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Abstract: Swift vaccination is necessary as a response to disease outbreaks and pandemics; otherwise,
the species under attack is at risk of a high fatality rate or even mass extinction. Statistics suggest
that at least 16 billion injections are administered worldwide every year. Such a high rate of nee-
dle/syringe injection administration worldwide is alarming due to the risk of needle-stick injuries,
disease spread due to cross-contamination and the reuse of needles, and the misuse of needles. In ad-
dition, there are production, handling, and disposal costs. Needle phobia is an additional issue faced
by many recipients of injections with needles. In addition to a detailed literature review highlighting
the need for needle-free injection systems, a compressed air-driven needle-free jet injection system
with a hydro-pneumatic mechanism was designed and developed by employing an axiomatic design
approach. The proposed injection system has higher flexibility, uninterrupted force generation, and
provides the possibility of delivering repeated injections at different tissue depths from the dermis to
the muscle (depending on the drug delivery requirements) by controlling the inlet compressed air
pressure. The designed needle-free jet injector consists of two primary circuits: the pneumatic and
the hydraulic circuit. The pneumatic circuit is responsible for driving, pressurizing, and repeatability.
The hydraulic circuit precisely injects and contains the liquid jet, allowing us to control the volume
of the liquid jet at elevated pressure by offering flexibility in the dose volume per injection. Finally,
in this paper we report on the successful design and working model of an air-driven needle-free jet
injector for 0.2–0.5 mL drug delivery by ex vivo experimental validation.

Keywords: needle-free; liquid jet; injection system; compressed-air and spring-driven; controlled
release; repeated injection; biopharmaceutical delivery

1. Introduction

History dictates how outbreaks and pandemics of contagious diseases and viruses
have been fatal to humankind and cattle, with the number of deaths exceeding millions
of humans and animals. To date, humanity has survived influenza, typhoid fever, viral
hemorrhagic fever, smallpox bubonic plague, measles, malaria, yellow fever, diphtheria,
cholera, HIV/AIDS, Ebola, dengue, hepatitis, MERS, Zika virus, and coronavirus, diseases
caused by some of the most destructive pathogens of all time [1–6]. For the well-being of
successive generations, the fight against diseases to stop and eliminate them in the future
using antibiotics, vaccines, and pharmaceuticals or through global immunization seems
to be the only viable approach. The need to save human beings and animals from fatal
diseases has always existed. One major contributory factor in treating infectious diseases
(among other factors) is appropriate drug delivery [7–9]. There are many means of drug
delivery [10,11]; nevertheless, the oral intake of medicine remains the most commonly used
drug delivery route to date. However, the current routes of pharmaceutical administration
can be categorized into intradermal and mucosal drug administration [12]. Intradermal
routes of drug delivery include liquid jet injections [13,14], ballistic powder inoculation [15],
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and the topical administration of vaccines across the skin. In contrast, mucosal vaccination
involves mucosal membranes for ocular [16,17], oral [18,19], nasal [20,21], pulmonary [22],
vaginal [23], and rectal routes of pharmaceutical delivery.

Intradermal needle syringe injections become some of the most widely used means
of delivering liquid drugs into the body for healthcare procedures since the invention of
hypodermic needle syringes by Sir Alexander Wood of Edinburgh in 1853 [24]. Statis-
tics suggest that at least 16 billion prophylactic and curative injections are administered
worldwide every year [25]. On average, American children receive up to 26 inoculation
shots for protection against diseases such as polio, measles, smallpox, influenza, cholera,
and hepatitis by the time they are 2 years of age. These figures are alarming, and the use
of hypodermic needles increases the global burden of diseases attributable to the use of
contaminated needles for injections administered during healthcare procedures [26].

Needle-stick injuries occur accidentally in personnel-related to health care while ad-
ministering injections, after the infusion, during disposal while recapping the contaminated
needles, or after disposal [27–32]. Despite the everyday use of needles and sharps for injec-
tions and taking blood samples, another limitation of needle-based injection administration
is needle phobia [33,34]. This is an important issue for both adults and children that makes
injection administration stressful [28,35–39]. In addition, the economic and human costs
related to injuries, wounds, needle handling, and disposal are very high [32,40–43]. The
post-injury costs are estimated to range from USD 500 to USD 3000 per injury accident,
depending on the treatment provided [38,42]. Furthermore, almost half of the total number
of injections administered in developing and third-world countries are unsafe, leading
to cases of hepatitis, human immunodeficiency virus (HIV), and more than 20 other dis-
eases [27,30,43,44]. The World Health Organization (WHO) has analyzed the statistics
regarding needle injection costs, global data on pathogen infections, and the number of
deaths from unsafe injections, and has suggested that USD 14 could be saved for every
single international dollar invested in injection safety [27,41,45].

The drawbacks associated with the use of hypodermic needles for drug administration
have encouraged and motivated scientists to search for alternatives to hypodermic needle
delivery, including the intradermal, topical, and mucosal routes. As a result of recent re-
search there have been advances in the laser ablation of skin, passive medication absorption,
iontophoresis using electric charges for enhanced drug delivery [46], electroporation for
pore formation in the stratum corneum to eliminate the skin barrier [47–49], sonophoretic
drug delivery using ultrasonic waves, microneedles of different shapes and sizes [50], and
powder and liquid jet injections [51–53]. This article investigates the intradermal routes of
inoculation and is focused on liquid jet injections [12–14,54]. All the routes, as mentioned
earlier, involve breaking the skin barrier (which is made up of about 30 layers of dead
skin cells and is known as the stratum corneum) by either degrading it or by piercing
it in various ways. The stratum corneum is the first and foremost line of defense that
prevents the entry and absorption of harmful foreign materials to the epidermis and tissue.
It can withstand mechanical stresses ranging between 16 and 20 MPa depending upon the
mechanical properties of skin, and then finally ruptures due to excessive pressure [55,56].

Passive medication absorption is the easiest and most simplistic method of drug
delivery through the skin without harming the skin; however, skin permeability is usually
increased using skin abrasion or some degree of laser ablation to enhance the absorption
rate of the drug, and a tape or topical ointment is used to cover the affected skin part to stop
possible infection and enable the passive transfer of medication to the tissue [57]. As simple
as may seem, passive medication absorption is a prolonged process when it comes to the
delivery rate because it can only transfer 50 milligrams of medication to the tissue over a
period of 24 h [58]. The affinity of the epidermis to absorb more medicine is sometimes
enhanced using iontophoresis. The mechanism of iontophoresis involves the charging of
drug molecules across the skin barrier electrically to enhance the permeability of skin for
increased absorption of drug molecules. The drug delivery rate using this technique is
10 times higher than that of passive absorption, reaching 500 milligrams per day, which
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is still considered a very slow delivery rate [46]. A mechanism involving pore generation
on the skin’s superficial layer for drug deposition using pulses of electric charge is called
electroporation and is similar in some ways to iontophoresis. The pores result in transfer
of the drug to the tissue through electroporation in a manner much faster than that of
passive absorption. Electroporation is a recent technique that requires further research
to be adopted on a large scale [59]. Besides using electric charges, skin permeability can
also be enhanced by ultrasonic waves and mechanical means for improved drug transfer
efficacy. The mechanism involving ultrasonic waves for improved drug transfer rates
across the skin barrier is termed the sonophoretic mechanism. However, it also results in
the prolonged transfer of medication. Thus, sonophoretic delivery is unable to compete
with needle syringe injections in terms of dose-volume delivery rates [51].

The invasive mechanisms of intradermal drug administration are becoming popular
as they offer greater medication transfer rates than non-invasive intradermal drug delivery
mechanisms. The most recent example of such a mechanism is the use of microneedles
(MNs) fabricated with various drugs attached to multiple patches. Transcutaneous and
transdermal drug delivery is made possible by the microneedles, and they provide many
possibilities for multiple drug formulations and sites for patch application. Microneedles
can be categorized in many ways depending on the material used for their fabrication, the
area of application of microneedles, the manufacturing strategy and mechanisms adopted
for the production of MNs, and finally upon their mechanical design characteristics [60].
MNs can be fabricated using various metals, polymers, glass, or silicon depending on the
required characteristics of MNs, and can be used for cosmetic, therapeutic, and diagnostic
purposes. With time, their areas of application may expand as they offer novel solutions
for drug delivery. The production of microneedles is a cumbersome and detailed process.
However, scientists have developed various microneedles by adopting etching, injection
molding, micro-machining, micro-molding, and lithographic electroforming replication
techniques. In addition, microneedles are available in multiple forms, for example with
solid/hollow or coated/un-coated presentations (in the case of solid microneedles), as well
as dissolvable or non-dissolving types of structures [61].

The reason behind the popularity of microneedles is their capacity to enter the skin
and human body efficiently and effectively without drug degradation. Another reason is
their pain-free drug delivery with a microscale form factor with easy operation. Typical
candidates for developing novel therapeutics are large biomolecules like peptides, polypep-
tides, antibodies, and proteins. Nevertheless, their application and delivery options are
limited due to their large size. The skin barrier (epidermis) allows and encourages the
permeability of molecules with molecular weights of less than 500 Da (where 1 Dalton
(Da) = 1 g/mol). Thus, there is a need to develop microneedles using various mechanisms
to deliver novel medications consisting of large molecules for painless drug delivery [62].

There are some limiting factors of microneedles that need to be resolved before the
commercialization of MNs. First, they have limited use as they strongly depend on the
dissolution of drug molecules by skin and tissue, which can be very time-consuming.
Second, solid and coated microneedles exhibit safety issues due to their tendency to shatter
inside the skin, representing a biohazard. Third, hollow-structure microneedles have weak
mechanical stuffiness and strength, which may cause MNs to break before penetrating
the skin barrier. Fourth, the fabrication of hollow needles is also a very complex and
limiting process. Finally, dissolving microneedles address the issues present in other types
of MNs by incorporating a dissolvable needle tip and support layer, which provides good
mechanical strength to penetrate the skin. Their dissolving capability eliminates the risk
of leaving any bio-hazardous material inside the body during the insertion process, and
their fabrication process is simple as well. However, there is a lack of suitable materials
for dissolvable microneedles that are acceptable to tissue. The available biomaterials
show weak strength and limited stability under severe application conditions. In addition,
the availability of drugs ideal for the fabrication of dissolvable microneedles is minimal,
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or the available materials are too costly to be used as a cheaper alternative to needle
syringes [63–65].

Liquid jet injections can deliver the vaccine to the dermal, subcutaneous, and muscu-
lar regions depending upon vaccination requirements. Ballistic inoculation involves the
delivery of vaccines as a powder to the outermost layers of the skin. It has been adopted
to apply rapid local analgesia on the back side of the hand using lidocaine in a powdered
form [66]. However, the availability of drugs in powdered form within the recommended
dose concentrations is an area that needs further attention in order for this mechanism to be
expanded and used more frequently. Alternative routes deliver vaccines through the epi-
dermis. Inoculation through the epidermis is facilitated by several mechanisms, including
DNA inoculation by hair follicles, stratum corneum exposure and vaccine absorption by
tape stripping, micro-pore vaccine delivery by thermal and radio wave ablation, dermal ab-
sorption enhancement for vaccine by micro-emulsions and colloidal carriers, low-frequency
ultrasound utilization for vaccine absorption, dermal electroporation for DNA vaccine
delivery to the epidermis, epidermal microneedles, ballistic powder jet injectors, and liquid
jet injectors [67–71].

Recently developed methods are lacking either in delivery volume or drug availability
in the desired concentrations and forms. In addition, the alternative drug delivery methods
reported in literature are laboratory-based and require further time and extensive research
for adaptability. However, needle-free jet injectors have been around since 1866, when the
first jet injector was invented by Galante [72,73]. In his Manual of Hypodermic Medication
(1879), Bartholow of Philadelphia reported an aqua-puncture instrument for the treatment
of uncontrolled neuralgia which was invented by Guerart for the simultaneous introduction
of several liquid jets [74]. In the 1930s jet injectors were reconsidered and utilized in vaccine
delivery applications, and since then there has been continuous development in the field of
needle-free jet injectors [55,75].

Liquid jet injectors (LJIs) utilize the kinetic energy of a high-velocity medication jet
with a diameter that is smaller than the outer diameter of a standard 21G needle [76].
The skin is an attractive target for immunization because it is an integral part of the
immune system. The epidermis is supplemented with the Langerhans cell (LC) network,
a subset of immature dendritic cells residing in the epidermis, which allows them to
absorb antigen efficiently and perform immune surveillance. In addition, the Langerhans
cells provide preliminary defense after the physical barrier of the stratum corneum has
been penetrated. Langerhans cells are vital as they initiate specific immune responses
by processing and presenting antigen fragments to naive cells in the lymphatic nodes,
promoting the generation of both systemic and mucosal humoral immune responses that
are fundamental for the existence of the individual [77–79].

During pandemics like those of influenza or COVID-19 vaccine shortages may occur
due to the need for the vaccination of most people. In such times of need, reduced-dose
vaccine delivery may be the only solution. Thus, the vaccine should be targeted to the
skin to promote the contact of vaccine with Langerhans cells, resulting in better immune
response with lower doses [80,81]. In addition, vaccines injected using liquid jet injectors
usually provide better dispersion throughout a large tissue volume after injection than
vaccines delivered using hypodermic needles. The better tissue dispersion allows vaccines
to establish better and faster contact with Langerhans and antigen-providing cells before
their degradation [13].

Auto-reloading jet injection systems (ARJIs) can perform 1000 injections per hour
and are used in the mass vaccination of livestock. They can be used to deliver a variety
of drugs like insulin, lidocaine, DNA vaccines, and anti-tumor drugs that interfere with
RNA [55,82–86]. Typical jet injectors pressurize the liquid at around 20 MPa, and typically
have a single outlet in the form of a nozzle or orifice with diameters ranging between 30
and 300 µm. The jet injectors can generate jet velocity profiles of between 100 and 350 m/s.
However, jet velocities of 100 m/s are necessary to break the skin barrier, penetrate the
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stratum corneum, and deliver the fluid to the desired depths [55,87,88]. The basic working
principle of a simplistic needle-free jet injector is elaborated in Figure 1.

Figure 1. Working principle of an oversimplified model of a needle-free jet injector.

A small vaccine dose in the intradermal layer can generate an equal or better immune
response as compared to a large volume of vaccine injected in the subcutaneous fat layer
or the muscle because of the presence of dendritic and Langerhans cells in the dermis.
Variable volume delivery capability and repeatability are needed so that needle-free jet
injection systems (NFJISs) can be used to expand and support the area of biomedical drug
delivery through the subcutaneous and transdermal routes. Thus, this paper introduces a
hybrid mechanism for NFJIS that offers variable volume injections with repeatability using
compressed air and spring force combined. In addition, it provides movability for the
mass immunization of herds or for carrying the injection system from one place to another.
This enables the safe, easy, and quick vaccination of farm animals. The maximum dose of
vaccines per shot varies between 0.2 and 0.5 mL in humans, and the same goes for young
cattle, piglets, and farm animals at an early age. However, in the case of adult animals,
larger volume doses are recommended. For humans, the dose range usually stays the
same, with some exceptions (See Appendix A Table A1), so here a small volume-delivering
needle-free injection system is designed, fabricated, and experimentally evaluated for
robustness of the injection system.

The proposed NFJIS aims to provide the drug in the subcutaneous range, with some
flexibility and the possibility of intramuscular injections if the injection system is operated
at maximum design pressure. The NFJIS requires a relatively low pressure as the drug is
aimed at shallow depths. Since the exact pressure suitable for subcutaneous injection is
not fixed and varies from case to case, the inlet compressed air pressure is considered the
primary factor and the determining parameter for measuring the intensification caused by
the mechanism [89].

The developed NFJIS can deliver a 0.2–0.5 mL injection volume by an inlet compressed
air pressure of 0.20–0.50 MPa. However, ± 0.1 mL was added as a safety factor during
the design phase. Thus, the design target was a 0.1–0.6 mL drug-delivering injection
system. The injection system has a piston-plunger assembly responsible for drug uptake,
pressurization, and injection. The mechanism has a low-pressure piston driven by pneu-
matic pressure, and the high-pressure plunger is in direct contact with the drug. The rod
of the low-pressure piston acts as the high-pressure plunger, and both the plunger and
piston are in mechanical contact and hooked together. The cross-sectional area ratio of the
low-pressure piston to the high-pressure plunger is about the same as the amplification
ratio. One essential design parameter is the pressure intensification ratio, which is consid-
ered to be approximately 90 times on average [90]. Besides the design optimization and
development of the NFJIS, the drug delivery capability of the developed needle-free jet
injection system was validated through ex vivo experiments on porcine tissue, and the
injection volume control was experimentally evaluated in detail.
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2. Mechanism of NFJIS

The compressed air cylinder and pressure intensifier components include a pressure
gauge and a pressure-reducing valve that extends into 2 pneumatic lines, with 1 connecting
to the pressure intensifier’s Schrader valve via a small orifice and the other to the P-port
of an SMC Inc. (Tokyo, Japan) 3-port 2-way pilot-operated pneumatic valve, as shown in
Figure 2 (Detailed specs of valve are tabulated in Supplementary Materials).

Figure 2. Working mechanism of the developed needle-free jet injection system.

When 0.15 MPa of pressure is accumulated in the pilot line with a short time delay
(which can be modified by introducing and altering the orifice diameter in the supply line
after the pressure gauge), this automated process keeps repeating consecutively at the
expense of compressed air.

The mechanism of auto-reloading of the needle-free jet injector is driven by com-
pressed air [91]. Compressed air leaves the pressure-reducing valve at 0.2 MPa or more and
passes through the orifice as the second line connects with port P (a). When the pressure
in the pilot line increases up to 0.15 MPa, the spool of the pilot valve moves down and
connects port A and port P of the valve (b). The air pushes the low-pressure piston of the
pressure intensifier against the spring force until the piston touches the Schrader valve,
which results in pressurization of the drug due to movement of the drug plunger (c). The
opening of Schrader valves relieves the air pressure from the pilot line through the exhaust;
thus, the pressure in the pilot line drops, and the low-pressure pneumatic piston moves
towards the bottom due to spring force, which injects or sucks the drug through the inlet
check valve in the drug chamber above the drug plunger. Hence, the gas piston returns to
its initial position (d). Figure 3 depicts the entire four-step process of auto-reloading of the
needle-free jet injector.
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Figure 3. Working of the proposed needle-free jet injection system: (a) activation, (b) pressurization, (c) suction, (d) recharging.

3. Materials and Methods for the Development of NFJIS

For the development of a needle-free jet injection system, the axiomatic design ap-
proach was adopted. Axiomatic design is a well-known design methodology that Suh first
introduced in the late 1970s [92,93].

3.1. Axiomatic Design and Mathematical Modeling

The 3 fundamental aspects considered in the functional, physical, and process domains
of the axiomatic design approach include applicable requirements, design parameters, and
physical constraints. The functional requirements of the NFJIS are a 0.2–0.5 mL injection
volume, 14.35–44.36 MPa output pressure, and a compact size with portability. Preliminary
design parameters include the low-pressure piston-cylinder diameter (d1), high-pressure
plunger diameter (d2), compressed air inlet pressure (P1), drug pressure (P2), and stroke
length (Sp). The most crucial parameter is the injection volume, defined by the stroke length
and diameter of the high-pressure piston. A simplistic approach is to select a high-pressure
plunger diameter and then consider the range of stroke lengths to fulfil the functional
requirements of the injection volume. The inlet air pressure can be controlled so that in
addition the diameter of the high-pressure plunger and the stroke range of the piston are
readily selected. Furthermore, 2 crucial parameters that need to be decided include the
pressure of the drug and desired intensification, and both depend entirely on the diameter
of the low-pressure piston. Thus, all the parameters can be sorted out 1 by 1 using the
simplistic axiomatic design model.

3.1.1. Force Balance for Pressure Intensification

The force balance over the needle-free injection system is represented in Figure 4.
The governing equations for the designs of small volume delivery needle-free jet injection
systems are given as follows.

∑ Fy = Fg + FL + Fs + Ff + mg (1)

The equation can be rewritten as:

∑ Fy = P1 A1 + P2 A2 + Fs + Ff + mg (2)

As the mass of the piston and plunger is small (about 0.2 kg), the influence of gravity
is minor and adds only 1.962 N force, which is a comparatively small value and can be
neglected. Still, its influence is considered in output pressure calculations. The functional
requirements and design parameters are selected, and the physical constraints include
0.2–0.5 MPa inlet compressed air pressure. In addition, the friction force is considered to
cause a maximum of 5% of output pressure dissipation. The initial spring force is 106.5
N, with an initial compression length of 12 mm and further compression due to stroke of
38 mm with a spring constant of 2.13 N/mm.
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Figure 4. Force balance over the piston plunger of the needle-free jet injector.

3.1.2. Design Parameters

The most crucial design parameters are the injection volume and injection pressure,
which are dependent on various factors as described in Figure 5.

Figure 5. Hierarchy for NFJIS design parameter selection.

There is one more design constraint that is not in the physical or functional domain
but in the consumer domain. This is the size of the injection system.

Intensi f ier Size(V) = A1 ×
(
Sp + β

)
(3)

The drug delivery capacity of the needle-free injection system model is given by:

0.1 [ml] ≤
d2

2πSp

4
≤ 0.6 [ml] (4)

The output pressure or drug pressure expression is derived from force balance expres-
sion, considering the frictional losses.

P2 =

(
0.1P1 A1 − k

(
xi + Sp

)
A2

)
1

1.05
(5)

The axiomatic design summary leads us towards the optimum design of NFJIS, as
shown in Figure 6 below.
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Figure 6. Design considerations for the needle-free jet injector using the axiomatic design approach.

As the injection volume and pressure range of the small-volume NFJIS are smaller
than those of its parent models, the size and shape should be more compact. It should be
lighter than its large volume delivery counterparts so that handling and transportation can
be more accessible. This parameter can be a functional requirement or a physical constraint,
and thus dominates and leads all other factors so that the final model is compact and
presentable. The overall volume of the pressure intensifier is termed as V, and it is defined
by the cross-sectional area of the low-pressure piston times the stroke length. The factor β
is added for the additional length of the auxiliary components and its value is found to be
183 mm. The calculation parameters are tabulated in Table 1 below.

Table 1. Parameters for the preliminary design of the needle-free jet injector.

Parameter Value Unit

HP Plunger Diameter 4.5 (mm)
LP Piston Diameter 50 (mm)

Stroke Length 38 (mm)
Inlet Pressure 0.2–0.5 (MPa)

Outlet Pressure 15–45 (MPa)
Spring Constant 2.13 (N/mm)

3.2. Simulation Model

SimulationX software from ITI GmbH, a 1-dimensional type of commercial CFD
software, was employed for system interpretation [94]. SimulationX employs a linear
multistep method that uses the backward differentiation formula (BDF). Because BDF uses
variable step sizes, it dramatically reduces interpretation time by increasing step sizes when
the slope is not significant. Linearized and discretized expressions are analyzed using
sparse matrix solvers. The ambient pressure is interpreted as the atmospheric pressure, and
the temperature is fixed at a room temperature of 15 ◦C. The software uses the BDF up to
5 orders of magnitude, which is enough to solve interdependent complex problems. Thus,
SimulationX software was used for the analysis of the designed NFJIS model [14,95–97].

3.2.1. Pilot-Operated Pneumatic Valve

A pneumatic pilot spool operates the pneumatic valve used in the needle-free injector
(NFI), and the spool returns to its normal position by the force of the spring. The core of
sequence control for repeated multiple injections is the directional control valve operated
by the pneumatic pilot pressure. Thus, the precise control of pilot pressure is essential.
Pilot pressure is an essential factor to be considered for an appropriate time delay between
the 2 consecutive injections. If the time delay is significant, there will be sufficient time for
drug suction from the reservoir or drug bottle and for the piston to descend to the lowest
point, but this will take long time for repeated injections. On the other hand, if the time
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delay is short, it is difficult for the piston descend to the bottom dead position. Even if the
piston goes down, the plunger will not complete its drug suction phase, causing problems
such as smaller volume injections or even no injections. The appropriate value for the time
delay of this mechanism is about 0.7 s. By default, the orifice introduction to the pilot line is
the most fundamental solution, as the user can adjust and use the time delay between the
injections at their convenience. However, for practical use or commercialization purposes, a
fixed orifice must be used to create sufficient time delay. Problems occur for a single orifice
during operation, so 2 orifices and a chamber are used together to achieve a time delay of
0.7 s. Using 2 orifice diameters of 0.1–0.15 mm and 5000–10,000 mm3 for the chamber, a
time delay of 0.7 s is achieved. The pneumatic 3/2-way control valve specifications were
used by referring to the catalog of the purchased model [98].

3.2.2. Pneumatic Piston

A pressure intensifier has multiple components. A hook attaches the low-pressure
piston and the high-pressure plunger so when the piston rises to a certain level, the
plunger also rises to that level. Their stroke is equal due to the mechanical contact between
2 components. The piston touches the Schrader valve and air escapes into the air vent. The
stroke length of the low-pressure piston, the stroke length of the high-pressure plunger,
and the maximum upper dead point of the Schrader valve are equal and have the same
lengths. A low-pressure piston exerts a large force with low pressure and large area due
to its pneumatic cross-section area. The force amplifies in the form of high pressure on
the much smaller size of the high-pressure plunger. The piston rises due to the pneumatic
force and returns due to the spring force, and the process is automatically repeated [89,99].

3.2.3. T-Chamber

The chamber above the pressure amplifier is referred to as T-chamber, and it is gener-
ally divided into a drug suction port, 2 check valves, and dead volume. The drug suction
chamber has a bottle of the drug or any liquid under experimentation mounted on it. The
drug is located slightly higher than the actual supply line, so it is constantly under pressure
due to its mass and height, resulting in potential energy. This pressure is caused by altitude,
which prevents cavitation and helps drug suction performance by maintaining the drug
flow downwards even when the system is idle.

3.2.4. Hydraulic Plunger

In the hydraulic system the plunger is used in conjunction with directional control
valves. Here, simple check valves are preferred over hydraulic direction control valves due
to their simple structure, permitting only unidirectional flow. This helps prevent backflow
and also prevents pressure leakage from the handpiece. Performance is better under slight
pressure than under too-low pressure, but leakage occurs with too-high pressure. Even
with the same check valve, the performance varies depending on the operating fluid. The
higher the viscosity, the better the leakage prevention performance, but the losses due to
pressure drop increase.

The dead volume is the cavity of the T-chamber, which can be significant when the
injection volume is large, but when the injection volume is small, the dead volume also
becomes small. However, if it is too small, cavitation will occur upon suction, which will
cause the piston to stop at a midpoint rather than at lower point due to low volumetric
elasticity when air is trapped into the T-chamber. According to the analysis, the appropriate
dead volume was about 20 mm3, and considering the shape a value of 30 mm3 was expected
to be reasonable.

3.2.5. Handpiece

The handpiece is for repeated injection triggering. In the simulation model, an on/off
valve was placed instead of a handpiece, and opened every 5 s to simulate the model’s
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workability. In practice, the user triggers the handpiece, and the user decides when to
release the trigger.

3.2.6. Simulation Model

The simulation model confirms the possibility of stable operation of the needle-free jet
injection system and helps us understand the mechanism and dynamics of NFI in much
better ways.

The simulation confirmed that repeated injections were possible once every 1.5–2.0 s.
The developed model can be seen in Figure 7.

Figure 7. SimulationX model of NFI with data acquisition components highlighted in blue.

3.3. Vaccine and Working Fluid Properties

The variable-volume delivery needle-free jet injection system was experimentally
evaluated using a vaccine named Merial 206 for foot-and-mouth disease in farm animals.
The properties of the vaccine bought from domestic vendor are tabulated below in Table 2.

Table 2. The properties of Merial 206 vaccine for repeatability experiments with the needle-free jet
injector.

Parameter Value Unit

Vaccine Name Merial 206 (-)
Conductivity 0.7 (mS/cm)
Droplet Size 3956.6 (µm)

pH 8.17 (-)
Density 0.94 (g/cm3)

Viscosity 170 cP

To avoid the wastage of vaccines during multiple calibration and performance im-
provement injection experiments, liquid silicon by Brookfield was used as a working fluid.
Density and viscosity are essential for non-invasive injections. Density can be measured
simply on a scale using a graded beaker or cylinder. However, viscosity can only be
measured accurately using viscometers [100]. We used a Brookfield DV-II+ Pro viscometer
for the measurement of viscosity of adopted fluid as shown in Figure 8.

First, the viscometer was calibrated by a standardized calibration process. In the
calibration process, a standard-viscosity solution was added first and viscosity was mea-
sured. After adjusting the measured value to equal the standard viscosity, the viscosity was
measured for the vaccine. In addition, to simulate the physical properties of the vaccine,
a liquid of the same viscosity was produced using 2 Brookfield standard liquid silicones
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with different viscosities and then mixing them at 3000 rpm in a mixer for 60 min so that
the liquid became homogeneous.

Figure 8. (a) Viscosity measurement for the vaccine, and (b) 170 cP liquid silicon with the same
fluidic properties as the vaccine.

Finally, the viscosity of the vaccine and silicon was obtained in the range of 166–175 cP.
The specific gravity and viscosity values of the vaccine were 0.94 (-) and 170 (cP), and the
specific gravity and viscosity values of silicon were 0.91 (-) and 170 (cP), respectively. Thus,
they could be used for the injection alternatively.

4. Experimental Evaluation of NFJIS
4.1. NFJIS Troubleshooting for Normal Operation

The prototype of needle-free jet injection system was fabricated. The fabricated model
was more compact than other large commercial counterparts and could be carried easily.
The pressure regulator and the pressure gauge assembly used in the current model were
commercial products of SMC Inc. [98].

During pneumatic testing it was observed that the air vent in the piston holder was
blocked by the piston when it came to its top dead position. Even the Schrader valve
released compressed air, but the air could not escape the amplifier. The return movement of
the piston was restricted because even after the opening of the Schrader valve, the pressure
in the inlet pneumatic line stayed the same, keeping the 3/2 pneumatic valve in the open
position, and air from the bottom of the piston kept it in its top dead place. The problem
was eliminated by drilling a new hole in the body of the pressure amplifier for the release
of air coming out after the opening of Schrader valve. The purpose of the experiment
was to check for an optimal place to create a new air vent to optimize the apparatus. The
measurement was performed using a Vernier caliper, and the details are shown in Figure 9.

The prototype was subjected to a new air vent at a length of 32–33.5 mm below its lid.
An air vent with a 1–1.25 mm diameter at a length of 32–33.5 mm was drilled. If the vent is
drilled above the 32 mm length it will be occupied by the connector of the booster, and if
vent is below the length of 33.5 mm, it will be closed by the guide ring of the low-pressure
piston. The red circles in Figure 9a represent the conceptual position of the new air vent.
After air-vent drilling the return movement problem was resolved, as shown in Figure 9b.
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Figure 9. (a) Dimensions of a pressure intensifier for air-vent drilling in the body, and (b) the injection volume measurement
experimental setup for 170 cP liquid silicon delivery.

4.2. Injection Pressure and Volume Measurement

The NFJIS was prepared for injection volume measurement experiments using liquid
silicon as a working fluid after troubleshooting the pneumatic circulation issue of the
injection system. A close-up of the pressure intensifier with the liquid silicon supply
mounted on a paper cup and the variable orifice for pneumatic circuit optimization, in
addition to the high-pressure hose and compressed air supply sliding valve, can be seen in
Figure 9b above. In addition to the visible apparatus, a precision balance and a sample-
collecting cup lined with multiple Yuhan Kimberly wipes were used for injection volume
sample collection and measurement.

A similar approach was adopted for vaccine injection experiments. Instead of the
paper cup, a vaccine bottle was mounted on the drug supply housing (the handpiece can
also be spotted in the Figure above). Similar to the previous experiment and the visible
apparatus, a precision balance and a sample-collecting cup lined with multiple Yuhan
Kimberly wipes was used for injection-volume sample collection and measurement.

The SimulationX model was used to fabricate the dose-limiters of 2 lengths, each
responsible for delivering the selected dose depending on the dose-limiter attached to the
low-pressure end of the pressure intensifier in the NFJIS. The experiments to check the
workability of dose-limiters were carried out similarly to the injection volume measurement
experiments. Each dose-limiter was plugged into the low-pressure end of the pressure
amplifier to limit the injection system’s stroke. The injection was administered into a
collecting cup, and injection mass was measured using precision balance for injected fluid.
Finally, the injection mass measurements for each dose limiter were converted into injection
volume by dividing the injection mass with the density of working fluid [85].

The injection volume measurement for each dose-limiter was carried out 20 times,
and both 0.2 mL and 0.5 mL dose limiters analyzed by limiting the stroke size. All these
experiments were carried out at an inlet compressed pressure of 3.0 bar, and a variable
orifice was adopted for proper sequence control of the injections. The threaded grooves in
each dose limiter became part of the pressure intensifier body, leaving behind the remaining
length of the dose limiter for the stroke restriction. The sizes of dose limiters were selected
in such a way as to accommodate excessive stroke (0.1–0.6 mL), which was left as a safety
measure when designing the 0.2–0.5 mL-delivering NFI [101].
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4.3. Ex Vivo Injection Penetration Experiments

The ex vivo experiments were performed to confirm the drug delivery capability
of the developed NFJIS reported in this research. The experiments were carried out by
injecting foot-and-mouth disease vaccine into MEDI KINETICS porcine skin specimens.
The experimental method and conditions are listed below:

1© Prepare a scale with a resolution of 0.0001 g or more and a porcine skin specimen.
2© Find the density of the drug to be injected using a beaker and a scale (g/mL).
3© Set the supply pneumatic pressure for drug injection (0.25~0.35) MPa.
4© Measure the mass of the porcine skin specimen before injection (g).
5© Measure the mass after injecting the vaccine by NFJIS into the porcine skin (g).
6© Measure the tissue mass after removing the drug that could not be injected (g).
7© Repeat steps 4©~ 6© for 0.2 mL/shot and 0.5 mL/shot 10 times.

Finally, arrange the measurement data using the formulae expressed in Table 3 below.

Table 3. Equations for injection volume, transfer efficiency, and deviation measurement.

Parameter Formula

Injection volume (mL) ( 4© − 5©) ÷ 2©
Drug transfer efficiency (%) ( 4© − 6©)/( 4© − 5©) × 100
Drug transfer deviation (%) abs.[avg.[( 4© − 6©)] − ( 4© − 6©)]/avg.[( 4© − 6©)] × 100

Through the ex vivo experiment and formulae mentioned above, the injection volume,
drug transfer volume into porcine tissue, drug delivery efficiency, and drug delivery devia-
tion were obtained. The mass of the specimen was measured on an electronic scale before
and after injecting vaccine. In addition, the measurement was repeated after removing the
excessive vaccine from the porcine tissue that could not be injected into the skin for drug
transfer efficiency and deviation measurements.

5. Results and Discussion

This section includes a detailed discussion on the theoretical, simulation, experimental,
and ex vivo study results and their physical significance, with an emphasis on the viability
of the developed NFJIS.

5.1. Pressure Intensification

The design parameters were used to measure the pressure intensification caused by
inlet compressed air pressure variation from 0.2 to 0.5 MPa. The pressure amplification
achieved for 0.2 MPa was 17.72 MPa, which was 88.6 times the inlet pressure. The ampli-
fied pressure of the drug attainable at 0.35 MPa pressure input was 36.25 MPa, with an
amplification ratio of 103.6 MPa. In addition, the drug pressure for an inlet pressure of
0.5 MPa could intensify the liquid up to 54.77 MPa.

Many other factors such as exact friction losses, leakage losses, and inertial effects were
ignored for ease of calculation, and the designed pressure was kept higher than the required
pressure for safety reasons so that even if there were more losses than considered, the
injection system would still work well. The results represent the measured and calculated
pressure intensification based upon the inlet compressed air pressure, as can be seen in
Figure 10.

Interestingly, the difference in measured and calculated values increased as the inlet
pressure increased. The measured and calculated results at 0.2 MPa show a difference of
0.42 MPa, and the amplification achieved at 0.35 MPa inlet air pressure had an intensifica-
tion difference of 0.55 MPa. In addition, the difference between measured and calculated
pressure amplification reached at a maximum for an inlet air pressure of 0.5 MPa, with a
value of 1.07 MPa. The gradual rise in error between the calculated values and measured
values with the increase in inlet air pressure may be due to minor leakage involved in
pneumatic lines. This is why the highest inlet pressure showed the biggest error with
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regard to the calculated and measured results. Nevertheless, a small pressure variation can
be expected between numerical and experimental results when dealing with pneumatic
systems at elevated pressure.

Figure 10. Pressure amplification results for the pressure intensifier of the NFI.

5.2. Simulated Model

Figure 7 in the previous section represents the data acquisition components used to
collect the data, and the results from the simulation described in Figure 11 below confirm
the accuracy of the simulation model. The pressure in the pilot section was plotted to
determine sequence control, and the reciprocating properties of the piston and plunger
assembly were determined by observing the displacement of the piston. The pressure of
the dead volume on the side of the handpiece could be checked to determine the pressure
rise before the injection occurred, and the mass flow rate of the injectate could be integrated
to calculate the total amount of the drug injected. Furthermore, the volume flow rate of
the hydraulic component (denominated as drug pressure) could be integrated to solve
the results for flow quantity, as shown in Figure 12 below. In addition, Figure 11 depicts
the overall results of the simulation based on an inlet compressed air pressure of 0.2 MPa,
which was the lowest possible pressure for the regular use of the NFJIS. Four major results
are combined in one graph for the ease of verification. The graph represents the 5-second
injection cycle twice altogether in one diagram, with the injection cycle repeating every
5 seconds to confirm injection repeatability.

As shown in Figure 11 above, there was no movement in the system until the pilot
chamber reached a specified pressure of 0.14 MPa (the pilot pressure for the 3/2 pneumati-
cally operated direction control valve by SMC Inc. The pilot pressure reached 0.14 MPa in
about 1.9 s and pushed the spool of the directional control valve, connecting the A-port
and the P-port. As a result, the air put pressure on the low-pressure piston, which rose only
slightly because the plunger cavity above the high-pressure plunger had liquid present
in it. This resulted in a slight increase in the volumetric elasticity or bulk modulus of the
liquid. This phenomenon forced the piston to rise, causing high pressure to activate the
trigger or push button of the handpiece.

After 5 seconds, the handpiece opened, relieving the pressure buildup from the
handpiece line and raising the piston. The raised piston touched the Schrader valve, which
reduced pilot pressure. As the pilot pressure was relieved, the piston was lowered again.
At this point, the drug was taken back into the T chamber, and this operation was repeated.
The whole procedure by NFJIS could be completed and repeated within 2 seconds with
an inlet air pressure of as low as 0.2 MPa. As the air supply pressure rose the injection
repeatability speed became faster.
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Figure 11. NFJIS numerical analysis results by SimulationX from the developed model.

Figure 12. Simulation result marking flow quantity for 2 consecutive injections.

5.3. Injection Volume Variation

Considering the volume-delivery capacity of the developed NFJIS model, a simulation
was carried out to observe the possibility of controllable volume injections. Simulation
results show that the delivery volume could be controlled in the 0.1–0.6 mL range due to
the stroke length consideration during the modeling and design phase.

As shown in Figure 13, the results from the simulation confirmed the possibility of
volume control. However, to keep the performance evaluation simple, only two dose
limiters were tested. The injection volume variation is an important and useful aspect
when developing a needle-free injection system. For a variable-volume delivery needle-free
jet injection system, dose limiters with threaded grooves make it possible to control the
injection volume.

Experiments for variable volume drug delivery using liquid silicon and the Merial
206 vaccine were carried out. The injection volume readings for consecutive injections of
each liquid up to 20 times were recorded and plotted. The average injection volume of
20 shots for liquid silicon with 170 cP viscosity with 0.2 mL capacity injections with the
air-driven needle-free jet injection system was measured to be 0.2014 mL. For the injections
with 0.5 mL capacity, the average injection volume was 0.4981 mL. Similarly, the results for
0.2 mL injections resulted in a maximum injection volume of 0.2133 mL and a minimum
injection volume of 0.18924 mL, with another 18 values lying in between these values.
However, the 0.5 mL delivery dose limiter provided maximum and minimum injection
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volumes of 0.5168 mL and 0.4798 mL, respectively. All these experiments were carried out
at an inlet compressed air pressure of 0.3 MPa.

Figure 13. Results for injection volume control obtained through modeling of the NFI using Simula-
tionX software.

The Merial 206 vaccine injections were carried out with a similar experimental ap-
proach by only changing the liquid for injection volume measurement from liquid silicone
to the actual vaccine. The 0.2 mL delivery injections resulted in an average injection volume
of 0.2026 mL, and the 0.5 mL delivery injections resulted in an average injection volume
of 0.5042 mL for 20 consecutive injections recorded at an inlet compressed air pressure of
0.3 MPa.

The maximum and minimum readings for 20 injections at 0.2 mL of injection per
shot were 0.2176 mL and 0.1897 mL, respectively. Similarly, the 0.5 mL dose injections
provided values of 0.5213 mL and 0.4894 mL as the maximum and minimum injection
values, respectively, as shown in Figure 14 above.
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Figure 14. Injection volume measurement results for variable volume delivery. (a) Injections using 170 cP liquid silicon by
Brookfield, and (b) injections using the Merial 206 vaccine using the NFJIS.

5.4. Ex Vivo Experiments and Volume Control

The penetration capability of the needle-free jet injection system was confirmed
through the ex vivo experiments. The porcine skin specimens were targeted with a series
of injections at 0.2 mL/shot and 0.5 mL/shot through the developed NFJIS. The average
injected vaccine volume using the NFJIS at 0.2 mL/shot was 0.1987 mL, with maximum and
minimum injectate volumes of 0.227 mL and 0.182 mL, respectively. Furthermore, the aver-
age transferred vaccine volume into the porcine specimen through NFJIS for 0.2 mL/shot
was 0.192 mL, with maximum and minimum delivery volumes of 0.21 mL and 0.18 mL,
respectively.

Similarly, the average injected volume through NFJIS for 0.5 mL/shot was 0.494 mL,
with maximum and minimum injectate volumes of 0.502 mL and 0.483 mL, respectively.
However, the average transferred volume through NFJIS for 0.5 mL/shot remained at
0.483 mL, with maximum and minimum delivery values of 0.494 mL and 0.476 mL, re-
spectively. The injected volume and transferred volume results for 10 consecutive vaccine
injections into ex vivo porcine tissue are plotted in Figure 15a and Figure 15b, respectively.

Figure 15. Ex vivo experiments for vaccine delivery by the NFJIS into a porcine tissue specimen. (a) Pharmaceutic volume
ejected by NFJIS at 0.2 mL/shot and 0.5 mL/shot, and (b) vaccine volume transferred into the porcine tissue by the NFJIS
for variable-volume shots.
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The vaccine delivery efficiency and delivery deviation values at both 0.2 mL/shot
and 0.5 mL/shot for 10 consecutive shots into the porcine skin by NFJIS are shown in
Figure 16a and Figure16b, respectively.

Figure 16. Ex vivo experimental results for Merial 206 vaccine delivery by the NFJIS into a porcine tissue specimen.
(a) Pharmaceutic volume delivery efficiency at 0.2 mL/shot and 0.5 mL/shot, and (b) vaccine delivery deviation by NFJIS
for variable-volume shots.

The maximum and minimum transfer efficiency values of 10 consecutive injections at
0.2 mL injection per shot were 99.5% and 92.1%, respectively, with an average drug delivery
efficiency of 96.7%. Similarly, the 0.5 mL vaccine injections provided 99.4% and 95.8%
maximum and minimum drug delivery efficiency, respectively, with an average 97.8% drug
transfer efficiency, as shown in Figure 16a. Similarly, the drug delivery deviation for 0.2 mL
and 0.5 mL injections was experimentally evaluated with maximum values of 9.6% and
2.3%, respectively, as represented in Figure 16b.

Interestingly, the dose-volume control range could be expanded only by fabrication
of dose-limiters of variable lengths to limit the stroke of the piston-plunger for desired
injection volume delivery. Figure 17a represents the calculated and simulated values for
the injectable pharmaceutic volume by employing the proposed NFJIS. However, only two
dose-limiters were developed to check the drug delivery capability of the NFJIS via ex vivo
experiments, and average injection volumes of 0.202 mL/shot and 0.501 mL/shot were
delivered by each dose-limiter due to a fixed stroke length for each case. Similarly, the
drug delivery volume was minutely less than the overall injection volume, as shown in
Figure 17b.

Finally, the research was validated by the theoretical calculations and simulation
results, which justified the design and development approach. Similarly, the performance
of the NFJIS was experimentally evaluated initially using injection pressure measure-
ment, with pressure as the primary and most crucial parameter. In addition, the variable-
volume controlled release was verified by employing 2 dose-limiters at 0.2 mL/shot and
0.5 mL/shot. Finally, the ex vivo studies confirmed the drug delivery capability and
performance of the proposed needle-free jet injection system (see SM).
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Figure 17. Injection volume control and variable volume delivery validation. (a) NFJIS volume outcome using theoretical
calculations and a simulation model, and (b) ex vivo injected and transferred pharmaceutic volume by the NFJIS with
respect to stroke length.

6. Conclusions

In this research, the design procedure for a needle-free jet injection system with an
axiomatic design for an injection delivery volume range of 0.2–0.5 mL using an inlet
compressed air pressure of 0.20–0.50 MPa is explained in detail. An extensive simulation
was used for modeling and design finalization.

In addition, the model fabrication, seal selection, and troubleshooting of the injection
system for better performance were addressed in detail. The simulation model helped
us understand the mechanism better and successfully develop a working prototype for a
0.2–0.5 mL biopharmaceutical delivery injection system.

Furthermore, the injection depth control by inlet air pressure variation was also pos-
sible due to the current mechanism, as inlet air pressure enhances drug pressurization.
This in turn is a critical factor for high-velocity jet production for penetration into greater
depths. Injection volume measurement and injection volume-controlled release for repeata-
bility and variety with regard to dose quantity were also experimentally verified for the
mechanism.

The injection results showed errors of 6.3% and 7.4% for the vaccine and liquid silicon
injection experiments at a 0.5 mL dosage, and 10.5% and 13.9% for liquid silicon and
vaccine at a 0.2 mL dosage, respectively. The ex vivo pharmaceutic delivery results prove
the capacity of the proposed NFJIS for vaccine delivery to a transdermal depth, with
an average drug delivery efficiency of 96.7% for 0.2 mL/shot injections and 97.8% drug
transfer efficiency at 0.5 mL/shot. The error for large-volume dose delivery seems to be
less than for small-volume dose transfer, which could be improved by design optimization
with careful sealing considerations in the future.

Nonetheless, the developed model could be used commercially, as the WHO guide-
lines for injection devices require 86% or higher accuracy, while any devices or systems
below the accuracy limit are either not commercialized or are redesigned for commercial-
ization with improved performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111770/s1, Figure S1: The NFJIS testing for penetration possibility into porcine
belly tissue; (a) porcine tissue after injections, (b) intradermal and subcutaneously injected vaccine
visualization, Figure S2: The ex vivo experimental setup; (a) NFJIS ready for ex vivo experiments,
(b) porcine skin sample by MEDI KINETICS, (c) porcine skin sample after 0.2 mL and 0.5 mL
injections by NFJIS, Table S1: Specifications of 3-port 2-way pilot operated pneumatic valve by

https://www.mdpi.com/article/10.3390/pharmaceutics13111770/s1
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SMC Inc. (Tokyo, Japan), Table S2: Pressure Amplification by Pneumatic Intensifier (Reference
for Figure 10 in manuscript), Table S3: Injection volume measurements results for variable volume
delivery of 170 cP liquid silicon and Merial 206 vaccine (Reference for Figure 14 in the manuscript),
Table S4: Ex vivo experiment results for variable volume delivery of Merial 206 vaccine (Reference
for Figure 15 in the manuscript), Table S5: Ex vivo experiment results for variable volume delivery of
Merial 206 vaccine (Reference for Figure 16 in the manuscript), Table S6: Comparison of results for
injection volume validation and control by theoretical calculations and simulation model (Reference
for Figure 17a in manuscript), Table S7: Ex-vivo injected and transferred pharmaceutic volume by
NFJIS with respect to stroke length (Reference for Figure 17b in manuscript).
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Appendix A

The various diseases and their respective vaccines or curative pharmaceuticals with
the dose delivery range represent the importance of the 0.2–0.5 mL volume-delivering
needle-free jet injection system, as shown in Table A1.

Table A1. Various diseases, their drug dosage limits, and administration routes.

No. Disease Vaccine Administration Dosage

1 Chickenpox Varicella Subcutaneous 0.50 mL (2 doses)

2 Diphtheria DTaP vaccine Subcutaneous 0.50 mL (3–4 doses)

3 Tetanus DTaP vaccine Subcutaneous/Intramuscular 0.50 mL (4 doses)

4 Pertussis DTaP vaccine Subcutaneous 0.50 mL (3 doses)

5 Hib Haemophilus influenza Subcutaneous/Intramuscular 0.50 mL (3 doses)

6 Hepatitis A HepA vaccine Intramuscular 0.5–1.0 mL (2 doses)

7 Hepatitis B HepB vaccine Intramuscular 0.5–1.0 mL (2 doses)

8 Influenza (Flu) Influenza vaccine Intramuscular 0.25–0.5 mL (1 dose)

9 Measles MMR vaccine Subcutaneous/Intramuscular 0.50 mL (I dose)
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Table A1. Cont.

No. Disease Vaccine Administration Dosage

10 Mumps MMR II vaccine Subcutaneous 0.50 mL (I dose)

11 Rubella MMR II vaccine Subcutaneous/Intramuscular 0.50 mL (I dose)

12 Pneumococcal PCV13 vaccine Intramuscular 0.50 mL (2 doses)

13 Rotavirus RV vaccine Oral 2 mL (3 doses)

14 Polio IPV vaccine Oral 2 drops (0.1 mL)

15 Tuberculosis BCG vaccine Intradermal (only) 0.05 mL–0.1 mL

16 Diabetes Insulin Intradermal/subcutaneous 0.01 mL–0.5 mL
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