
REVIEW
published: 09 September 2021

doi: 10.3389/fvets.2021.693641

Frontiers in Veterinary Science | www.frontiersin.org 1 September 2021 | Volume 8 | Article 693641

Edited by:

Eveline M. Ibeagha-Awemu,

Agriculture and Agri-Food Canada

(AAFC), Canada

Reviewed by:

Vratislav Peska,

Academy of Sciences of the Czech

Republic, Czechia

Sonia Garcia,

Instituto Botánico de Barcelona,

Consejo Superior de Investigaciones

Científicas (CSIC), Spain

Rakesh Kumar,

Shri Mata Vaishno Devi

University, India

*Correspondence:

Wei Sun

dkxmsunwei@163.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Livestock Genomics,

a section of the journal

Frontiers in Veterinary Science

Received: 11 April 2021

Accepted: 30 July 2021

Published: 09 September 2021

Citation:

Cao X, Wang S, Ge L, Zhang W,

Huang J and Sun W (2021)

Extrachromosomal Circular DNA:

Category, Biogenesis, Recognition,

and Functions.

Front. Vet. Sci. 8:693641.

doi: 10.3389/fvets.2021.693641

Extrachromosomal Circular DNA:
Category, Biogenesis, Recognition,
and Functions
Xiukai Cao 1†, Shan Wang 2†, Ling Ge 2, Weibo Zhang 2, Jinlin Huang 3 and Wei Sun 1,2*

1 Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou

University, Yangzhou, China, 2College of Animal Science and Technology, Yangzhou University, Yangzhou, China, 3 Jiangsu

Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China

Extrachromosomal circular DNA (eccDNA), existing as double-stranded circular DNA,

is derived and free from chromosomes. It is common in eukaryotes but has a strong

heterogeneity in count, length, and origin. It has been demonstrated that eccDNA could

function in telomere and rDNA maintenance, aging, drug resistance, tumorigenesis, and

phenotypic variations of plants and animals. Here we review the current knowledge

about eccDNA in category, biogenesis, recognition, and functions. We also provide

perspectives on the potential implications of eccDNA in life science.
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INTRODUCTION

It was previously thought that genetic variation andV(D)J recombinationwere themain reasons for
genome heterogeneity of different tissues from the same individual or different cells from the same
tissue. However, recent studies have shown that extrachromosomal circular DNA (eccDNA) is an
additional source of genomic heterogeneity. EccDNAs are a group of double-stranded circular DNA
molecules that are derived and free from eukaryotic genome DNA. They could function in genome
evolution and environmental adaptation, which depend on eccDNA sequence features. The high
copy number and the significant transcriptional activity of eccDNA lead to the overexpression
of the inhabiting genes (1). Additionally, eccDNAs could serve as mobile enhancers to trans-
regulate chromosomal genes (2). Small eccDNAs are more widespread, but less is known about
their function in cell biology. They are too small to contain protein-coding genes. MicroDNA
can be released from normal and tumor tissues to plasma and serum, implying their roles in cell
communication (3, 4). Transcription factor sponge is another speculated function of microDNA,
where the accumulation of specific microDNA could titrate components of the replication or
transcription machinery and lead to an inability to replicate or transcribe genomic DNA (5). Thus,
establishing the associations of microDNA with economic phenotype or disease is an important
direction for future exploration.

HISTORY NOTES OF EccDNA

EccDNA was first detected and measured in pig sperm using electron microscopy technology, with
a length of∼0.5–16.8µm (1µm≈ 3,100 bp) (6, 7). The length of eccDNA in the Hela cell nucleus
was estimated to be 0.2–19.8µm, compared with 4.81 ± 0.24µm (mean ± SD) of mitochondrial
DNA, and the eccDNA count was 20% of themitochondrial DNA count (8).When analyzing a set of
tumor karyotypes, scientists found many small double chromatin bodies (double-minutes, DMs),
sometimes in large numbers, in addition to the apparently structurally intact chromosome (9).
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Small polydisperse circular DNA (spcDNA) was an obsolete
concept to commonly characterize small eccDNAs with a length
of ∼0.05–2.00µm (10). From the 1980s to the 1990s, the
repetitive sequences of spcDNAs were widely observed, including
short interspersed nuclear element (SINE), long interspersed
nuclear element (LINE), tandem repeats, transposons, rDNA,
and telomere DNA (11–18). Subsequently, spcDNAs with rDNA
and telomere DNAwere exclusively termed as extrachromosomal
rDNA circles (ERCs) and extrachromosomal telomeric circles
(t-circles), respectively. However, their lengths are larger than
that of spcDNA, meaning that some ERCs and t-circles are
not covered by spcDNA (19–21). With the help of high-
throughput sequencing, microDNAs were identified. They have
non-repetitive sequences with a length of about 200–400 bp
and derive from 5′ UTRs, exons, and CpG islands (22). It is
abundant, with several 100 to several 1,000 counts per cell (22,
23). Recently, the concept of extrachromosomal DNA (ecDNA)
was developed to exclusively specify larger eccDNA in tumors,
typically covering intact oncogenes, and 30% of ecDNAs exist
as DMs (24). Further studies revealed that the deletion of large
genomic fragments could be circularized into episomes and
subsequently polymerized into DMs. Therefore, episomes are the
precursors of DMs (25–30). In this review, we divide general
eccDNA into two categories: narrow sense eccDNA with length
< 100 kb and ecDNA covering DMs and episomes (1, 31, 32).
Notably, eccDNA refers to general eccDNA in the following
parts unless stated otherwise. Accordingly, we make a clear
classification for eccDNAs in Figure 1.

BIOGENESIS OF EccDNA

Given the heterogeneity of eccDNAs in terms of sequence
features, various molecular mechanisms may contribute to
eccDNA biogenesis. Interestingly, all these mechanisms seem
to be associated with DNA repair (33). We generalize these
mechanisms into four categories: homologous recombination
(HR), non-homologous end joining (NHEJ), DNA replication,
and transcription (Figure 2). However, these potential models

Abbreviations:ALT, alternative lengthening of telomeres; ATAC-seq, transposase-

accessible chromatin using sequencing; BRCA1, BRCA1 DNA repair-associated;
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EccDNA, Extrachromosomal circular DNA; ecDNA, extrachromosomal DNA;

EGRF, epidermal growth factor receptor; EPSPS, 3-phosphoshikimate 1-

carboxyvinyltransferase 2; ERC, extrachromosomal rDNA circle; HMW, high

molecular weight; HR, homologous recombination; HSR, homogeneously

staining region; KIT, KIT proto-oncogene, receptor tyrosine kinase; LINE,

long interspersed nuclear element; LMW, low molecular weight; MET, MET

proto-oncogene, receptor tyrosine kinase; MMR, mismatch repair MSH3, MutS

Homolog 3; MYC, MYC proto-oncogene, bHLH transcription factor; NHEJ, non-

homologous end joining; ODIRA, origin-dependent inverted-repeat amplification;

PRKDC, protein kinase, DNA-activated, catalytic subunit; RCA, rolling circle

amplification; rDNA, ribosomal DNA; SGS1, ATP-dependent DNA helicase

SGS1; SINE, short interspersed nuclear element; SMRT, long-read single-

molecule real-time sequencing; spcDNA, small polydisperse circular DNA; t-circle,

extrachromosomal telomeric circle; tDNA, telomere DNA; TKI, EGFR tyrosine

kinase inhibitor; WGS, whole genome sequencing.

underlying the formation of different kinds of eccDNAs require
further tests and verification.

DNA double-strand breaks could induce rDNA and tDNA
to generate ERCs and t-circles, respectively, via loop structures
mediated by HR (34). Among the sequencing reads mapped
to ∼100,000 eccDNAs in human muscle, only 8.1% are from
genomic rDNA, 3.5% from LINE, 3.1% from SINE, 1.2% from
satellite sequences, and 0.8% from tDNA. Most of the remaining
reads are mapped to non-repetitive regions that could produce
microDNA (23). The generation of microDNA is strongly
associated with DNA mismatch repair. To comprehensively
probe microDNA biogenesis, researchers knocked out the key
proteins of NHEJ, HR, and mismatch repair (MMR) in a chicken
DT40 cell line. They found that knocking out the MMR key
protein, MSH3, could cause an 81% decrease of microDNA
amount (35). Notably, the microdeletions by MMR were rare,
occurring in one of∼400–4,000 alleles from the brain, and would
be missed if genomic sequencing was not done at high depth.
Nevertheless, the presence of microDNA from >100,000 sites
in mouse, human, and chicken cells makes it unlikely that all
of them are created by an excision event that leaves behind
>100,000 somatically mosaic deletions on the chromosomes
(22). Besides this, transcription in GC-rich regions and UTRs
could generate triple-stranded DNA/RNA hybrids that function
in DNA damage and repair processes and lead to microDNA
formation (36). Origin-dependent inverted-repeat amplification
may be involved in microDNA production as well. The nascent
DNA strand could be circularized via short reverted repeats
at both ends of the replication bubble (37). Inhibiting the
expressions of BRCA1 and PRKDC, the key proteins for HR
and NHEJ, respectively, lead to the reduction of ecDNA count
in colon cancer cells, suggesting that HR and NHEJ activated
by double-strand breaks and macrodeletions may be involved in
ecDNA production (38, 39). The summarized mechanisms are
listed in Table 1, and detailed information can be obtained from
the corresponding references.

TOOLBOX FOR EccDNA IDENTIFICATION

Large eccDNAs could be observed with a light microscope
in karyotype analysis, but as for the small eccDNAs, electron
microscopy is necessary, and their lengths can be estimated all
at once (Figure 3) (8, 53). This estimation could be achieved by
2D electrophoresis as well, but its detection power ranges from
0.7 to 56.8 kb (19). Southern blotting enables 2D electrophoresis
to reveal the sequence features of eccDNA (60). Interestingly,
software, such as ECdetect, has been developed for moderate-
through counting of eccDNAs in DAPI-stained cells (24).

Initiated with a large amount of cells, the CsCl-EB
method is time consuming and labor intensive for eccDNA
enrichment, where most nicked circles are missed. Therefore,
this approach is being replaced by plasmid extraction kits
(60–62). The enriched eccDNAs can be subjected to high-
throughput sequencing to determine their locations and junction
sites by Circulome-seq, mobilome-seq, Circle-seq, or CIDER-
seq (Figure 3). Circulome-seq adopts Tn5 transposition-based
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FIGURE 1 | A comprehensive classification of extrachromosomal circular DNAs (eccDNAs). We divide the general eccDNAs into two categories: narrow sense

eccDNAs with length <100 kb and ecDNAs common in tumors with size ranging from several 100 kb to several megabases. Small polydisperse circular DNA

(spcDNA) was an obsolete concept to commonly characterize small eccDNAs with repetitive sequences. The length of extrachromosomal rDNA circles (ERCs) and

t-circles is larger than that of spcDNA, which means that some ERCs and t-circles were not covered by spcDNA. The deletion of large genomic fragments could be

circularized into episomes and subsequently polymerized into double-minutes.

fragmentation and a tagging system, which simplify the
sequencing library construction. This method could detect
eccDNAs in length ranging from several hundreds of base pairs
to several hundreds of kilobase pairs (62). Mobilome-seq is
highly suitable for the detection of retrotransposon eccDNAs. It
removes linear DNA with exonuclease DNase and then performs
rolling circle amplification (RCA) (63). Circle-seq combines
endonuclease NotI with exonuclease DNase to fully eliminate
linear DNA, potentially leading to an unexpected damage on
eccDNAs; its detection power is ∼1–38 kb (64). As for CIDER-
seq, RCA is performed straightforwardly for the eccDNAs
enriched by plasmid extraction kits without the removal of linear
DNA. Given the undesired amplification of linear DNA, long-
read single-molecule real-time sequencing is used to guarantee
the amount of valid reads (i.e., split and discordant reads),
which are essential for eccDNA calling (65). CIDER-seq has
a similar power to Circulome-seq, but the former has a more
accurate detection for <10 kb eccDNAs. Notably, it is advisable
to introduce plasmids as a control or internal reference during
eccDNA library construction.

Despite the above-mentioned methods, whole-genome
sequencing (WGS) and assay for transposase-accessible
chromatin using sequencing (ATAC-seq) can be used for
eccDNA calling, given the presence of split and discordant
reads in their sequencing data (24, 66, 67). It has been

demonstrated that 100% of ecDNAs and 30% of eccDNAs
(narrow sense) called from WGS were supported by Circle-
seq (32). Prior enrichment of high-molecular-weight DNA is
helpful in ecDNA identification (1). To date, various software
packages have been developed to call eccDNA with sequencing
data (Figure 3).

Advances of EccDNA Function
EccDNA are able to self-replicate (unknown for microDNA)
and evenly segregate to daughter and germ cells during mitosis
and meiosis, respectively, because of lacking centromeres. Some
eccDNAs can be reintegrated into genomic homogeneously
staining regions (HSRs). The strong accessibility of ecDNA
leads to highly frequent interactions between regulatory
elements. These features equip cells with high heterogeneity and
environmental adaptability (1, 31, 68).

TELOMERE AND rDNA COPY NUMBER
MAINTENANCE

Telomeric arrays can be maintained through various
mechanisms, such as telomerase activity or recombination.
T-circles function in recombination-dependent maintenance
pathways by serving as templates for the rolling circle synthesis
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FIGURE 2 | Potential models for extrachromosomal circular DNA (eccDNA) generation: (A) formed by HR, (B) formed by NHEJ, (C) formed by DNA replication, and

(D) formed by transcription. There are 11 kinds of potential mechanisms for eccDNA formation, and their detailed information can be found in the references listed in

Table 1.
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TABLE 1 | Potential mechanisms of eccDNA formation and corresponding references.

Number of mechanism EccDNA type Reference type References DOI

1 ERC Review Nelson et al. (40) https://doi.org/10.1016/j.tig.2019.07.006

Article Yerlici et al. (41) https://doi.org/10.1093/nar/gkz725

t-circle Review Tomaska et al. (42) https://doi.org/10.1016/j.febslet.2004.04.058

Article Yerlici et al. (41) https://doi.org/10.1093/nar/gkz725

MicroDNA Article Dillon et al. (35) https://doi.org/10.1016/j.celrep.2015.05.020

Article Yerlici et al. (41) https://doi.org/10.1093/nar/gkz725

2 ERC Article Park et al. (43) https://doi.org/10.1128/MCB.19.5.3848

ecDNA Article Gresham et al. (44) https://doi.org/10.1073/pnas.1014023107

MicroDNA Review Paulsen et al. (45) https://doi.org/10.1016/j.tig.2017.12.010

3 ERC Article Hull et al. (34) https://doi.org/10.1371/journal.pbio.3000471

t-circle Review Tomaska et al. (42) https://doi.org/10.1016/j.febslet.2004.04.058

Article Hull et al. (34) https://doi.org/10.1371/journal.pbio.3000471

4 t-circle Review Tomaska et al. (42) https://doi.org/10.1016/j.febslet.2004.04.058

ecDNA Review Gu et al. (46) https://doi.org/10.1186/s13046-020-01726-4

Review Yan et al. (47) https://doi.org/10.1186/s13045-020-00960-9

5 ecDNA Review Gu et al. (46) https://doi.org/10.1186/s13046-020-01726-4

Review Yan et al. (47) https://doi.org/10.1186/s13045-020-00960-9

Review Liao et al. (48) https://doi.org/10.1016/j.bbcan.2020.188392

6 DM Review Gu et al. (46) https://doi.org/10.1186/s13046-020-01726-4

Review Yan et al. (47) https://doi.org/10.1186/s13045-020-00960-9

Review Liao et al. (48) https://doi.org/10.1016/j.bbcan.2020.188392

7 MicroDNA Article Dillon et al. (35) https://doi.org/10.1016/j.celrep.2015.05.020

Review Paulsen et al. (45) https://doi.org/10.1016/j.tig.2017.12.010

8 MicroDNA Article Dillon et al. (35) https://doi.org/10.1016/j.celrep.2015.05.020

Review Paulsen et al. (45) https://doi.org/10.1016/j.tig.2017.12.010

9 MicroDNA Article Dillon et al. (35) https://doi.org/10.1016/j.celrep.2015.05.020

Review Paulsen et al. (45) https://doi.org/10.1016/j.tig.2017.12.010

10 ERC Article Mansisidor et al. (49) https://doi.org/10.1016/j.molcel.2018.08.036

DM Article Vogt et al. (50) https://doi.org/10.1073/pnas.0402979101

Review Wei et al. (51) https://www.ncbi.nlm.nih.gov/pubmed/33294253

11 MicroDNA Review Paulsen et al. (45) https://doi.org/10.1016/j.tig.2017.12.010

Review Ain et al. (52) https://doi.org/10.3390/ijms21072477

of telomere DNA. This may be the same case for animal and plant
t-circles (20, 69). It is estimated that 15% of human immortalized
cell lines may maintain telomere length through alternative
lengthening of telomeres (70). A total of ∼100–1,000 copies
of eukaryotic rDNA are tandemly organized in the genome to
satisfy the need for ribosome synthesis. The production of ERC
reduces the copy number of rDNA in theDrosophila genome that
could recover in germ cells. Studies have found that ERC could
reintegrate into the genome to maintain rDNA copy number by
self-replication (40).

AGING

Asymmetric inheritance and self-replication lead to ERC
accumulation in yeast mother cells. The number of ERCs
per mother cell after 15 generations has been estimated at
between 500 and 1,000. Mutations in SGS1 could result in
ERC accumulation and age-associated phenotypes in addition

to a shortened lifespan. Conversely, loss of the replication
fork blocking protein Fob1 decreases the formation of ERCs
and extends the lifespan of mother cells by 30–40% (71).
Interestingly, genes present on low-copy plasmids confer fitness
effects rarely and of much lower magnitude than those
on multi-copy plasmids. Therefore, young yeast populations
contain about 1,800 circular DNA species, and it is only
with substantial accumulation of any given circular DNA that
major phenotypic effects are likely to manifest (64, 71, 72).
These facts demonstrate that ERC accumulation functions in
yeast aging. It was proposed that yeast senescence may be
the result of health sacrifice to environmental adaption by
accumulating specific eccDNAs, which could titrate components
of the replication or transcription machinery and lead to
an inability to replicate or transcribe genomic DNA and,
thus, growth arrest and eventual death (5). According to this
assumption,CUP1 eccDNA enrichment in a CuSO4 environment
may contribute to yeast aging, but further research is still
necessary (34).
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FIGURE 3 | Methods for extrachromosomal circular DNA (eccDNA) identification. Microscopy and electrophoresis are used for eccDNA detection in total DNA after

the enrichment of low-molecular-weight DNA [pictures were from Radloff et al. (8), Hahn (53), and Cohen et al. (54)]. Before rolling circle amplification or Tn5 treatment,

eccDNAs with target size are enriched by CsCl-EB or a plasmid extraction kit. Split and discordant read pairs are crucial for eccDNA detection, which makes WGS

and ATAC-seq data available as well. Various software packages have been developed to call eccDNA with sequencing data, including AmpliconArchitect,

AmpliconReconstructor, CIRCexplorer2, Circle_finder, Circle-Map, and ECCsplorer (32, 55–59). Comparisons have been made for some of these packages, and

detailed information can be found in Prada-Luengo et al. (57).
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TUMORIGENESIS AND DRUG
RESISTANCE

DMs, typically bearing intact oncogenes, are tumor specific and
have been detected in 182/200 kinds of tumors, and ∼0.26–44%
of cancer patients and 7–100% of cancer cells have DMs (50, 53,
73–79). ecDNA exclusively refers to larger eccDNA in tumors
where 30% of ecDNAs existed as DMs (24). The survival rate
of cancer patients with ecDNAs is significantly lower than those
without ecDNAs, making ecDNA a potential prognostic marker
(80, 81). As a carrier of oncogene amplification, ecDNAs are
subjected to non-Mendelian inheritance, which enables tumors
to achieve very high intratumoral genetic heterogeneity and
evolve rapidly in response to changing conditions (24, 66, 82)—
for example, EGRF, MET, or MYC ecDNAs can make tumor
cells proliferate rapidly and further develop into tumor invasion
and migration (51, 66). There is a substantial quantity of cell-
free microDNAs in the plasma and serum from both healthy
individuals and cancer patients (3, 4). Surprisingly, tumor-
derived human microDNAs are detected in mouse circulation in
a mouse xenograft model of human ovarian cancer, and tumor
excision alters the length of these small molecules (3). Thus,
circular DNA in the circulation is a previously unexplored pool
of nucleic acids that could complement miRNA and linear DNA
for diagnosis and intercellular communication (3).

It had been accepted that the high copy number of ecDNA
leads to oncogene overexpression. However, the significant
transcriptional activity of ecDNA does matter as well (1). The
deficiency of chromatin high-order structure and suppressing
histone modification make ecDNAs more accessible than their
genome parallels, which instigates strong promoter–enhancer
interactions. Furthermore, ecDNA enhancers can shake off
the insulator shackles and lead to novel interactions with
oncogenes, which causes additional expression (83, 84). More
recently, researchers have reported the chromatin connectivity
networks of ecDNA in cancer, revealing that ecDNA can
function as mobile super-enhancers, which drive genome-wide
transcriptional amplification, including that of oncogenes. These
findings support an expanded role for ecDNA in trans-regulating
chromosomal genes in promoting tumor growth (2).

EGFR VIII, an oncogenic variant, could accelerate
glioblastoma growth, but it also makes cells more sensitive
to the EGFR tyrosine kinase inhibitor (TKI) (85). After TKI
treatment, the proportion of TKI-sensitive tumor cells with
a high expression of EGFR VIII was significantly decreased,
whereas cells with low EGFR VIII expression were increased
(85). Studies have demonstrated that tumor TKI resistance is
caused by the elimination of DMs containing EGFR VIII, which
could reintegrate into the genome HSRs (86). However, after
drug withdrawal, the reemergence of clonal EGFR mutations
on ecDNA follows quickly (86). Through this mechanism,
cancer cells can escape targeted oncogene therapy. Therefore,
pulsatile intermittent treatment with much higher doses of
TKI could potentially lead to better target inhibition and even
possibly less toxicity relative to continuous dosing (24). Notably,
the self-replication of EGFR DMs could also generate EGFR
mutations, which would provide additional heterogeneity (86).

PHENOTYPIC EFFECTS ON ANIMALS AND
PLANTS

To our current knowledge, eccDNAs have been associated with
animal phenotypes, including cattle color sideness (Cs) and
pigeon muscle development. Cs is a dominantly inherited trait
characterized by a white band along cattle spines. The dominance
of the Cs allele is expected to reflect a gain of function resulting
from the dysregulated expression of the translocated KIT gene.
A 492-kb fragment containing the KIT gene on chromosome 6
produces a circular intermediate (now referred to as eccDNA)
and integrates into chromosome 29 to form the Cs29 allele.
Then, a 575-kb fragment containing the partial Cs29 allele is
circularized and translocated to chromosome 6 as Cs6 allele (87).
Regenberg et al. found that the number of eccDNA in king
pigeon muscle is nine-fold higher than that of homing pigeons.
Interestingly, eccDNAs bearing the AGRIN gene were identified
(88). This gene encodes a membrane protein that is involved in
the development of neuromuscular junctions, and its variations
could lead to abnormal muscle development (88).

As for plants, Amaranthus palmeri can develop herbicide
resistance to glyphosate by amplification of the EPSPS gene
as eccDNA, the molecular target of glyphosate. These circular
molecules can be transmitted to germ cells and drive rapid
glyphosate resistance through genome plasticity and adaptive
evolution (89, 90). Moreover, retrotransposons, such as EVD and
Tos17, can produce eccDNAs and insert into the genome to
improve the response to environmental stress through promoting
DNA methylation and gene silencing at the transcriptional
level (63).

The above-mentioned facts suggest that eccDNAs may be
promising molecular markers in life science. However, the
inability to provide biopsies of some tissues limits the use
of large eccDNAs as biomarkers. MicroDNAs released to the
circulation represent a previously unexplored pool of nucleic
acids; although they are too small to contain protein-coding
genes, they are sufficiently long to code for regulatory elements.
Possible acting mechanisms of microDNA have been assumed
based on indirect evidence, including cell communication,
transcription factor sponges, and mobile enhancers to trans-
regulate chromosomal genes (Figure 4). Thus, establishing the
associations of microDNA with a particular phenotype or disease
is an important direction for future exploration.

CONCLUSIONS AND PERSPECTIVES

The occurrence of eccDNA is a ubiquitous, normal phenomenon
in eukaryotic systems, including those of plants, yeasts, and
animals. There are various types of eccDNA according to
sequence feature and size. Several models have been proposed
to explain the formation and proliferation of eccDNAs, but
the underlying mechanisms and direct evidence for each model
are still required. Regardless of the above-mentioned issues,
the CRISPR-hapC system has been developed for genome
haplotyping based on the generation of eccDNA in cells (91). This
system can map haplotypes from a few 100 bases to over 200Mb
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FIGURE 4 | Overview of our current understanding of extrachromosomal circular DNA (eccDNA) functions. High copy number and significant transcriptional activity of

eccDNAs lead to the overexpression of the inhabiting genes. Additionally, eccDNAs could serve as mobile enhancers to trans-regulate chromosomal genes. eccDNAs

have been associated with cancer prognosis, drug resistance of plants, and phenotypic variations of animals, implying their potential implications in life science.

MicroDNA can be released from normal tissues. Establishing the associations of microDNA copy numbers with economic traits is an important direction for future

exploration.

andwill be important for genome research and haplotype-specific
gene therapy.

ecDNA could drive oncogene amplification and has become
a hotspot of research in tumor pathogenesis and evolution.
Additionally, the survival rate of cancer patients with ecDNAs is
significantly lower than those without ecDNAs, making ecDNA
a potential prognostic marker (80, 81). However, an interesting
question arises: Are tumor suppressor genes present in ecDNA?
If they exist, what are their functions? In plants and animals,
large eccDNAs bearing intact genes have been identified, and
they play important roles in environmental stress response and
phenotypic variations, respectively (87, 89, 90). These facts make
eccDNA a particularly promising molecular marker for breeding.
However, given the unavailability of some tissue biopsies, it may
be difficult to use large eccDNAs as biomarkers for early diagnosis
and breeding.

MicroDNA represents the majority of eccDNAs. It has
been detected as abundant cell-free DNA in plasma and
serum released both by normal and tumor tissues (3, 4).
Thus, establishing the associations between microDNAs and
economic phenotype or diseases is an important direction
for future exploration. Fortunately, an eccDNA database
(eccDNAdb, http://www.eccdnadb.net/) has been set up. It
has recorded a total of 1,700,000 eccDNAs for humans,
mice, and chickens, which will provide supporting data
for association analyses. If there are positive results, then
the mechanisms of their regulatory roles can be validated,
including serving as sponges of transcription factors, carriers
of regulatory RNAs in intercellular communication, or mobile
enhancers to globally amplify chromosomal transcription.
These mechanisms may also provide novel insights into the
phenotypic effects of genome copy number variations (41,
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45, 92, 93). All of these questions require a further in-
depth exploration.
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