA, USA).

Hepatic lipid analyses
Hepatic lipids were extracted as previously described [14], and dried lipid residues were 
dissolved in 1 mL of ethanol for triglyceride and cholesterol assays. Triton X-100 and a sodium 
cholate solution in distilled water were added to 200 μL of the dissolved lipid solution for 
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emulsification. The hepatic triglyceride and cholesterol contents were analyzed with the same 
enzymatic kit used for the plasma analysis.

Enzyme analyses
Cytosolic, mitochondrial, and microsomal fractions were prepared from liver homogenate 
using differential centrifugation to determine the activities of lipid-regulating enzymes. The 
3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase and acyl-CoA:cholesterol 
acyltransferase (ACAT) activities in the microsomal fraction were determined by a procedure 
adapted from those of Shapiro et al. [15] and Erickson et al. [16], respectively. Cytosolic 
fatty acid synthase (FAS) activity was measured by monitoring the malonyl CoA-dependent 
oxidation of NADPH based on the absorbance of the samples at 340 nm [17]. Mitochondrial 
carnitine palmitoyltransferase (CPT) activity was determined using a spectrophotometric 
assay that measured the CoA-SH release from palmitoyl-CoA [18]. Mitochondrial fatty acid 
β-oxidation was measured by monitoring the reduction of NAD+ to NADH in the presence of 
palmitoyl-CoA by applying a previously described method [19]. Protein concentration in each 
fraction was estimated by using the Bradford method [20]. Plasma paraoxonase activity was 
spectrophotometrically assayed using the method described by Mackness et al. [21].

Isolation of total RNA and quantitative real-time reverse transcription 
polymerase chain reaction (qRT-PCR) analysis
Total RNA was isolated from liver using TRIZOL reagent (Invitrogen Life Technologies, 
Grand Island, NY, USA). RNA integrity for each sample was evaluated by using the Agilent 
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The complementary DNA was 
synthesized using 1 µg RNA and a QuantiTect® reverse transcription kit (Qiagen, Hilden, 
Germany). qRT-PCR was carried out on a CFX96TM real-time system (Bio-Rad) using the 
SYBR Green qRT-PCR kit (Qiagen). The mRNA levels of each target gene were normalized to 
that of GAPDH mRNA. The relative gene expression levels were calculated according to the 
2−ΔΔCT method.

Histological analysis
Liver tissues were fixed in 10% formalin solution, dehydrated, embedded in paraffin, and cut 
into 4-μm-thick sections. Cross-sections of these tissues were stained with hematoxylin and 
eosin. Stained areas were viewed using an optical microscope (Nikon, Tokyo, Japan) and a 
magnifying power of 200×.

Statistical analysis
The results are presented as mean ± SE values. Differences between 2 groups (ND vs. HCD 
and HCD vs. HCD + NOB) were determined using Student's t-test. Initially, to determine 
whether there is statistical evidence that the diet-associated means are significantly 
different, Student's t-test was applied to the means of the ND and HCD groups. Also, in 
order to determine the effect of NOB on HCD-induced hypercholesterolemia and NAFLD, 
the Student's t-test was used to compare the mean values of HCD-fed mice receiving or 
not receiving NOB supplementation. Test result P-values of less than 0.05 were considered 
statistically significant. Statistical analysis was performed using SPSS statistical software 
(version 11.0; SPSS Inc., Chicago, IL, USA).
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RESULTS

NOB suppresses HCD-induced weight loss
HCD-fed mice showed significantly lower food intake, body weight, fat mass (total 
weight of all white adipose tissue depots including epididymal, perirenal, retroperitoneal, 
mesenteric, subcutaneous, and interscapular white adipose tissue), and food efficiency 
ratio (FER) compared to those of ND-fed mice. However, there was no significant difference 
in energy intake between the ND and HCD groups (Fig. 1). In HCD-fed mice, dietary NOB 
supplementation did not affect the amount of food consumed, energy intake, and fat mass 
(Fig. 1A, B, and E). However, NOB tended to increase final body weight (P = 0.51), and NOB-
supplemented mice showed significantly increased body weight gain and FER compared to 
HCD control mice (Fig. 1C, D, and F).

NOB decreases the levels of circulating cholesterol, CRP, oxLDL, 
inflammatory markers, and PAI-1 but increases the circulating adiponectin 
level and paraoxonase activity
Over 20 weeks, plasma TC levels were significantly increased in HCD-fed mice compared to 
those of the ND-fed mice (Fig. 2A). In addition, mice fed with HCD showed a significantly 
higher ratio of plasma LDL/VLDL-cholesterol to TC, and the HDL-cholesterol/TC ratio and 
triglyceride levels were lower in the HCD group than those in the ND group (Fig. 2B and C).  
In HCD-fed mice, NOB supplementation significantly lowered the plasma TC levels 
compared to the HCD control group level (Fig. 2A). Moreover, the mean ratio of plasma LDL/
VLDL-cholesterol to TC in NOB-supplemented mice was significantly lower than that in HCD 
control mice, whereas NOB supplementation markedly increased the HDL-cholesterol/TC 
ratio but did not significantly affect the plasma triglyceride level (Fig. 2B and C).
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Fig. 1. Effect of NOB on food intake (A), energy intake (B), body weight (C, D), fat mass (E), and FER (F) in HCD-fed mice. Values are presented as mean ± SE (n = 
12). Values are significantly different between the groups, according to Student's t-test. 
ND, normal diet; HCD, high-cholesterol diet (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid); HCD + NOB, high-cholesterol diet plus nobiletin (0.02%); FER, 
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HCD feeding also caused significant increases in the levels of plasma markers of 
inflammation and atherosclerosis, such as CRP, oxLDL, IL-1β, IL-6, and PAI-1, compared to 
those from ND feeding. Conversely, the activity of plasma paraoxonase, an HDL-associated 
enzyme exhibiting potentially anti-atherogenic properties, was markedly lowered in HCD-
fed mice compared to that in ND-fed mice (Fig. 2D-H). Dietary NOB supplementation 
normalized the HCD-induced changes to these markers (Fig. 2D-H). Furthermore, plasma 
adiponectin levels were significantly lower in HCD-fed mice than those in ND-fed mice, and 
NOB supplementation markedly increased the plasma adiponectin levels compared to those 
in the HCD group (Fig. 2H).

NOB decreases liver weight and hepatic lipid accumulation
Hepatic cholesterol and triglyceride contents, as well as liver weight, were higher in HCD-
fed mice than in ND-fed mice (Fig. 3A and B). In contrast, NOB-supplemented mice showed 
significantly reduced liver weight and hepatic cholesterol and triglyceride contents compared 
to those of the HCD control group. Morphological analyses of liver tissues also indicated that 
lipid droplet accumulation was more pronounced in HCD-fed mice than in ND-fed mice; 
however, NOB supplementation markedly decreased hepatic lipid accumulation compared to 
that in the HCD-fed mice (Fig. 3C). Overall, dietary NOB supplementation might ameliorate 
HCD-mediated hepatic steatosis in mice.

NOB regulates expressions of lipid metabolism-related genes and enzyme 
activity in liver
To determine how NOB ameliorated HCD-induced hepatic steatosis, we examined the mRNA 
expression levels of genes and the activities of enzymes involved in hepatic cholesterol and 
triglyceride accumulation. HCD feeding led to a significant decrease in the mRNA expression 
of hepatic genes involved in cholesterol synthesis, esterification, and influx (Srebp2, Hmgcr, 
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Acat1, Acat2, Ldlr) compared to those in the ND group (Fig. 3D). In addition, the mRNA 
expression levels of hepatic Srebf1, a key lipogenic transcription factor, and its target gene Fas 
were higher in the HCD group, whereas those of hepatic Ppara, a major transcription factor 
involved in fatty acid β-oxidation, were lower in the HCD group compared with those in the 
ND group (Fig. 3E). Mice that received NOB supplementation showed significantly decreased 
mRNA expression of genes involved in cholesterol synthesis and esterification (Srebp2, Hmgcr, 
Acat2) as well as in lipogenesis (Srebf1 and Fas) in the liver, along with the upregulation of 
hepatic Ppara mRNA expression, compared to the expression levels in the HCD negative 
control group (Fig. 3D and E). Similar to the trends observed in gene expression, the activities 
of HMG-CoA reductase, ACAT, CPT, and β-oxidation were significantly lower in the HCD 
group than in the ND group (Fig. 3F). In contrast, hepatic FAS activity was significantly 
higher in the HCD group than in the ND group. In HCD-fed mice, NOB supplementation 
significantly decreased the activities of hepatic HMG-CoA reductase, ACAT, and FAS (Fig. 3F). 
Moreover, NOB significantly increased CPT and β-oxidation activities compared to those in 
the HCD group (Fig. 3F).
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ND, normal diet; HCD, high-cholesterol diet (35 kcal% fat, 1.25% cholesterol, 0.5% cholic acid); HCD + NOB, high-cholesterol diet plus nobiletin (0.02%); 
mRNA, messenger RNA; HMG-CoA reductase, 3-hydroxy-3-methylglutaryl-CoA reductase; ACAT, acyl-CoA:cholesterol acyltransferase; FAS, fatty acid synthase; 
CPT, carnitine palmitoyltransferase. 
*P < 0.05, **P < 0.01, ***P < 0.001, ND vs. HCD; #P < 0.05, ##P < 0.01, ###P < 0.001, HCD vs. HCD + NOB.



DISCUSSION

The HCD-fed C57BL/6J mouse utilized in the present study is a commonly used animal 
model of hypercholesterolemia and atherosclerosis [22]. Unlike most mouse strains resistant 
to developing hypercholesterolemia and atherosclerosis, even on an HCD, the HCD-fed 
C57BL/6 mouse exhibits an approximate 50% reduction in the plasma HDL-cholesterol level 
[22]. Similarly, in the present study, HCD-fed C57BL/6J mice demonstrated significantly 
higher TC and LDL/VLDL-cholesterol to TC ratio values and a lower HDL-cholesterol/TC 
ratio. Moreover, HCD-fed mice developed NAFLD and showed a significantly lower weight 
gain compared to that of ND-fed mice, although the daily energy intake was similar in both 
groups. These results are consistent with those of a previous study [4], which demonstrated 
that HCD-fed mice are not obese but show hepatomegaly and NAFLD. Since an atherogenic 
diet high in cholesterol and cholic acid can induce toxicity symptoms like weight loss [23], it 
seems that the loss of body weight and fat mass observed in HCD group may be the result of a 
toxic effect and dietary growth inhibition.

The present study showed that dietary supplementation with low-dose NOB (0.02%) for 20 
weeks suppressed HCD-induced weight loss and decreased TC plasma levels in mice fed an 
HCD. In addition, NOB markedly decreased the ratio of plasma LDL/VLDL-cholesterol to 
TC but increased the HDL-cholesterol/TC ratio compared to that of the HCD control group. 
Similar to our results, NOB was shown to decrease the circulating levels of VLDL and LDL 
in vitro [24], and HFD-fed aged mice supplemented with NOB (0.1%) showed reductions in 
serum LDL/VLDL-cholesterol levels and the LDL/HDL ratio [25]. Recently, Morrow et al. [26] 
also demonstrated that plasma TC and LDL-cholesterol levels were decreased by NOB (0.3%) 
in C57BL/6J mice fed an HFD (42 kcal% fat, 0.2% cholesterol).

The beneficial effects of NOB on HCD-induced hypercholesterolemia may contribute to 
protection against cardiovascular disease. Hypercholesterolemia is generally associated 
with increased levels of oxLDL [27], which leads to the activation of pro-inflammatory and 
atherogenic cytokines, thereby contributing to the progression of atherogenesis [28]. Plasma 
oxLDL is considered a strong predictor of atherosclerotic cardiovascular disease [29]. In 
addition to affecting oxLDL, NOB diminishes the HCD-mediated upregulation of circulating 
inflammatory markers, like CRP, IL-6, and IL-1β, which have been shown to independently 
predict cardiovascular disease [30-34]. In particular, circulating CRP is stable over long 
periods, has no diurnal variation, and has been suggested to be a stronger predictor of 
cardiovascular events than the LDL-cholesterol level [30,31]. Taken together, NOB might 
exert cardiovascular protective effects by preventing oxLDL formation and decreasing the 
plasma levels of the pro-inflammatory and atherosclerosis markers CRP, IL-6, and IL-1β. 
These findings are supported by a decreased level of PAI-1, increased level of adiponectin, 
and increased activity of paraoxonase, an HDL-associated enzyme that protects against 
LDL oxidation, observed in the plasma of NOB-supplemented mice. A high level of PAI-1, a 
major regulator of the fibrinolytic system, is associated with an increased cardiovascular risk 
of arterial and thrombotic disease [35], whereas circulating adiponectin exerts protection 
against cardiovascular disease [36]. In animal studies using either pharmacological 
or genetic approaches, inhibition of PAI-1 is suggested to be a therapeutic option for 
cardiovascular protection, and the elevation of plasma adiponectin alleviates atherosclerosis 
[36,37]. In addition, several studies have demonstrated a protective role of paraoxonase in 
cardiovascular diseases, such as atherosclerosis and ischemic stroke [38,39].
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The liver is the principal organ for cholesterol homeostasis. Cholesterol is synthesized 
primarily in the liver and transported to other tissues via the blood in the form of 
lipoproteins. Hepatic cholesterol synthesis, storage by esterification, uptake, and excretion 
have important roles in whole-body cholesterol homeostasis, and losing control of any of 
these processes results in hypercholesterolemia and increases the risk for cardiovascular 
disease [40]. HMG-CoA reductase is responsible for cholesterol synthesis in the liver [40], 
and ACAT converts cholesterol into its storage form, cholesteryl esters [40]. In mammals, 
there are two isoforms of ACAT; Acat1 is a ubiquitous gene, whereas Acat2 is primarily located 
in liver and intestine. The hepatic Acat2 synthesizes cholesteryl esters for incorporation into 
VLDL and provides cholesteryl ester for the formation of cytoplasmic lipid droplets, a storage 
method when liver cholesterol is abundant [41]. Deletion of liver-specific Acat2 results in 
resistance to hypercholesterolemia and hepatic lipid accumulation induced by a diet high in 
fat and cholesterol in mice [42], while Acat1-deficient mice showed no apparent effects on 
plasma cholesterol level and cholesterol esterification activity [43], indicating a specialized 
role of Acat2 in cholesteryl ester synthesis in the liver. Interestingly, in the present study, NOB 
significantly downregulated the hepatic mRNA expression of Hmgcr and Acat2, although it 
did not alter hepatic Acat1 mRNA expression. Moreover, the mRNA expression of hepatic 
Srebp2, a primary transcriptional factor for the activation of Hmgcr [44], was downregulated, 
and NOB inhibited the corresponding enzyme activities. Therefore, it seems possible that the 
inhibition of cholesterol synthesis and esterification might reduce the availability of hepatic 
cholesterol for VLDL formation and contribute to decreased secretion of VLDL, which 
consequently ameliorates HCD-induced hypercholesterolemia.

Furthermore, reduced cholesterol synthesis and esterification through the downregulation of 
hepatic Srebp2, Hmgcr, and Acat2 could contribute to the attenuation of HCD-induced NAFLD 
observed in NOB-supplemented mice, since disturbed hepatic cholesterol homeostasis is 
relevant to the pathogenesis of NAFLD [45]. Expression of hepatic Hmgcr and Srebp2 is increased 
in NAFLD patients [3], and liver-specific inhibition of Acat2 with antisense oligonucleotides 
decreases the accumulation of neutral lipids (cholesteryl ester and triglyceride) in HCD-
fed mice [46]. Another potential mechanism underlying the protective effects of NOB 
against NAFLD might be associated with decreased de novo lipogenesis and increased fatty 
acid oxidation in the liver. In a previous study, feeding C57BL/6J mice with an HCD (1.25% 
cholesterol, 0.5% cholic acid) not only upregulated the hepatic mRNA expression of genes 
involved in de novo lipogenesis (Srebf1 and Fas) but also downregulated the hepatic mRNA 
expression of genes associated with the mitochondrial fatty acid oxidation pathway (Ppara and 
Cpt1a), contributing to the pathogenesis of non-obese NAFLD [6]. Similarly, the present study 
demonstrated markedly increased expression and activity levels of de novo fatty acid synthesis-
related genes and enzymes, respectively, and decreased the expression and activities of fatty 
acid oxidation-related genes and enzymes, respectively, in the liver in response to the HCD. 
Notably, NOB supplementation normalized these HCD-induced changes in the expression and 
activities of these fatty acid synthesis- and β-oxidation-related genes and enzymes, respectively, 
in the liver. These results indicate that the protective effects of NOB against HCD-induced 
NAFLD might be partly due to decreased lipogenesis and increased fatty acid oxidation in the 
liver, along with the regulation of cholesterol metabolism.

In a previous study, we demonstrated that NOB can protect against dyslipidemia and 
NAFLD in HFD (no added cholesterol or cholic acid)-induced obese mice [13]. However, the 
mechanisms underlying its protective effects against HCD (containing high-cholesterol and 
cholic acid)-related metabolic dysfunction, such as hypercholesterolemia and non-obese 
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NAFLD, remain unclear. Therefore, the present study focused on evaluating the effects of 
NOB on hepatic cholesterol metabolism (including cholesterol synthesis, esterification, and 
influx) and hypercholesterolemia-associated plasma biomarkers (including CRP, oxLDL, IL-
1β, IL-6, PAI-1, adiponectin and paraoxonase) in HCD-fed C57BL/6J mice, a commonly used 
animal model of hypercholesterolemia and atherosclerosis [22]. Our novel findings reveal 
that NOB could protect against hypercholesterolemia and non-obese NAFLD by inhibiting 
mRNA expression of hepatic genes and activities of cholesterol synthesis and esterification, 
along with inhibition of fatty acid synthesis and promotion of fatty acid oxidation. Also, these 
effects were associated with the amelioration of inflammation and the regulation of plasma 
levels of atherosclerosis-associated cardiovascular markers.

In conclusion, the present study demonstrates, for the first time, that long-term 
supplementation of low-dose NOB might attenuate HCD-induced hypercholesterolemia and 
NAFLD by regulating cholesterol synthesis and esterification, de novo lipogenesis, and fatty 
acid oxidation in the liver. In addition, NOB supplementation can decrease pro-inflammatory 
and atherosclerosis marker levels and increase adiponectin level and paraoxonase activity 
in plasma, suggesting that it might exert cardioprotective effects. Taken together, the 
results support the suggestion that NOB can potentially ameliorate hypercholesterolemia, 
cardiovascular disease, and NAFLD.
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