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Some of the most transformative discoveries promising to enable the resolution of this century's grand societal
challenges will most likely arise from environmental science and particularly environmental microbiology and
biotechnology. Understanding how microbes interact in situ, and how microbial communities respond to envi-
ronmental changes remains an enormous challenge for science. Systems biology offers a powerful experimental
strategy to tackle the exciting task of decipheringmicrobial interactions. In this framework, entiremicrobial com-
munities are considered asmetaorganisms and each level of biological information (DNA, RNA, proteins andme-
tabolites) is investigated along with in situ environmental characteristics. In this way, systems biology can help
unravel the interactions between the different parts of an ecosystem ultimately responsible for its emergent
properties. Indeed each level of biological information provides a different level of characterisation of the micro-
bial communities. Metagenomics, metatranscriptomics, metaproteomics, metabolomics and SIP-omics can be
employed to investigate collectivelymicrobial community structure, potential, function, activity and interactions.
Omics approaches are enabled by high-throughput 21st century technologies and this review will discuss how
their implementation has revolutionised our understanding of microbial communities.
© 2014 Abram. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

Microorganisms make up the main portion of biomass on Earth and
are ubiquitous within the environment. In situ, they coexist in mixed
microbial communities whose concerted actions greatly contribute to
sustaining life on our planet. Microorganisms are indeed the main
drivers of biogeochemical cycles and as such ensure the recycling of
behalf of the Research Network of Co
essential organic elements like carbon and nitrogen. In addition, micro-
bial communities interact with plant and animal hosts, and in the con-
text of human biology, our microbiome is now considered to be our
last organ [1]. Understanding howmicrobes interact in situ and howmi-
crobial communities respond to environmental changes has been iden-
tified as one of themajor challenges for the coming yearswith relevance
to evolution, humanhealth, environmental health, synthetic biology, re-
newable energy and biotechnology [2]. To tackle the exciting task of
deciphering microbial interactions, systems biology approaches consti-
tute an ideal experimental strategy (Fig. 1). By considering microbial
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Fig. 1. Systems biology. Integrated analysis of metadata with omics datasets provides access to the metabolic pathways, cellular processes and networks occurring in situ. The extensive
datasets generated are then used to build models for the prediction of an ecosystem's response to environmental cues.
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communities as metaorganisms and investigating all the levels of
biological information (DNA, RNA, proteins and metabolites) together
with the metadata characteristic of the environmental conditions in
situ, systems biology can study the interactions between the different
parts of complex ecosystems responsible for their emergent properties.
The success of systems biology is strongly dependent on the true inte-
gration of experimental observations and the development of mathe-
matical models, which require iterative validation and refinement.
Fig. 2. Overview of multi-omics approach. Each level of information (DNA, RNA, proteins and m
stands for stable isotope probing. SIP-omics provide insights into elemental fluxes and microbi
Systems biology offers a holistic approach for the characterisation of
microbial communities. In such experimental designs metagenomics,
metatranscriptomics, metaproteomics and metabolomics are typically
employed. Each level of biological information provides a different
level of characterisation of themetaorganisms (Fig. 2). Themetagenome
informs on the potential of microbial communities by providing insights
into the genes that could possibly be expressed by the metaorganism.
The metatranscriptome, including messenger and non-coding RNAs,
etabolites) provides a different level of characterisation of the microbial community. SIP
al cross-feeding.
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provides some information about the regulatory networks and gene
expression at the time of sampling. Therefore, together with the
metaproteome, the metatranscriptome informs on the functionality of
microbial communities. Furthermore, the metaproteome also gives
access to regulatory networks (within, and between, cells) and, together
with the metabolome provides some strong insights into microbial ac-
tivities. Importantly, the co-extraction of DNA, RNA, proteins andmetab-
olites [3] enables the generation of rigorous interrelated datasets. Each
of the omics techniques has inherent bottlenecks, such as metagenome
annotation, metatranscriptome assembly, or protein and metabolite
identification. These bottlenecks however can be largely overcome by
generating integrated datasetswhereby the detection of RNA transcripts
and amino acids can guide the process of metagenome annotation [4,5].
This, in turn, can radically facilitate metatranscriptome assembly, while
increasing significantly protein identification rates [6]. Meanwhile,
however, metabolomics remains a complex technology. Untargeted
experimental strategies are typically limited by the low number of me-
tabolites identified. Indeed, while DNA and RNA are composed of nucle-
otides and proteins composed of amino acids, metabolites do not share
any common characteristics making their systematic identification
challenging. In addition, metabolite databases, containing mass spectra
or NMR spectra (generated by mass spectrometry or nuclear magnetic
resonance, respectively), are still relatively poorly populated compared
to gene or protein databases. Nevertheless, metabolite databases are
constantly growing and targeted metabolite identification can be guid-
ed by protein detection. Even though metabolite detection ultimately
correlates with microbial activity, metabolite production in mixed
populations cannot be easily linked to any specific microbial identity.
Besides, metabolomics offers a limited level of information regarding
the connectivity of metabolic pathways [7]. However the combination
of isotope labelling, such as 13C and 15N, with omics (SIP-omics) can
provide insights into the carbon and nitrogenfluxes inmicrobial commu-
nities and inform on microbial interrelationships. Overall omics datasets
encompassing metagenomics, metatranscriptomics, metaproteomics,
metabolomics and SIP-omics have the potential to provide unprecedent-
ed access to the functioning of ecosystems. For the purpose of this review,
the advancement of each omics technology will be discussed.

2. Metagenomics: Microbial potential

Metagenomics is employed to determine the sequences from DNA
directly extracted from environmental samples. This high-throughput
technology, which overcomes the well-known culture-based-method
biases, has transformed our understanding of microbial ecosystems in
terms of diversity, population dynamics and potential. Commonly,
metagenomic studies initially conduct 16S and 18S rRNA surveys (at
the DNA level) to examine microbial diversity and community compo-
sition while informing on the sequencing depth required to access
high levels of metagenome coverage [8–11]. The resulting amplicon se-
quences, typically generated using Illumina or pyrosequencing plat-
forms, are subjected to quality filtering before taxonomic assignment
is performed commonly using computational tools such as QIIME and
mothur [12,13]. These data can then be used to calculate sample diver-
sity and microbial community distance metrics in the context of com-
parative investigations. In addition, correlations between species and
metadata can be uncovered when the microbial communities are
analysed under different environmental conditions [14]. While small
subunit (SSU) rRNA profiling, at the DNA level, can provide insights
into community structure, the potential, flexibility and robustness of
an ecosystem can only be investigated with the elucidation of deep
metagenomes. A recent interesting development, however, in the ex-
ploitation of SSU rRNA data has been brought about with the introduc-
tion of PICRUSt, a computational tool to predict the functional profile of
microbial communities based on genemarker surveys and the availabil-
ity of reference genome databases [15]. Different sequencing platforms
can be employed for metagenomics [16], and commonly metagenome
sequences are composed of short-length reads, which render the pro-
cess of assembly and annotation particularly challenging. In order to as-
semble and recover single genomes frommetagenomic data, sequences
are classified into discrete clusters commonly referred to as bins. Bin-
ning algorithms have been specifically developed for metagenomic se-
quence read assembly; examples of these include Meta-IDBA [17],
AbundanceBin [18], MetaVelvet [19] and Metacluster [20–22]. Further
binning strategies can then be employed to retrieve single genomes
from the fragmented assembled contigs. One of the most widely used
binning approaches to do this relies on emergent self-organising maps
(ESOMs; 23). ESOMs can be based for example on tetranucleotide fre-
quency distribution [24] or time series abundance profile [25]. In both
contexts, individual bins are commonly selected manually from graph-
ical outputs. To circumvent this, novel automated binning algorithms
have been recently developed to recover genomes from fragmented
assembled metagenomic contigs (MaxBin, MetaBAT and CONCOCT;
23,26,27). Computational tools for metagenomic annotation are also
widely available such as MG-RAST and RAMMCAP [28,29]. Obtaining
meaningful functional information from metagenomic datasets can be
very difficult and particularly costly in term of computational pro-
cess time. This can partly be attributed to the large proportion of
uncharacterised taxa prevailing in many environments. In order to
address this issue, a novel manually curated database was built,
FOAM, which has been demonstrated to screen metagenomic datasets
for functional assignments with higher sensitivity and 80 times faster
than BLAST [30]. Depending on the research question and the motiva-
tion for conducting metagenomics, assembly might not always be
required. Indeed, in order to explore themetabolic potential of a micro-
bial community, Abubucker et al. (2010) developed a computational
pipeline (HUMAnN) to determine the relative abundance of gene
families and metabolic pathways from short-read sequences character-
istic of metagenomic datasets [31]. Similarly, Rooijers et al. (2011) de-
signed an iterative computational workflow using raw metagenomic
sequences to mine metaproteomes [32]. These two pipelines [31,32],
however, have been developed for the human microbiome and rely
heavily on the availability of numerous robustly annotated genomes
from relevant single microorganism. Predictive modelling approaches,
such as PRMT (Predictive Relative Metabolic Turnover; 33) have been
recently designed to explore multi-species community functioning in
the context of metagenomics. PRMT uses metagenomic information to
predict metabolite environmental matrices and generate PRMT scores.
Correlations between these scores and relative phylogenetic abundance
can then be investigated to infer potentialmetabolic role of specific taxa
within an ecosystem, therefore providing a useful strategy to access
community functioning from metagenomic data [33]. Metagenomics
is a powerful tool to identify and in some instances isolate novel micro-
organisms and help uncover the distribution of metabolic capacities
across the tree of life. For example, the analysis of acid mine drainage
metagenomes revealed the presence of a unique nif operon, which led
to the isolation of the only nitrogen fixer from the bacterial community
by cultivating the acid mine drainage biofilm in the absence of nitrogen
[34]. Recently, 12 bacterial near complete genomes were reconstructed
from activated sludge metagenomic datasets [35]. These included rare,
uncultured species with relative abundance as low as 0.06%, highlight-
ing the power of metagenomics to uncover novel microorganisms [35]
. Similarly, metagenomics from a premature infant gut microbiota led
to the recovery of 11 near complete genomes [36]. Amongst these, the
first genome of a medically relevant species, Varibaculum cambriense,
could be reconstructed. Genomic-based metabolic prediction of
V. cambriense unveiled the metabolic versatility of this bacterium in
terms of carbon sources and electron acceptors during anaerobic respi-
ration [36]. In addition, the dataset indicated a possible metabolic
exchange between V. cambriense and the rest of themicrobial communi-
ty. While V. cambriense has the ability to produce nitrite, which could be
furthermetabolised by other species, themicroorganism could be depen-
dent on the community for its source of trehalose [36]. Metagenomics of
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sediment samples from a site adjacent to the Colorado River (US) re-
vealed a surprising phylogenetic diversity and novelty coupledwithmet-
abolic flexibility [37]. The microbial communities displayed a high level
of evenness with no single organism accounting for over 1% of the
communities. The most abundant species in deeper sediments, RBG-1,
was found to represent a new phylum. The genome of RBG-1 was recov-
ered from the metagenomic dataset and counted over 1900 protein-
encoding genes [37]. Genomic-based metabolic profile reconstruction
of RBG-1 highlighted its potential role in metal biogeochemistry with
the capacity of iron cycling both under aerobic and anaerobic environ-
mental conditions [37]. Metagenomic datasets from the same site were
further mined to investigate the metabolic diversity of the Choloroflexi
phylum in sediments [38]. Choloroflexi were found to be metabolically
flexible with the ability to adapt to varying redox conditions. They were
predicted to play a role in carbon cycling being able to degrade plant
material such as cellulose [38]. In addition, known pathways previously
not associated with this phylum were found to be encoded in the
newly reconstructed genomes recovered from metagenomic datasets
[38]. After discovering that thawing permafrost was commonly dominat-
ed by a single archaeal phylotype with no cultured representative, as
indicated by SSU rRNA profiling from DNA samples, Mondav et al.
(2014) recovered its genome from a metagenomic dataset in order to
assess its metabolic capacity [39]. This novel archaea was found to be
present in 33 locations widely geographically distributed and dominant
in some cases accounting for up to 75% of detected archaeal sequences
[39]. Metabolic reconstruction of this archaea indicated its ability to
perform hydrogenotrophic methanogenesis. This was confirmed
in situ by metaproteomics, and conferred a significant role to the
novel methanogen in global methane production [39]. This illustrates
how metagenomics can help develop biological hypotheses that
can be further tested employing other omics. An important pitfall of
metagenomics and its interpretation, when used in isolation, is the in-
herent assumption that microorganisms have the same potential and
therefore perform the same function regardless of their environment.
Freilich et al. (2011), together with similar work [41–43], could demon-
strate that microbial interactions can be manipulated through changes
in environmental conditions [40], which cannot be easily accounted
for when analysing metagenomic datasets. Therefore to embrace the
full potential of metagenomics, and particularly to test the derived bio-
logical hypotheses, the combination with other omics is required.

3. Metatranscriptomics: Microbial potential function

While metagenomics informs on the genes present in an ecosystem,
metatranscriptomics investigates gene expression and therefore pro-
vides access to messenger and non-coding RNAs. As the majority of
RNA in a cell is composed of ribosomal and transfer RNAs (N95%),
metatranscriptomics typically comprises rRNAs depletion steps to en-
rich for mRNAs [44]. Metatranscriptomics commonly involves reverse
transcription to generate cDNA, which can then be sequenced using
the same platforms as for metagenomics [16]. Direct RNA sequencing,
bypassing cDNA generation and its associated biases, is also available
[45] but has not yet been employed in the context of mixed microbial
communities. Although not usually performed in metatranscriptomic
studies, 16S and 18S rRNA surveys fromRNA samples are recommended
prior to metatranscriptome investigations. The SSU rRNA data can then
be analysed as indicated above in the context of metagenomics [12–14].
This can provide some insight into which operational taxonomic units
(OTUs) are likely to be active at the time of sampling, information that
cannot be deduced from similar data generated at the DNA level. In
order to access in situ microbial gene expression metatranscriptomes
have to be investigated.Metatranscriptomics offers the unique opportu-
nity to identify novel non-coding RNAs, including small RNAs reported
to play key roles in central biological processes such as quorum sensing,
stress response and virulence [46–48]. Shi et al. (2009) detected a large
fraction of small RNAs in marine water reportedly involved in the
regulation of energy metabolism and nutrient uptake [49]. One of
the main challenges of metatranscriptomics is the assembly of non-
continuous short-read sequences with uneven sequencing depth due
to variation in mRNA abundance within and between microorganisms.
In addition, different mRNAs commonly contain repeat patterns,
reflecting functional redundancies in proteins, which render the process
of assembly even more difficult. Binning and functional annotation
strategies similar to those used for metagenomic sequences are
employed [17–30]. Metatranscriptomic data analysis can be consider-
ably facilitated when performed in tandem with metagenomics. Xiong
et al. (2012) developed an experimental and analytical pipeline for the
analysis of metatranscriptomes in the absence of extended sets of refer-
ence genomes [50]. Their workflow employs a peptide-centric search
strategy by performing in silico translation of detected transcripts.
While Leung et al. (2013) specifically designed a new algorithm for
metatranscriptome assembly [51], HUMAnN, which processes unas-
sembled short-read sequences can be used for the analysis of tran-
scribed gene families and pathways and the determination of their
corresponding abundance within a microbiome [31]. Interestingly,
Desai et al. (2013) developed a computational pipeline (FROMP)
to compare metabolic reconstructions from metagenomic and
metatranscriptomic datasets [52]. Such comparisons can highlight
the discrepancies between metabolic potential and actual transcrip-
tion, as observed in the case of marine microbial communities [53].
Metatranscriptomics has been successfully employed to investigate
the effect of xenobiotics on the human gut microbiota [54]. Indige-
nous microbial communities were found to respond to xenobiotics
by activating drugmetabolism, antibiotic resistance and stress response
pathways across multiple phyla. This study therefore captured the
collateral consequences of xenobiotic treatment. Metatranscriptomics
in combination with isotope labelling was also used to decipher the
fate of methane and nitrate in anaerobic environments [10]. Impres-
sively, using internal standards for quantitative metagenomics and
metatranscriptomics, Satinsky et al. (2014) could suggest different con-
tributions to geochemically relevant processes of free-living and
particle-associated microbiota in the Amazon River Plume during a
phytoplankton bloom [55]. Particularly, free-living microorganisms
were found to express genes involved in carbon, nitrogen and phos-
phate cycles, while particle-associated microbial communities tran-
scribed genes with relevance to sulphur cycling [55]. The authors,
however, recognise the limitations of metatranscriptomics, as mRNA
abundance cannot be used as a proxy for microbial activities. In term
of ecosystem functioning mRNAs only reflect potential functions since
it cannot account for post-transcriptional regulation. Indeed not all
mRNAs are translated into proteins and a lack of correlation between
mRNA and protein levels has been previously reported [6]. Even though
the detection of proteins cannot be strictly correlatedwithmicrobial ac-
tivities and process rates, metaproteomics provides useful insights into
microbial functions.

4. Metaproteomics: Microbial function

Metaproteomics investigates the proteins (catalytic and structural)
collectively expressed within a microbiome and together with metabo-
lomics provides access to ecosystem functioning. The identification of
proteins and metabolites can be directly used to construct metabolic
models reflecting active pathways and in this context, metaproteomics
and metabolomics complement each other very well. Metaproteomics,
however, presents some valuable advantages over metabolomics as
proteins can be assigned to specific taxa and therefore their detection
informs not only on what pathways are active within an ecosystem
but also on the identity of species involved in specific functions. In this
respect, metaproteomics offers a powerful approach to link community
composition to function. The success of metaproteomics is strongly
dependent on the availability of relevant genomes to enable high
protein identification rates [6]. It is therefore recommended to use
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metaproteomics in combination with metagenomics, an experimental
approach which will result in a synergistic effect since the detection of
peptides can assist and validate metagenome annotation [4]. Compared
to metagenomics and metatranscriptomics, metaproteomic computa-
tional workflows are somewhat less developed [56]. Software tools
likeMEGAN [57] can be used for metaproteomics, in which case the ini-
tial BLAST files are generated directly from protein files, andHUMAnN is
also suggested to be amenable for metaproteomic datasets [31]. One of
the limitations of MEGAN is that it employs a naïve pathway mapping
strategy. Proteins can be involved in more than one biochemical reac-
tion and, consequently, can participate in several metabolic pathways.
Also significant in the context of metabolic reconstruction from
metagenomic datasets, a naïve pathway mapping strategy (whereby
the detection of a protein implies the potential activity of all the biolog-
ical pathways the protein might be involved in) can lead to an overesti-
mation of the functional diversity of microbial communities. Parsimony
approaches, as employed in the HUMAnN pipeline, are then applied to
offer a more accurate representation of the functionality of a microbial
community by specifically identifying the minimum set of biological
pathways that can account for all the protein families detected [31,58,
59].While formetagenomics andmetatranscriptomics relative quantifi-
cation and even absolute quantification with the use of internal stan-
dards are accessible, protein abundance is harder to determine. In the
context of pure-culture proteomics, labelling methods, such as iTRAQ
(isobaric tags for relative and absolute quantification) have been devel-
oped [60], while in multi-species communities, normalised abundance
factors are commonly calculated [61–64]. The comparison of summer
and winter metaproteomes from West Antarctic Peninsula seawaters,
using spectral counts for the determination of protein levels, revealed
seasonal shifts in abundance of specific taxa through protein assign-
ments, which could be correlated with differences in metabolic activi-
ties [65]. Of particular note was the observation that ammonia
oxidation was exclusively carried out by archaea during the winter,
while bacteria were predominantly involved in this process in the sum-
mer. Interestingly, metaproteomics has been used as a tool to compare
the physiological states of microbial communities under different envi-
ronmental conditions [66,67]. Specifically, the characterisation of the
metaproteome from acidmine drainage biofilms grown under laborato-
ry conditions enabled the fine-tuning of the media composition to
mimic the natural environment of these microbial communities [66].
Recently, metaproteomics combined with isotope labelling has uncov-
ered a novel family of enzymes involved in hydrocarbon bioremediation
[68]. Metaproteomics has also revealed an increasingly important role
for a clade of Gammaproteobacterial sulphur oxidizers (SUP05) in ma-
rine nutrient cycling in response to climate change [69]. Even though
metaproteomics is a powerful tool to linkmicrobial community compo-
sition to function, oneof themain challenges ofmetaproteomics is to re-
late protein abundances to microbial activities, which are ultimately
reflected by metabolic fluxes.

5. Metabolomics: Microbial activity

Metabolomics is employed to characterise the intermediates and
end-products of metabolism. Metabolites are typically of lowmolecular
weights and are mostly in a state of flux, which implies that their com-
positions and concentrations vary significantly as a function of time
within an ecosystem. Metabolomics offers a powerful approach for the
characterisation of ecosystem phenotypic traits (at the macro-scale)
resulting from the network of interactions occurring between the
members of themicrobial communities (at themicro-scale). This meth-
odology therefore plays a significant role in determining ecosystem
emergent properties and thus is widely used for biomarker discovery
and diagnostics [70,71]. Two experimental workflows can be employed
in metabolomics; a targeted approach where known metabolites are
quantified and a non-targeted strategy aiming at characterising entire
metabolomes [72]. Due to the great variation in metabolite chemical
structures, non-targeted metabolomics is commonly characterised by
the detection of large fractions of unknown metabolites [73]. In addi-
tion, metabolite databases can contain incomplete information and are
unsuitable for the identification of isomers [74]. Faecal metabolite
profiling of cirrhotic patients revealed the differential detection of
1771 features when compared to control groups. Amongst these, only
16 metabolites could be identified [75]. Despite the low identification
rate, liver cirrhosis was shown to correlate with nutrientmalabsorption
and disruptions in fatty acid metabolism [75]. Over 3500 metabolic
features were detected in acid mine drainage biofilms, from which
only 56 were identified with more than 90% classified as unknown
[76]. Some of these likely represent novel metabolites but this observa-
tion was largely attributed to the incompleteness of MS/MS databases.
Indeed they are limited to commercially available compounds, which
are estimated to represent as little as 50% of all biological metabolites
[76]. In this study, metabolomics was combined with isotope labelling,
which led to significant improvements in chemical formula prediction
particularly for large metabolites [76]. In order to gain some insights
into unknown metabolites typically detected in untargeted investiga-
tions, modification-specific metabolomics was developed [77]. This
novel approach involves the detection of metabolite modification
encompassing acetylation, sulfation, glucuronidation, glucosidation
and ribose conjugation. The inclusion of modification information to
themass feature during database searches drastically reduces the num-
ber of matches for metabolite identification and therefore significantly
decreases the time required for this process [77]. Similarly, in order to
improvemetabolite identification rates in untargetedmetabolite profil-
ing, Mitchell et al. (2014) developed an algorithm for the detection of
functional groupswithinmetabolite databases [78]. Targetedmetabolo-
mics, whereby a pre-determined selection of metabolites are detected
and quantified, also constitutes a very valuable experimental approach
and has been widely employed in the context of human biology. The
monitoring of 158 target metabolites belonging to 25 pathways in
serum samples allowed the discrimination between three patient
groups [79]. Specifically, 13 and 14 metabolites were identified for the
differentiation between colorectal cancer patients fromhealthy individ-
uals and from polyp patients respectively, thus demonstrating the
potential of such an experimental strategy for diagnostics. Targetedme-
tabolite profiling of 212 compounds in blood samples over a period of
seven years revealed that over 95% of individuals showed at least 70%
of metabotype conservation [80]. In addition over 40% of individuals
were uniquely identified by their metabolite profile after seven years.
In order to appropriately select relevant metabolites to target, PRMT
can be employed when metagenomic sequences are available [33].
The application of PRMT to a time-series bacterial metagenomic dataset
from the Western English Channel supported a correlation between
bacterial diversity and metabolic capacity of the community [33]. Spe-
cific bacterial groups could be linked, for example, to carbohydrate
utilisation or total organic nitrogen availability. Importantly, PRMT un-
covered some novel biological hypotheses by linking specific taxa to or-
ganic phosphate utilization or chitin degradation [33]. Overall the
success ofmetabolomics in the context ofmixedmicrobial communities
is limited compared to other omics technologies and importantly the
identification of metabolites is not particularly informative in terms of
microbial interactions. In order to overcome this limitation and to gain
some insights into microbial taxa involved in metabolite production,
the combination of metabolomics and metaproteomics can be very
useful. Metabolic exchange in an acid mine drainage ecosystem between
a dominant protist and the indigenous bacterial community was exam-
ined by employing a proteo-metabolomic strategy [81]. The protist was
found to selectively secrete organic matter in the environment, which
amongst other effects led to a nitrogen bacterial dependence on the pro-
tist activities. Even though metabolomics and metaproteomics can be
successfully combined to investigate microbial interactions, microbial
interrelationships and more specifically microbial cross-feeding can be
investigated using stable isotope probing (SIP) techniques.
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6. Sip-Omics: Microbial interrelationships

Although omics approaches, particularly when used in combination,
can provide unparalleled insights into the functioning ofmixedmicrobi-
al communities, specific elemental fluxes and microbial interrelation-
ships cannot be easily uncovered from such datasets. SIP, using for
example 13C, 15N or 18O isotope labelling, can be employed to elucidate
the fate of specific compounds in complex microbial networks. A draw-
back of these experimental designs however is the inherent necessity of
microcosms or multi-species microbial communities culturing set-ups
in laboratory environments, which only approximate in situ conditions.
Ideally, isotope labelling should be combinedwith omics and help tack-
le specific research questions. In order to verify the activity of a novel
pathway, suggested by omics analyses, Ettwig et al. (2010) employed
a complex experimental strategy involving the incubation of enrich-
ments cultures with 13C labelled methane, 15N labelled nitrite and 18O
labelled nitrite [4]. Haroon et al. (2013) could not only demonstrate,
using 13C and 15N labelling, the anaerobic methane oxidation coupled
with nitrate reduction in a novel archaeal lineage but also that the ni-
trite generated by this pathway was subsequently used by an annamox
population. This microbial interrelationshipwas then further confirmed
by the co-localisation of the two microbial taxa [10]. At the DNA and
RNA level, isotope labelling has beenwidely used to capture the identity
of the active members of microbial communities involved in the degra-
dation of specific compounds. In this context, labelled and unlabelled
microbial fractions are separated by density-gradient centrifugation
and SSU rRNA genes are typically amplified [82,83]. More recently,
metagenomic analysis of the separated fractions has been carried out
but is mostly limited to targeted approaches as opposed to deep
metagenomes. For example, SIP enabled the identification of glycoside
hydrolases inmetagenomic sequences from labelled fractions of soilmi-
crobiota [84]. Targeting the same enzyme families directly from bulk
soil resulted in a 3-fold decrease in relative abundance, highlighting
the enrichment benefit of combining SIP with targeted metagenomics
[85]. SIPwas also recently combinedwithmetatranscriptomics. Dumont
et al. (2013) analysed metatranscriptomic sequences from both heavy
and light fractions after incubating lake sediments with 13CH4 [86].
While the unlabelled metatranscriptome displayed a wide phylogenetic
diversity, the labelled sequences were predominantly assigned to
methanotrophs. A high abundance of methane monooxygenase tran-
scripts were detected in labelled datasets, which also provided insights
into carbon and nitrogen metabolism [86]. SIP metaproteomics is quite
widely used and presents some advantages over RNA-SIP and DNA-
SIP. Indeed, labelled and unlabelled protein fractions are not separated
and the level of isotope incorporation into amino acids can bemeasured,
which informs on protein turnover and acts as a direct proxy for activi-
ty [87]. Furthermore, the limits of detection of heavy labelled isotopes
are very low (in the order of 0.1% relative isotope abundance), which
allows for i) the use of lower labelled substrate concentrations (closer
to in situ conditions) and ii) access to rare taxa [88]. Pan et al. (2011) de-
veloped an algorithm to accurately determine 15N percentage incorpo-
ration into proteins [89]. In this study, isotope labelling was employed
to investigate the microbial processes involved in biofilm development
and recolonisation. A low protein turnover was observed in the mature
biofilm, while the opposite was found in the early stage growth biofilm,
reflecting the requirement for de novo protein synthesis in the latter
conditions [89]. Protein-SIP was recently employed to investigate
the degradation of naphtalene and fluorene in groundwater [90]. Pro-
teins involved in naphtalene metabolism were mostly assigned to
Burkholderiales, which were strikingly estimated to obtain over 80% of
their carbon from the labelled environmental contaminant. Proteins
involved in fluorene degradation could not be identified in situ, while
Rhodococcuswas found to play amajor role in this process under labora-
tory conditions [90]. The authors emphasise the significance of this
observation, which indicates a biassed enrichment under artificial con-
ditions and a crucial need for in situ investigations to properly examine
microbial processes. Some form of metabolomics is always involved in
SIP experiments since the detection and concentration of specific
labelled metabolites are necessarily investigated. However SIP can also
be employed in the context of untargeted metabolomics. Using an ele-
gant experimental strategy comparing unlabelled to labelled substrate
metabolic measurements, Hiller et al. (2010) developed a computation-
al method (nontargeted tracer fate detection: NTFD) to quantitatively
detect metabolites derived from a specific labelled compound [7]. Com-
bined with other omics, the quantitative NTFD should facilitate the
discovery of novel pathways while highlighting metabolic pathway
connectivity and microbial interrelationships. SIP metabolomics and
metagenomics were recently employed to investigate the microbial
anaerobic degradation of cellulose [91]. In this study, labelled and
unlabelled fractions were not separated before downstream analyses
and only 16S rRNA, 18S rRNA and carbohydrate-binding domain infor-
mation was extracted from themetagenomic dataset. 13C labelled cellu-
losewas found to bemainly degraded by clostridial species and resulted
in the production of 13C acetic acid and 13C propionic acid [91]. Overall
SIP represents a very attractive experimental strategy to track down
the fate of specific compounds and uncover metabolic pathway connec-
tivity within microbial ecosystems but must be combined with other
omics in order to fully exploit its potential.

7. Systems biology: Towards microbial ecosystemmodelling

Overall, progress in omics technologies is advancing at a fast pace
but in order to fully adopt systems biology approaches, omics datasets
need to be integrated and to constitute the basis for ecosystem predic-
tivemodelling. Furthermore, since the emergent properties ofmicrobial
systems are a direct consequence of the network of interactions
between themembers of themicrobial communities and their environ-
ment, both physical and microbiological processes need to be consid-
ered. Microbial interactions are inherently dependent on temporal and
spatial scales and are subject to stochastic processes. To illustrate the
importance of spatial organisation, Frey (2010) discusses two scenarios
involving the Escherichia Col E2 system, in which the outcome of micro-
bial interactions is in direct opposition [92]. The production of the Col E2
toxin by Escherichia coli allows the producing strain to kill sensitive
competitors but confers a competitive advantage to resistant strains. In-
deed, even though resistance has an inherent fitness cost, the toxin-
producing strain (resistant to its own toxin) is also bearing the toxin
production cost. When grown on agar plates, the three types of strains
can coexist, while in agitated liquid medium, only the resistant strains
survive [92]. This example highlights the necessity to elucidate the spa-
tial organisation ofmicrobial specieswithin an ecosystem in order to re-
solve microbial interrelationships. Modelling microbial interactions
based on single-species metabolic network reconstruction has led to
the prediction of environmental conditions promoting either coopera-
tion or competition between microbial pairs [40–43,93–95]. This kind
of strategy typically involves stoichiometric constraint-basedmodelling
using Flux Based Analysis (FBA). In this framework, metabolite fluxes
are constrained bymass conservation, thermodynamics (reaction direc-
tionality), assumption of steady-state intracellular metabolite concen-
trations and nutrient availability [96]. These constraints are then used
in silico as boundary conditions to find a set of metabolic fluxes that
satisfies stoichiometry andmaximises a pre-defined biological objective
function commonly chosen as biomass production. To refine the predic-
tion ofmetabolicflux distribution, quantitative proteomics andmetabo-
lomics were integrated together with genome-scale metabolic
reconstruction [97]. This novel modelling approach was found to pre-
dict more accurately (compared to FBA) the metabolic state of human
erythrocytes aswell as of E. colideletionmutants [97], notably illustrating
the versatility of computational methods, applicable to diverse biological
contexts. Using dynamicfluxbalance analysis and stoichiometricmodels,
a novel computational framework, COMETS, could predict the equilibri-
um species ratio of a three-bacterium community [98]. Interestingly,
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COMETS can integrate both manually curated and genome-based auto-
mated reconstructed stoichiometric models. COMETS is proposed to be
scalable to more complex microbial communities [98] and as demon-
strated by Yizhak et al. (2010; 97), the integration of other omics could
positively impact on COMETS by refining the stoichiometric models
employed. Metagenome-based metabolic reconstructions have recently
started to emerge, as illustrated by the development of HUMAnN to de-
termine the relative abundance of gene families and pathways from
metagenomic datasets [31]. In parallel, comparative metagenomic
tools, such as LEfSe (linear discriminant analysis effect size), have been
designed specifically for metagenomic biomarker discovery [99]. A very
interesting concept in systems-based microbial ecology is the newly
developed reverse ecology framework, which aims to translate genomic
data into ecological data by predicting the natural environment of a
species, including its interactions with other species from genomics
[100]. Using this framework, Levy and Borenstein (2013) addressed the
forces driving microbial community composition within the human
microbiome [101]. They developed a computation framework that
could predict co-occurrence patterns from metagenomic datasets,
which were verified using experimental observations. Excitingly, they
could demonstrate that microbial species composition was predomi-
nantly governed by habitat filtering, whereby competitors co-occurred,
and not by species assortment. The twopatterns, however, are notmutu-
ally exclusive. While community composition was found to be mainly
dictated by resources for which microorganisms compete, species with
complementary requirements were also found to co-exist within micro-
bial communities [101]. Furthermore, Levy and Borenstein (2013) also
observed an increase in habitat-filtering signatures within phyla, which
indicated that even though phylogenetic closeness can be linked to co-
occurrence patterns it cannot solely explain the habitat-filtering domi-
nant structure observed within the humanmicrobiome [101]. Strikingly,
mathematical models developed to date in the context of mixed-species
microbial communities have only focused onmetagenomic datasets [31,
33,101,102] while bypassing metatranscriptomics, metaproteomics and
metabolomics. These omics methodologies, however, provide valuable
insights into ecosystem functioning and, therefore, are imperative for
the accurate prediction of ecosystem emergent properties.

8. Summary and outlook

The field of omics, along with corresponding computational
workflows, is expanding very rapidly and overall a clear move from
proof-of-concept studies to real investigations has taken place. A recent
breakthrough in metagenomics and metatranscriptomics has been
realised with the introduction of internal standards, allowing the corre-
sponding technologies to enter the realm of absolute quantification [55,
103]. Over 1013 genes and 1011 transcripts were detected per litre of
seawater in the Amazon River Plume representing the first quantitative
in situ investigation [55]. Carbon and nutrient flux through this natural
ecosystem could be resolved and the level of expression of relevant
genes was compared in different microenvironments [55]. Tools to ac-
curately quantify protein levels are starting to emerge [63] and this
should be followed by the development of adequate internal standard
procedures to access absolute quantification, similarly tometagenomics
andmetatranscriptomics [103]. As discussed above, targeted metabolo-
mics can be powerful in the context of diagnostics [80]. Also, methodol-
ogies are being developed to gain some insights into the large fraction of
unknown metabolites typically identified in untargeted experimental
strategies [77,78]. Despite thewealth of information that can be derived
from omics datasets, pathway connectivity and microbial interrelation-
ships are not easily accessed. This can be partly overcome by combining
omicswith SIP,which requires a precise experimental setup. Indeed, the
use of labelled substrates cannot be performed in natural environments
and necessitates laboratory settings, which impose inevitably some
artificial constraints resulting in data biases [90]. Therefore, a thorough
investigation of the physiological state of microbial communities under
laboratory conditions should be carried out and compared to that of
their natural habitat prior to SIP, as elegantly demonstrated by Belnap
et al. (2010; 66). Datasets obtained from integrated omics approaches
can provide unprecedented insights into ecosystem functioning.
However, to enable their full exploitation they need to form the basis
formathematicalmodelling. The concept of reverse ecology and its inte-
gration into the computational framework developed by Levy and
Borenstein (2013; 101) is a very promising tool to tackle the challenging
task of microbial community modelling and constitutes an excellent
starting point for the integration of multi-omics datasets. Finally the de-
velopment of such models will necessitate a true integration of experi-
mental observations and model development with systematic iterative
validation and refinement.
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