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A Granger causality analysis of 
groundwater patterns over a half-
century
Nitin K. Singh    & David M. Borrok

Groundwater depletion in many areas of the world has been broadly attributed to irrigation. 
However, more formal, data-driven, causal mechanisms of long-term groundwater patterns have 
not been assessed. Here, we conducted the first Granger causality analysis to identify the “causes” 
of groundwater patterns using the rice-producing parishes of Louisiana, USA, as an example. Trend 
analysis showed a decline of up to 6 m in groundwater level over 51 years. We found that no single cause 
explained groundwater patterns for all parishes. Causal linkages were noted between groundwater and 
area harvested, number of irrigation wells, summer precipitation totals, and drought. Bi-directional 
linkages were noted between groundwater and rice yield, suggesting feedback between both time 
series. Causal linkages were absent between groundwater and many drivers where significant 
correlations were noted, highlighting the importance of using robust causal relationships over illusive 
correlations to detect the cause. These results advance our understanding of groundwater dynamics 
and can reveal a key connection between food and groundwater.

Hydrological models1–3 and satellite observations4,5 have shown rapid depletion of groundwater from regional to 
global scales. Besides the threat to fresh water availability, the decline in groundwater can have detrimental effects 
on food production6,7 and ecosystems and associated biodiversity that rely on groundwater for survival8–10. Rising 
interannual climatic variability and increasing food demand due to rising human population are likely to intensify 
the stress on groundwater resources. Using hydrological and crop models, studies have linked food production 
to groundwater depletion from regional to global scales11–13. Given the intimate connection between groundwa-
ter and food security14, there is a need to understand the major drivers of groundwater patterns in agricultural 
regions to meet food supply requirements without jeopardizing the limited groundwater resources.

Several studies have analyzed long-term (>30 years) observations of groundwater levels15–17, but few of these 
have focused on agricultural regions impacted by pumping18,19. In many of these studies, groundwater decline 
could be correlated with climatic drivers such as precipitation, temperature, drought, and agricultural drivers 
such as pumping. However, these correlation-derived relationships alone should not be relied upon to establish 
cause and effect relationships. Correlation is innately embedded in our thinking when it comes to determining 
the relationship between two variables. However, in a complex, nonlinear environmental system, correlations can 
be an illusion20 and may not detect the true nature of the relationships between the drivers and groundwater pat-
terns. In other words, correlation does not indicate causation, and the absence of correlation does not necessarily 
mean there is no causation. There remains a critical need to advance our knowledge of “causes” of groundwater 
patterns while making use of data-driven, robust statistical approaches such as causality analysis21,22.

One of the most robust methods available to detect the causal linkages between two-time series is Granger 
Causality analysis21 [see Methods section for details]. Initially, Granger Causality was introduced in the field of 
economics. Due to the robust nature and the flexibility of the Granger Causality23, it has been widely used in many 
climate change attribution studies22,24,25. In addition to revealing the causal linkages, Granger Causality can be 
useful for determining the direction of causal linkages between variables18. After several decades of research, the 
implementation of Granger Causality to advance our understanding of cause and effect relationships of ground-
water patterns remains unexplored.

In this study, we conduct the first data-driven, Granger causality analysis to identify the “causes” of ground-
water patterns at multi-decadal scales. For this test case, we implemented the causality analysis in the state of 
Louisiana, USA, which in some locations is under immense groundwater stress due to intensive agricultural 
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activities26. The state of Louisiana also serves as an ideal test bed for this analysis because it possesses a rich and 
a unique combination of climatic and agricultural time series recorded at annual time-scales over 51 years. The 
objective of this study was to identify any causal linkages between groundwater level patterns and climatic and 
agricultural variables from 1965 to 2015. The work was conducted in the state of Louisiana, as an example, but 
the proposed approach can be adapted to other agricultural regions of the world to reveal causal mechanisms 
influencing groundwater patterns.

Results
Trend analysis.  Groundwater levels exhibited significant declines over the last 51 years ranging from 1.5–6 m 
in EV, SM and AC parishes (P < 0.05; Table 1, Fig. 1). The well in EC (the Mississippi River Alluvial aquifer) was 
the shallowest among all parishes and showed highly variable temporal patterns with no significant trend over the 
51 year period. All of the remaining wells (in the Chicot aquifer) showed a steep decline in water level post-1995. 

Parishes
Mean GW Stage 
(m/year)

Rice Yield 
(ton/km2/yr)

Area Harvested 
(km2/year)

Summer Precipitation 
(mm/yr)

Irrigation Wells 
Installed Tmin (°C/yr)

EV 0.11 (<0.001) 7.36 (<0.001) −0.169 (0.50) −3.08 (0.01) 0.09 (0.69) 0.02 (0.004)

EC −0.005 (0.81) 8.21 (<0.001) 1.21 (0.01) 3.81 (0.78) 0.61 (<0.001) −0.01 (0.29)

SM 0.02 (<0.001) 6.44 (<0.001) 0 (0.58) −3.08 (0.01) 0.25 (<0.001) 0.02 (0.004)

AC 0.12 (0.02) 7.20 (<0.001) −1.76 (0.06) −3.08 (0.01) 0.44 (0.001) 0.02 (0.004)

JD 0.03 (0.58) 6.69 (<0.001) −2.24 (0.002) −3.08 (0.01) 0.21 (0.03) 0.02 (0.004)

Table 1.  Sen Slope (P values) estimated during the study periodϒ. ϒDatasets that showed significant (P < 0.05) 
trends for any parish are shown here.

Figure 1.  Time series of mean groundwater level, rice yield and area harvested for five parishes: EV (a,b), EC 
(c,d), SM (e,f), AC (g,h), and JD (i,j) of Louisiana. Open blue circles represent mean groundwater level, open 
green circles represent rice yield and filled black circles represent harvested area for rice. Shaded rectangle 
shows the duration in which most of the wells showed steep decline in groundwater level. The water level is 
measured from the land surface so higher the number drier the well.
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Rice yield showed a significant increase in all parishes with the variable rate of increase (P < 0.05, Table 1). Area 
harvested increased in EC, declined in JD, or showed no trends in EV, AC, and SM parishes. The number of wells 
installed for irrigation over time showed upward trends in all parishes (P < 0.05, Table 1), and the abrupt rise in 
well counts corresponded to highly negative Palmer Drought Severity Index (PDSI) values, especially post-1995 
(Fig. 2). Summer precipitation totals declined by 157 mm, and the minimum air temperatures increased substan-
tially, during 51 years for a climate station in the southern part of the state (Table 1). No significant unidirectional 
trends were detected for the rest of the datasets for any parish (P > 0.05).

Granger causality.  Phillps-Perron test showed that most of the time series were stationary for the study 
period (Table S1). Summer precipitation totals, PDSI, area harvested, and the number of irrigation wells were 
found to Granger cause groundwater response (P < 0.05, Table 2). However, the causal linkages varied among 
parishes and no common cause was noted in all parishes (Table 2). A relatively weak Granger causality was noted 
between groundwater and rice yield and annual precipitation totals (P ≦ 0.11). Further, we found that ground-
water levels can also Granger cause rice yield, indicating potential feedback between both time series (Table 2).

Correlations.  Spearman’s correlations (ρ) were found between groundwater and many of the climatic and 
agricultural drivers for all parishes (P < 0.05; Fig. 3). For instance, rice yield and the number of irrigation wells 
showed significant relationships with groundwater levels for most of the parishes (P < 0.05; Fig. 3). Minimum air 
temperature also exhibited correlations with groundwater level for several parishes (P < 0.05; Fig. 3). The PDSI 
in SM parish and precipitation totals in EC parish were the only climatic variables where correlation derived 
relationships were consistent with the causal linkages. Figure 4 summarizes all correlations and causal derived 
relationships for all parishes.

Discussion
Several water budgeting and hydrological modeling studies have broadly attributed groundwater patterns to irri-
gation withdrawals2,27. Some of these modeling studies have simulated the effect of crop production on irrigation 
demand and subsequently groundwater storage28–30. Our data-driven, causality analysis highlighted a range of 
other causal relationships that can contribute to groundwater decline besides irrigation. Further, we found a 
relatively weak bi-directional relationship between groundwater levels and rice yield during the study period.

The causal linkages were noted between groundwater levels and drought (i.e., PDSI) and the number of irri-
gation wells. For instance, the PDSI and precipitation anomalies suggest that the state of Louisiana experienced 
several droughts post-1995 (Fig. 2). To offset the droughts, farmers dramatically increased installation of irri-
gation wells and relied more heavily on groundwater resources (Fig. 2). This in-turn resulted in steep decline in 
groundwater level but had almost no effect on rice yield (Fig. 1).

As water availability plays a significant role in rice production, it is likely that the availability of groundwater 
may Granger cause rice yield over the long-term (Fig. 4). On the other hand, higher rice production in the past 
can encourage farmers to withdraw more groundwater suggesting that rice yield can also cause groundwater level 
changes as is evident in EC parish (Fig. 4). These results are in agreement with a recent modeling study that used 
rice production, as one of the predictors, to simulate groundwater levels in India31 which is one of the leading rice 

Figure 2.  Annual and summer precipitation totals and annual precipitation anomalies for a climate station in 
the southern part of the state (a), Palmer drought severity index (PDSI) (b), and number of irrigation wells 
installed (c) for five parishes of Louisiana. Shaded green area shows the period with high frequency of droughts 
based on negative PDSI values and annual precipitation anomalies since 1995.
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producing countries in the world. Together, bi-directional causal linkages noted in our work between ground-
water and rice yield suggest that both time series may co-evolve in time. However, additional work is needed to 
test whether this relationship holds at larger spatial scales and in other study locations. Subsequently, correlation 
analysis showed statistically significant relationships between groundwater and rice yield for four parishes despite 
no causal relationships in some cases. This illustrates how conflating correlations with cause and effect relation-
ships can be misleading (Fig. 4).

The areas of rice harvested showed causal linkages with groundwater levels for some of the parishes such 
as EC (Fig. 4). The area harvested for the other parishes remain unchanged or even declined, but groundwater 
levels continued to decline, demonstrating that the decline in groundwater is not necessarily sensitive to the 
amounts of cropped areas in this region. These results pointed to the dominance of climate-induced drought 
over agricultural-related causes in influencing the patterns of groundwater. However, it is worth mentioning that 
increases in the cropped area can lead to a higher demand for irrigation, resulting in groundwater depletion. 
Overall, these findings highlight the need for careful evaluation of the relative importance of causal mechanisms 
that may influence groundwater patterns.

Using hydrological models, studies have overwhelmingly attributed groundwater decline to excessive with-
drawal due to irrigation27. Our work suggests that attributing groundwater depletion patterns solely to an individ-
ual agricultural driver may be an oversimplification of a complex problem. The relative importance of the drivers 
may change substantially even over small spatial scales (e.g., parishes). We also recognize that there are many 
additional agricultural and socio-economic drivers that may influence groundwater patterns that could not be 
analyzed here due to the lack of long-term data availability.

Granger Causality F stat (P Value) Parishes

Null Hypotheses EV EC SM AC JD

Annual Precipitation does not GC GW 1.81 (0.09) 0.61 (0.54) 0.63 (0.53) 2.32 (0.1) 0.37 (0.54)

Summer Precipitation does not GC GW 0.95 (0.41) 2.4 (0.09) 1.43 (0.24) 0 (0.98) 3.08 (0.03)

T Min does not GC GW 1.43 (0.23) 0.87 (0.41) 1.93 (0.16) 1.08 (0.30) 0.29 (0.59)

Tmax does not GC GW 0.29 (0.74) 0.94 (0.39) 0.50 (0.67) 0.47 (0.49) 0.08 (0.76)

PDSI does not GC GW 1.23 (0.29) 0.5 (0.67) 7.55 (0.007) 0.44 (0.50) 0.11 (0.73)

GDD does not GC GW 0.33 (0.71) 2.22 (0.11) 0.90 (0.34) 0.45 (0.5) 0.86 (0.35)

Irrigation wells does not GC GW 1.45 (0.19) 0.91 (0.34) 1.59 (0.20) 3.09 (0.006) 2.24 (0.13)

Rice yield does not GC GW 1.71 (0.11) 1.71 (0.11) 0.04 (0.83) 1.1(0.38) 0.04 (0.82)

GW does not GC Rice yield 1.41 (0.21) 2.21 (0.03) 0.01 (0.89) 2.35 (0.02) 0.04 (0.83)

Area harvested does not GC GW 3.41 (0.003) 3.12 (0.006) 0.16 (0.68) 0.80 (0.62) 0.31 (0.57)

Table 2.  Granger Causality analysis for the hypotheses tested in the study.
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Figure 3.  Spearman’s correlation (ρ) between groundwater levels and climatic and agriculture drivers for the 
five parishes (EV, EC, SM, AC, JD) over 51 years. Shaded color represents significant (P < 0.05) correlations; 
white blanks represents non-significant (P > 0.05) relationships. Abbreviations- Parishes: Evangeline (EV), East 
Carroll (EC), St Martin (SM), Acadia (AC), Jefferson Davis (JD); Annual Precipitation totals (AP), Summer 
Precipitation totals (SP), Minimum Temperature (Tmin), Maximum Temperature (Tmax), Palmer Drought 
Severity Index (PDSI), Growing Degree Days (GDD), Rice Yield (RY), Irrigation Wells (IW), Area Harvested 
(AH).
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Several studies have shown significant correlations between groundwater and precipitation and tempera-
ture15,16,30,32. In general, we would expect linkages between groundwater and precipitation, because greater pre-
cipitation totals typically lead to more groundwater recharge. Our findings suggest strong causal linkages between 
groundwater and annual precipitation totals, particularly so for annual summer precipitation totals (Table 2). 
This strong causal relationship can be attributed to the timing of summer precipitation, which overlaps with the 
growing season of rice and provides much needed additional moisture for rice. The significant declining trend in 
summer precipitation noted for the southern part of the study region can put additional stress on the groundwater 
(Table 1). On the other hand, an increase in air temperature can lead to higher evapotranspiration resulting in 
depletion of groundwater levels. Our findings indicated significant correlations between groundwater and temper-
ature (Tmin or Tmax) for most of the parishes (Fig. 3), but no causal linkages were noted in any parish (Fig. 4). Most 
of these significant correlations were found merely because both groundwater level and temperature showed uni-
directional trends with time. These results further illustrate that correlation can be misleading, as they do not nec-
essarily imply causation20. Overall, our findings highlight the complexity of untangling the causes of groundwater 
patterns where climate and agriculture drivers might interact in multiple ways to influence groundwater patterns.

We conducted the Granger Causality analysis to reveal the causal linkages between groundwater and agricul-
tural and climatic drivers. The causality analysis showed that no one “cause” could be attributed for the ground-
water patterns and that causes varied even between adjacent parishes. These results highlight the importance of 
other climatic and agricultural drivers for groundwater patterns and the complexity in simulating groundwater 
levels via process-based or physical models. We found that droughts did not negatively impact rice yield in any 
of the parishes, and farmers relied on groundwater by dramatically increasing the number of irrigation wells, 
resulting in severe groundwater depletion in some parishes. In addition to pumping, other agricultural causes 
such as rice yield and area harvested could play significant roles in mediating the groundwater levels in the 
region. However, for some parishes, area harvested remained unchanged or declined, but groundwater continued 
to decline, pointing to the dominance of climatic over agricultural drivers. There were only four occasions when 
causal linkages overlapped with the correlation derived relationships, indicating that we must exercise caution 
while using correlations alone to detect the causes of the groundwater patterns. The novelty of this work lies in 
revealing in-depth insights into the causation of groundwater depletion and suggesting a robust approach to 
understand the intimate connections between food and groundwater. Such advancements in our understanding 
can ultimately lead to better management of groundwater while meeting global food demands.
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Figure 4.  Summary of causal and correlation derived relationships estimated between groundwater levels and 
agricultural and climatic variables for all parishes: Evangeline (a), East Carroll (b), St. Martin (c), Acadia (d), 
and Jefferson Davis (e). Green ribbon represents causal linkages between groundwater levels and agricultural 
and climatic variables. Red ribbon represents bi-directional causal linkages between groundwater levels and rice 
yield. Black arrow represents correlation between groundwater levels and agricultural and climatic variables. 
There are only four instances in which causal and correlation derived relationships are in agreement. Variables 
that did not show either causal or correlations relationships in any parish are not shown here. Abbreviations- 
Groundwater Level (GW), Annual Precipitation totals (AP), Summer Precipitation totals (SP), Minimum 
Temperature (Tmin), Maximum Temperature (Tmax), Palmer Drought Severity Index (PDSI), Growing Degree 
Days (GDD), Rice Yield (RY), Irrigation Wells (IW), Area Harvested (AH).
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Methods
Study sites.  The state of Louisiana is the third largest producer of rice in the US33 and due in part to rice 
irrigation, a major part of the state of Louisiana is under groundwater stress34. There are more than a dozen 
rice-producing parishes (i.e., counties) in Louisiana. However, due to the gaps in long-term datasets, we identified 
only five parishes that had the necessary data records for the range of time series used in the study (Fig. S1). The 
parishes that were considered in the study include Evangeline (EV), East Carroll (EC), St. Martin (SM), Acadia 
(AC), and Jefferson Davis (JD).

Datasets.  Groundwater levels (depth from the land surface) were obtained from the USGS groundwater data-
base35. A single representative well with almost no missing annual water level data from 1965–2015 was selected 
for the analysis within each parish. The study wells varied in depth from 35 m (EC), 62 m (AC), 70 m (EV), 97 m 
(JD), to 114 m (SM) and were located in the Chicot aquifer36 (e.g., EV, AC, JD, SM) and Mississippi River Valley 
Alluvial aquifer37 (e.g., EC) systems. These two aquifers are the major sources of groundwater used for irrigation 
in the state of Louisiana38.

Table 3 summarizes all raw and derived time series with their corresponding sources and methods used for 
computation. Two representative climate stations were used for north (EC) and south (AC, EV, SM, JD) parishes. 
Climatic datasets included precipitation totals (annual and summer), minimum and maximum air temperatures, 
Growing Degree Days (GDD), and Palmer Drought Severity Index (PDSI). The Growing Degree Days (GDD) is 
one of the commonly used climate indices that may exert a strong influence on crop production39, and it is esti-
mated as mean air temperature above a certain threshold accumulated over time (Table 3). The Palmer Drought 
Severity Index (PDSI) is a climate index representative of dryness of landscape derived from a combination of var-
iables such as precipitation, air temperature and soil moisture40 (Table 3). Agricultural datasets included, annual 
rice yield, annual area harvested, and the number of wells installed for irrigation from 1965 to 2015 for the five 
parishes. All climatic and agricultural variables were aggregated at an annual scale for each parish. Groundwater 
withdrawal for irrigation is a well-established cause of groundwater decline18. But the datasets for groundwater 
demand in Louisiana are available through USGS only at 5-year intervals resulting in less than 10 observations 
for the study period. To address the data limitation issue, we used the number of irrigation wells installed, which 
was available at an annual scale, as a surrogate for changes in groundwater demand.

Trend analysis.  Two-tailed Mann-Kendall (MK) tests were conducted to detect significant trends at an 
annual scale for all datasets over the tested 51 years41,42. The MK test is a rank based, non-parametric method 
and has been widely used for determining trends in hydro-climatic datasets43–45. Studies show that serial 
auto-correlation in time series can falsely lead to a detection of a trend in MK test46,47. To address this issue, a 
pre-whitening method was implemented before detecting the trend48. The Sen Slope was estimated to quantify the 
rate of change in time series when the significant (P < 0.05) trend was detected49. Trend analysis was conducted 
in R 2.5.150 using package ‘ZYP’51.

Granger causality.  Granger21 proposed causality analysis to gain a more nuanced understanding of causal 
linkages between two variables. In general, causality analysis relies on “cause” and “effect” relationship and makes 
use of the concept of predictability rather than the simple correlation between the response and the associated 
driver or cause20,52. Granger causality21 occurs if “our ability to predict future response of Y increases by including 
all information available except the current value of X” (Eq. 1). In this case variable X is said to Granger cause Y. 
“Feedback” between cause and response is established when X can Granger cause Y and Y can Granger cause X. 
To conduct causality analysis, Granger proposed a bi-variate model (e.g., Eqs 1 and 2) between two stationary 
time series (X and Y).
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where, X and Y are two stationary time series; a, b, c, and d are coefficients; and ε and η are white noise. For X to 
Granger cause Y, bj ≠ 0 in Eq. 1; for Feedback between X and Y, dj ≠ 0 in Eq. 2.

Causality analysis was implemented in the following steps. First, the stationarity of each time series was tested 
via a non-parametric Phillips-Perron test53. If time series was non-stationary, differencing was implemented and 
vector autoregressive models were developed with the modified time series22. Second, vector autoregressive mod-
els were developed between “response (Y)” i.e., groundwater level and “cause (X)” i.e., each climatic and agricul-
tural variable separately for all parishes, resulting in almost 50 vector autoregressive models. Third, two-tailed F 
tests were conducted to test the Null hypothesis (Ho: X does not Granger cause Y) for the Granger causality.

Phillips-Perron test was conducted at the max lag (as shown in Eq. 3) in R 2.5.150 and the outputs include, 
Dickey-Fuller statistics with P values. If time series was non-stationary, differencing was implemented and vector 
autoregressive models were developed with the modified time series as recommended22. Some of the major vector 
autoregressive model parameters included, type of regressor (i.e., trend and constant), lag order, and max lag. The 
lag order was automatically selected by the model based on Akaike Information Criterion (AIC), a commonly 
used model selection approach54. Max lag, the upper limit of the lag for the vector autoregressive model, was 
estimated55 as shown in Eq. (3):
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where T is the length of time series. Lastly, conventional rank-based, non-parametric, Spearman’s correlation (ρ) 
was estimated between groundwater levels and all climatic and agricultural variables56. The causality analysis was 
performed in R 2.5.150 using ‘VAR’ package57. Causality and correlation results were plotted in R 2.5.150 using 
‘Circlize’ package58.

Data Availability
The datasets used in the study are publicly available from NOAA, NASS, USGS and Louisiana DNR.
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