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Single-cell RNA sequencing of murine ankle
joints over time reveals distinct transcriptional
changes following Borrelia burgdorferi infection

Jennifer D. Helble,1 Michael J. Walsh,2,3 Julie E. McCarthy,1 Neal P. Smith,4 Alice J. Tirard,4 Benjamin Y. Arnold,4

Alexandra-Chloe Villani,4 and Linden T. Hu1,5,*

SUMMARY

Lyme disease is caused by the bacterial pathogen Borrelia burgdorferi, which can be readily modeled in
laboratory mice. In order to understand the cellular and transcriptional changes that occur during
B. burgdorferi infection, we conducted single-cell RNA sequencing (scRNA-seq) of ankle joints of infected
C57BL/6 mice over time. We found that macrophages/monocytes, T cells, synoviocytes and fibroblasts all
showed significant differences in gene expression of both inflammatory and non-inflammatory genes that
peaked early and returned to baseline before the typical resolution of arthritis. Predictions of cellular in-
teractions showed that macrophages appear to communicate extensively between different clusters of
macrophages as well as with fibroblasts and synoviocytes. Our data give unique insights into the interac-
tions between B. burgdorferi and themurine immune system over time and allow for a better understand-
ing of mechanisms by which the dysregulation of the immune response may lead to prolonged symptoms
in some patients.

INTRODUCTION

Borrelia burgdorferi is a causative agent of Lyme disease, which is the most common vector-borne disease in the United States.1 While cases

of Lyme disease are most geographically concentrated in the Northeast, mid-Atlantic, and Midwest states, there are still estimates of almost

500,000 cases annually in the United States alone.2,3 Lyme disease occurs whenB. burgdorferi is transmitted by an Ixodes scapularis tick vector

into the skin of a human during feeding. At the bite site, B. burgdorferi causes a characteristic erythemamigrans rash; however, the bacterium

can quickly disseminate into other tissues in the body. Although antibiotics are effective against infection, untreated infection in humans can

lead to various inflammatory diseases of peripheral tissues, including arthritis, carditis and meningitis.4,5

Lyme arthritis, characterized by inflammation and swelling of the joints (most commonly, the knees in humans and the ankle joints in mice),

is one of the later disease manifestations to arise and is a common symptom of Lyme disease in the U.S. if the infection is not treated early.4

Various inflammatory mediators have been shown to be present in synovial fluid and/or joint tissue, including the cytokine interferon gamma

(IFNg). IFNg has pleiotropic functions but has been shown to change the cellular immune composition of the joint toward a more inflamma-

tory phenotype during B. burgdorferi infection.6,7

Inflammation of the joints due toB. burgdorferi infection can be readilymodeled in several strains of inbred laboratorymice, includingC3H

andC57BL/6mice. AlthoughC57BL/6mice develop less severe joint inflammation and Lyme arthritis compared toC3H,8 C57BL/6mice are an

attractive model to use to understand the transcriptional and cellular changes that occur during B. burgdorferi over time as there are sub-

stantially more knockout mice in this background compared to other strains that can be used for future studies.4 Additionally, it is unclear

whether the responses of mouse strains that develop either severe or mild arthritis more closely mimic human Lyme arthritis. For example,

through forward genetic studies, it has been demonstrated that C3Hmice are driven tomore severe arthritis by a defect in a glycogen storage

gene that has not been reported to be a risk factor for human disease.9 Of note, even without antibiotic therapy, most humans with Lyme

arthritis will spontaneously resolve their symptoms over time,5,10 similar to what is observed in both C3H and C57BL/6 mice, although the

time to resolution in humans is longer than it is for mice. In mice, the resolution of arthritis occurs despite the continued presence of the or-

ganism and likely reflects both a decrease in the numbers of organisms in the joint over time and an evolution of the immune response as it

adapts to long-term infection with an organism that does not present a significant threat to the animal.
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In this study, we sought to assess transcriptional changes that occur in response to B. burgdorferi infection in the ankle joints of C57BL/6

mice. To this end, we performed single-cell RNA sequencing (scRNA-seq) to transcriptionally profile cells, identify population heterogeneity,

and analyze how cellular environments change over time. Sequencing of immune and non-immune cells in the mouse ankle joint was per-

formed over five distinct time points, starting with uninfected animals and progressing to eight weeks post-infection in two-week increments.

From this dataset, we identified 17 different major cell populations in the ankle joint, including macrophages, B cells, neutrophils, T cells,

fibroblasts, and synoviocytes. Of these major cell populations, we found that most transcriptional changes occurred between uninfected

and the week two post-infection time point. Our findings provide a valuable resource for studying the host response to B. burgdorferi infec-

tion and could afford insight into the cellular implications of human Lyme arthritis.

RESULTS

Single-cell RNA sequencing of murine ankle joints following Borrelia burgdorferi infection reveals 17 distinct cell

populations

To determine the cellular composition of the murine ankle joint following B. burgdorferi infection, we performed scRNA-seq of ankle joints of

uninfected and infected C57BL/6 mice at zero (uninfected), two, four, six and eight weeks post-infection (Figure 1A). Single-cell suspensions

obtained from uninfected and infected mice were filtered for live cells and further separated into CD45+ and CD45� pools through subse-

quentmagnetic enrichment. CD45+ andCD45� cells were processed separately but analyzed together. Lowquality cells were removedbased

on gene counts/cell andmitochondrial reads (high-quality cells that made it through these filters are visualized in Figures S1A‒S1C), leaving a

total of 119,086 high-quality cells originating from 38,682 CD45+ and 80,404 CD45� sorted samples, which were integrated together.

Figure 1. Single-cell RNA sequencing of the mouse ankle joint reveals 17 distinct cell types

(A) Schematic representation of the experimental set up. Ankle joints were harvested from mice at week 0 (uninfected), 2, 4, 6, and 8 post-inoculation and were

enzymatically digested to obtain a single cell suspension. Live cells were magnetically sorted and single cell libraries were prepared and sequenced using the

Chromium 10x platform, followed by downstream data analysis.

(B and C) 17 distinct cell clusters were identified using the Seurat R package and (B) visualized using the UniformManifold Approximation and Projection (UMAP).

(C) Violin plot of cluster defining genes.

(D) UMAPs showing the distribution of cells between time points and (E) bar plot showing relative contributions of each cell type over time.

See also Figures S1, S3, and S4, and Tables S1, S4, and S5.
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Unbiased clustering of cells revealed 17 distinct cell populations (Figure 1B) that were identified based on expression of cluster-defining

genes (Figures 1C and S1D). Samples contributed fairly evenly to cell coverage (Figure 1D), with 29,373 cells (CD45� and CD45+) from unin-

fected mice; 13,589; 23,804; 21,850; and 30,470 cells from two, four, six, and eight weeks, respectively. Cell frequencies across the weeks

sampled were consistent, except for chondrocytes (Figure 1E).

Macrophage and monocytic populations undergo rapid transcriptional changes in response to Borrelia infection

Based on total cells recovered from the single cell transcriptional profiling of the ankle joint (Figure 1B), macrophages and monocytes were

the predominant immune cell population present. To understand their contribution to the immune response to B. burgdorferi infection, we

re-clustered these cells to remove doublets (Figures S2A and S2B) and then performed a final re-clustering to reveal six macrophage/mono-

cyte clusters (Figure 2A). The resulting macrophage/monocyte sub-clusters each had a unique set of cluster-defining genes (Figure 2B;

Figure 2. Characterization of macrophages and monocytes in the ankle joint reveals broad transcriptional changes between uninfected and week two

post-infection

(A) Macrophages/monocytes identified previously were re-clustered to exclude doublets and visualized using a UMAP revealing 6 distinct sub-clusters.

(B) Cluster defining genes were identified using FindAllMarkers.

(C) Pseudobulk analysis of MacMono.1 cluster, showing the top 50 most significant genes changing over time. The 25 genes with a positive (red, top box) or

negative (blue, bottom box) log2 fold change between week 0 and week 2 are shown.

(D) Heatmap of a subset of genes identified during pseudobulk analysis of MacMono.1 shown across all macrophage/monocyte clusters. Genes that are

significantly different between uninfected and week 2 have a white dot in the center.

(E) Re-analyzed cytokine array of CCL2 and CCL3 production in ankle joints of mice over time from Helble et al.12 Data were analyzed using ordinary one-way

analysis of variance (ANOVA) with Dunnett’s multiple comparisons test and are representative of at least 3 mice per group and are represented as the

mean G SEM; ***p < 0.001, and ****p < 0.0001.

(F) GSEA of GO biological processes was performed using pseudobulk analysis of week 0 vs. week 2 from the MacMono.1 sub-cluster.

(G and H) Select GSEA enrichment plots from GO pathways identified in F) with a G) positive and H) negative enrichment score.

See also Figure S2 and Tables S2 and S3.
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Table S1) and were represented across all weeks (Figures S2C and S2D). To further contextualize these sub-populations, we performedGene

Set Enrichment Analysis (GSEA) comparing gene expression of each sub-cluster (all weeks combined) to all other sub-clusters using a previ-

ously identified M1/M2 gene signature in mouse bone marrow derived macrophages.11 While we found that MacMono.3 and MacMono.6

were enriched for M1 genes and MacMono.4 was enriched for M2 genes, the other three sub-clusters exhibited a mixed gene signature

(Figure S2E).

To evaluate transcriptional changes over time, we performed pseudobulk differential expression analysis for the four largest macrophage/

monocyte clusters (MacMono.1 throughMacMono.4) (Table S2). We decided to focus on themacrophage/monocyte cluster, MacMono.1, as

it was both the largest cluster and did not fall into the classical M1/M2 categorization. We found that for the MacMono.1 sub-cluster, there

were large transcriptional differences that occurred between uninfected and week 2 post-infection (Figure 2C). Interestingly, many of these

genes returned to baseline at week four post-infection and retained the same level of expression for the remainder of the time points as-

sessed. Many of the significant genes that had a positive log-fold change comparing week two vs. uninfected were proinflammatory genes,

includingGbp2 (guanylate binding protein 2), Ccr5, and Ctss (cathepsin S), and were also significantly different in week two vs. uninfected in

MacMono.2, MacMono.3, andMacMono.4 sub-clusters (Figure 2D). Additionally, genes that were significantly downregulated betweenweek

two and uninfected were similar across sub-clusters, indicating that despite the different cluster-defining genes, the macrophage/monocyte

sub-clusters respond to B. burgdorferi infection similarly. Given the significantly increased expression of several cytokine receptors (Ccr2,

Ccr5, Ccr1; Figure 2D), we reanalyzed previously published cytokine array data12 to assess the differences in key cytokines across uninfected,

week two, andweek four post-infection.We found that the production of the ligands for these cytokine receptors, specifically CCL2 andCCL3,

were significantly increased in ankle joints of mice at week two post-infection compared to uninfected, and that levels of these cytokines re-

turned to baseline at week four post-infection (Figure 2E). Together, these data provide validation that there is an initial burst of inflammation

that is resolved shortly thereafter (Figure S2F), which occurs before the clinical resolution of arthritis and joint swelling between six and eight

weeks post-infection.4,7,8,13

Using the fold changes generated through pseudobulk differential expression, we next performed GSEA for the MacMono.1 sub-cluster,

using the comparison between week two and uninfected (Figure 2F; Table S3). Many of the pathways that had a positive enrichment score

(were enriched in week two compared to uninfected) were inflammatory pathways that represented some change in the immune response,

including the pathway ‘‘Response to Bacterium’’ (Figure 2G). Many of the pathways that were negatively enriched were associated with basic

cellular functions, including cellular respiration (Figure 2H) and oxidative phosphorylation, suggesting that upon B. burgdorferi infection,

macrophages and monocytes in the ankle joint switch from a resting/homeostatic state to a pro-inflammatory state.

B cells and neutrophils undergo changes in sub-cluster composition following infection

After identifying the transcriptional changes occurring in the macrophage and monocyte sub-clusters, we re-clustered B cells which were the

next largest immune cell subset recovered. Following doublet removal (Figures S3A and S3B), we identified six distinct B cell sub-clusters

(Figure S3C). Among others, sub-clusters included an MHC class II high cluster (H2-Aa, H2-Ab1), and a cycling cluster (Mki67, Pclaf) (Fig-

ure S3D; Table S1). When we performed pseudobulk differential expression analysis, few genes of interest were found to change significantly

over timewithin sub-clusters (Table S4). Despite having few transcriptional changes, B cell gene expression did peak at week two (Figure S3G).

However, we observed a striking difference in the sub-cluster composition of B cells (Figures S3E and S3F), especially comparing uninfected

mice to week twomice. For example, by week two, the cycling B cell cluster (Bcell.4) had undergone a rapid expansion (uninfected = 7%; week

two = 30%). These results suggested that although within sub-clusters, transcriptional changes were few over time, the B cell population

shifted in its makeup following infection.

Given the fragility of granulocytes and their difficulty in being captured by scRNA-seq technology,14 we were surprised to discover many

neutrophils were successfully recovered from the ankle joint. In fact, neutrophils were the third most abundant immune cell subset. Re-clus-

tering of the neutrophil population and doublet removal (Figures S4A and S4B) yielded six new sub-clusters of neutrophils (Figure S4C). These

sub-clusters had varying levels of expression of inflammatory genes includingCxcl2, Il1b, Ngp (neutrophilic granule protein),Mpo (myeloper-

oxidase), and Elane (neutrophil elastase) (Figure S4D; Table S1). Similar to B cells, we saw a pronounced alteration in the composition of clus-

ters over time, especially comparing uninfected mice to week two (Figures S4E and S4F). Even beyond week two, there was an expansion at

weeks six and eight of Neut.1, which had high expression ofCxcl2, Tnfaip2, Il1b, and Csf1 (M-CSF). When performing pseudobulk differential

expression analysis, there were very few transcriptional changes occurring over time within sub-clusters, as we also discovered with B cells

(Table S5), though there was a peak in transcriptional activity at week two that subsided over time (Figure S4G). Although by pseudobulk dif-

ferential expression we saw few transcriptional changes of note, using a non-pseudobulk approach (i.e., Wilcoxon rank-sum test), we saw

slight changes in several important immune-related genes including Cd274 (PD-L1), B2m, Csf1, and Cxcl3 in certain sub-clusters when

compared to uninfected samples (Figure S4H).

CD4+ T cells form the dominant T cell response against Borrelia burgdorferi infection

Although T cells comprised one of the smaller fractions of the immune cells captured by single-cell RNA sequencing, we assessed hetero-

geneity within the T cell response. We re-clustered T cells into four new sub-clusters (Figure 3A) following doublet removal (Figures S5A‒
S5D). Based on cluster-defining genes, Tcell.1 sub-cluster was likely CD8+ T cells, Tcell.2 comprised of CD4+ T cells, Tcell.3 comprised of

a mixture of gd and NKT cells, and Tcell.4 were cycling T cells (Figures 3B and 3C; Table S1). Pseudobulk differential expression analysis re-

vealed that Tcell.2 (CD4+ cells) upregulated several key genes involved in mounting an immune response including Ifng and several T cell
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activation genes including Tigit, Ctla4, and Tnfrsf9 (4-1BB) (Figure 3D; Table S6). There was also abundant Nkg7 and Klrg1 expressed (Fig-

ure 3D), which suggested a cytotoxic or exhausted CD4 response.12,15 However, similar to macrophages andmonocytes, expression of these

genes peaked at week two and returned close to uninfected levels of expression by week six or eight (Figure S5E).

Gene set enrichment analysis of genes significantly changed between uninfected and week two revealed ‘‘Interferon Alpha’’ and ‘‘Inter-

feron Gamma’’ responses were greatly elevated in Tcell.2 (Figure 3E; Table S3). In the Tcell.4 sub-cluster, gene set enrichment analysis re-

vealed an enrichment in the ‘‘G2m Checkpoint,’’ which suggested this cycling cluster was undergoing even more proliferation (Figure 3F).

Indeed, sub-cluster composition showed an increase in Tcell.4 levels, peaking at week four (Figures S5C and S5D). Tcell.2 levels were also

slightly increased over time (Figures S5C and S5D). Pseudobulk differential expression analysis was not possible for Tcell.1 and Tcell.3

sub-clusters given the lack of cells captured from the CD45� enriched population. However, even through non-pseudobulk Wilcox rank-

sum differential gene expression analyses, few genes changed in these sub-clusters over time.

Figure 3. T cell sub-clustering shows an activated CD4+ response by week two of infection

(A) T cells were re-clustered to exclude doublets and visualized using a UMAP revealing 4 distinct sub-clusters with B) expression of distinct cluster-defining

genes.

(C) Expression of canonical markers across the T cell sub-clusters.

(D) Pseudobulk analysis of T cell.2 sub-cluster showing some of the top significant T cell activation genes changing over time.

(E) Hallmark pathway GSEA for week 0 vs. week 2 within T cell.2 and F) T cell.4 sub-clusters.

(G) Re-analyzed cytokine array of CCL5 production in ankle joints of mice over time from Helble et al.12

(H) Ankle joints of mice were harvested at the indicated time points and processed for flow cytometry. Activated CD4+ T cells were determined as the percentage

of CD44+ cells from live / CD3+ CD45+ / CD4+ cells. For G) and H), data were analyzed using ordinary one-way analysis of variance (ANOVA) with Dunnett’s

multiple comparisons test and are representative of at least 3 mice per group and are represented as the mean G SEM; ***p < 0.001, and ****p < 0.0001.

(I) Representative flow plots showing CD44 changes over the different time points assessed.

See also Figure S5, and Tables S3 and S6.
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Given the significant changes in Ccr5 expression by pseudobulk differential expression analysis (Figure 3D), we reassessed our previously

published cytokine array12 for changes over time in its cognate ligand, CCL5. We found that CCL5 production mirrored Ccr5 expression, as it

was significantly increased in week two post-infection compared to uninfected mice and that by week four post-infection, CCL5 levels had re-

turned to baseline (Figure 3G). To assess if the increase in activated CD4+ T cells by scRNA-seq could be recapitulated, we performed flow cy-

tometryon theankle joints ofmiceatweek twoand fourpost-infectioncompared touninfected.AlthoughCd44wasnot significantly changedas

assessedbypseudobulkdifferential geneanalysis, it is a commonmarker for T cell activationbyflowcytometry andwas thususedas aproxy.We

found that the percentage of CD44+CD4+ T cells was significantly increased at week two compared to uninfectedmice (Figures 3H and 3I).We

also observed that at week four post-infection, the levels of CD44+ CD4+ T cells were still elevated above uninfected controls.

Fibroblast and synoviocyte populations express pro-inflammatory immune genes following B. burgdorferi infection

Fibroblasts were the predominant cell population in the ankle joint (Figure 1B) and have been previously shown to play a role in Lyme

arthritis.16,17 As with other cell clusters, the fibroblasts were initially re-clustered to remove doublets (Figures S6A and S6B), then re-clustered

to reveal eight total fibroblast sub-clusters that were comprised of two large fibroblast sub-clusters (Fib.1 and Fib.2) and six transcriptionally

distinct smaller sub-clusters (Figure 4A) that were represented across the time points (Figures S6C and S6D). The two largest sub-clusters

differed based on their expression of Pi16 (peptidase inhibitor 16), Cd55, Fbln7 (fibulin 7) and Apoe (apolipoprotein E) (Figure 4B). When

we performed pseudobulk differential expression analysis, we found that many of the transcriptional changes across clusters occurred be-

tween uninfected and week two, similar to what we had observed with the various immune cell populations (Figure S6E; Table S7). As

with the immune cell clusters, many of the genes that were significantly different between uninfected and week two in Fib.1 were also signif-

icantly different or held similar trends across other sub-clusters including Fib.2, Fib.3, Fib.4 and Fib.5 (Figure 4C). Many of the genes that were

significantly enriched in week two vs. uninfected included pro-inflammatory genes, such asCxcl9,Cxcl10, B2m (b2microglobulin), and Il6 (Fig-

ure 4C). Given the significant expression ofCxcl9 andCxcl10, we reassessed our previously published cytokine array for changes in CXCL9 and

CXCL10 production over time.12 We found that both CXCL9 and CXCL10 production were significantly increased at week two post-infection

compared to uninfected, and that these levels dropped at week four post-infection (Figure 4D).

Figure 4. Heterogeneous fibroblast clusters develop a homogeneous inflammatory response to B. burgdorferi

(A) Re-clustered UMAP of fibroblast subsets.

(B) Cluster-defining genes of the 8 different fibroblast sub-clusters.

(C) Pseudobulk analysis was performed over time for each sub-cluster. Heatmap depicts many of the genes significantly changed over time which were shared

across clusters; log2 fold change for week 2 vs. week 0.

(D) Re-analyzed cytokine array of CXCL9 and CXCL10 production in ankle joints of mice over time from Helble et al.12 Data were analyzed using ordinary one-way

analysis of variance (ANOVA) with Dunnett’s multiple comparisons test and are representative of at least 3 mice per group and are represented as the mean G

SEM; *p < 0.05, and ****p < 0.0001.

(E) GSEA of week 0 vs. week 2 for Fib.1 sub-cluster.

(F) Top GSEA enrichment plots from E).

See also Figure S6, and Tables S3 and S7.
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When we performed GSEA on ranked genes comparing week two to uninfected in the Fib.1 sub-cluster, we found that the top two path-

ways that had a significantly positive enrichment score were the ‘‘Interferon Alpha Response’’ and the ‘‘Interferon Gamma Response’’

(Figures 4E and 4F; Table S3), while pathways with a significantly negative enrichment score were associated with cellular homeostasis. These

findings suggest that upon B. burgdorferi infection, fibroblasts switch to a pro-inflammatory immune cell-like phenotype.

While synoviocytes are similar to fibroblasts, we found that they were a distinct population (Figure 1B). While lower in abundance than

fibroblasts, during B. burgdorferi infection, synoviocytes have been reported to be involved in inducing Lyme arthritis in both mice and hu-

mans.16,17We found that synoviocytes had both high expression of the fibroblast cluster defining geneCol1a1 (collagen type 1) as well as Prg4

(proteoglycan 4), a common synoviocyte marker which helped to separate these cells from the fibroblasts.18 After fibroblasts, synoviocytes

were the second largest non-immune cell population found in the ankle joint. Synoviocytes were re-clustered to remove doublets

(Figures S6F and S6G) and then re-clustered into five transcriptionally distinct sub-clusters (Figures 5A and 5B; Table S1) Similar to the B

cell and neutrophil populations, there were alterations in the composition of these clusters between the uninfected and week two time points

(Figures S6H and S6I). For example, we found that at week two post-infection, there was a decrease in abundance in the Synovocyte.2 sub-

cluster that coincided with an increase in both Synoviocyte.3 and Synoviocyte.5 sub-clusters. Pseudobulk differential expression analysis of

synoviocyte sub-clusters revealed there were large differences between uninfected and week two post-infection, consistent with the other

cell populations (Figure S6J; Table S8). GSEA of the synoviocyte sub-clusters between uninfected and week two post-infection revealed sim-

ilarities in pathways across the three largest synoviocytes populations (Figure 5C; Table S3). As with the fibroblasts, two of the top pathways for

synoviocytes with a positive enrichment score were the ‘‘Interferon Gamma Response’’ and the ‘‘Interferon Alpha Response,’’ suggesting that

synoviocytes, like fibroblasts, become pro-inflammatory upon B. burgdorferi infection.

Prediction of cell-cell communication

For all major clusters analyzed, peak transcriptional changes occurred between the uninfected and week two timepoints. Because of this, we

opted to perform cell-cell communication prediction analysis between these two timepoints from our previously generated pseudobulk dif-

ferential analysis (Table S9). Of the sub-populations analyzed, we found a high number of predicted interactions to occur within eachmain cell

type. For example, distinct fibroblasts sub-clusters were found to interact with each other, as did MacMono sub-clusters with one another

(Figure 6A). We also found between-cell-type interactions, most predominantly that of MacMono sub-clusters with predicted interactions

with synoviocytes and fibroblasts (Figure 6A).

We further delineated the cell-cell communication prediction analysis to identify particular sub-clusters that might be responsible for cyto-

kine/chemokine receptor-ligand interactions that we had previously identified using pseudobulk differential expression data and validated

using ELISA. In particular, we looked atCcr5-Ccl2,Ccr5-Ccl3, Tlr4-Cxcl10,Ccr2-Ccl2,Ccr1-Ccl2, andCcr1-Ccr3 interactions (Figure 6B). Again,

Figure 5. Distinct synoviocyte sub-groups respond to infection in a similar manner

(A) Sub-clustering of synoviocytes revealed 5 distinct groups, with B) unique cluster-defining gene expression.

(C) Hallmark GSEA comparing week 0 to week 2 for each synoviocyte sub-cluster.

See also Figure S6, and Tables S3 and S8.
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we found that sub-clustersmight not only interact within the same sub-cluster (e.g.,MacMono.3Ccl3withMacMono.3Ccr5), but also between

sub-clusters of the same cell type (e.g., MacMono.2 Ccl2 with MacMono.1 Ccr2) and between sub-clusters of differing cell types (e.g., Mac-

Mono.4 Ccl2 with Tcell.2 Ccr5) (Figure 6B). MacMono clusters formed the dominate interactions among themselves and with T cells, fibro-

blasts, and neutrophils (Figure 6B). Ccr5 was one of the highest upregulated genes in Tcell.2 between uninfected and week two timepoints

(Figures 3D and 6C), and its corresponding ligands, Ccl2 and Ccl3 were significantly upregulated in multiple MacMono sub-clusters (Fig-

ure 6D). Together, these data indicate that there are likely many important cell-cell interactions that occur in the mouse ankle joint following

B. burgdorferi infection, with macrophages playing a central role in coordinating the immune response.

DISCUSSION

Technologies such as single-cell RNA-seq allow us to generate new insights into the evolution of the interactions between the immune system

and pathogens such as B. burgdorferi. Previous studies using microscopy, the examination of protein expression, and/or gene transcripts

from infected joint tissues from humans and mice have clearly shown the inflammatory nature of Lyme arthritis. However, little is understood

about how the cellular composition evolves through the infection and which cells are critical for contribution to the inflammatory milieu. We

performed single-cell RNA sequencing of C57BL/6mouse ankle joints over time to trace the changes in the joint environment during peak and

resolving infection in an animalmodel of infection. By capturing specific timepoints over the course of infection, ranging fromuninfectedmice

up to week eight post-infection, we were able to analyze different stages in initial infection, stabilization, and ultimately resolution. In C57BL/6

Figure 6. Predicted cell-cell interactions in the ankle of infected mice

(A) Total number of significant receptor-ligand interactions between week 0 and week 2 for separate sub-clusters.

(B) Specific significant receptor-ligand interactions with ligand protein data validation, both between and among sub-clusters. Scale indicates the sumof receptor

and ligand log2-fold change between uninfected and week 2.

(C and D) Per-cell expression data of select interactions from B).

See also Table S9.
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mice, B. burgdorferi reach the joints early, typically under a week, and bacterial load continues to increase over the first four weeks after infec-

tion.19–21 Pathologic inflammation is typically seen by two weeks following infection and continues to increase until week four, and it resolves

by six to eight weeks following infection despite the continued presence of bacteria.4,7,8,13

Using scRNA-seq, we were able to determine cellular composition in infected mouse joints over time. Not surprisingly, macrophages/

monocytes, T cells, B cells and neutrophils were the predominant immune cells in the joint. Neutrophils in particular have previously been

identified as an important cell type in the joints during murine and human Lyme arthritis.22 Although we observed expansions in different

neutrophil sub-clusters over time, there were few transcriptional changes that occurred, likely reflecting that B. burgdorferi infection does

not necessarily induce transcriptional changes of neutrophils but rather cellular accumulation. While B cells have been reported to be

important for adaptive immunity to B. burgdorferi,23 we also observed very few changes to B cell sub-clusters over time. Although

we did not conduct B cell receptor (BCR) sequencing in tandem with our single cell due to pooling samples from multiple mice per time-

point, it is possible that by sequencing cells from individual mice separately and conducting BCR-seq, we may have observed the accu-

mulation of certain B cell clones over time, potentially indicating B. burgdorferi specific B cells. Understanding how clonality changes over

time may also aid in determining whether specific B cell populations are more or less likely to contribute to pathology, as some anti-

B. burgdorferi antibodies are maintained for long periods of time.13,24 Furthermore, several B. burgdorferi lipoproteins have demonstrated

B cell mitogenic properties,25 and it is unclear what role this phenomenon may play in limited transcriptional changes over time following

infection.

In contrast to neutrophils and B cells, we saw a significant evolution of macrophage/monocyte gene expression at different timepoints of

infection despite the distribution of the macrophage/monocyte sub-clusters remaining relatively stable over time. Our pseudobulk differen-

tial expression results indicated that changes in gene expression over time remained consistent across multiple macrophage/monocyte sub-

clusters, even though these sub-clusters had differences in their M1/M2 categorization, which have been reported to influence inflammation

differently. We found using cell-cell communication prediction analysis that macrophage/monocytes appeared to be highly connected both

to themselves and other cell types, including non-hematopoetic cells such as synoviocytes and fibroblasts. The role of macrophages versus

synoviocytes in driving the inflammatory response to B. burgdorferi has long been debated.16,17,26 Our data suggests that macrophages are

likely at the center of coordinating the inflammatory response to B. burgdorferi. However, we found that macrophages, synoviocytes and fi-

broblasts likely all contribute to the type I IFN (IFN-a and IFN-b) and type II IFN (IFN-g) response pathways following infection. Interestingly,

the type I IFN response has been shown to play a critical role in murine Lyme arthritis development in C3H but not C57BL/6mice.16,27,28 While

C57BL/6mice have less inflammation and therefore a likely diminished role for type I IFN in disease development, the sensitivity of scRNA-seq

shows a clear upregulation of this pathway in several cell types. Type I IFN responses have been recently correlated with not only human er-

ythema migrans (typically one of the first manifestations of Lyme disease),5,29 but also Lyme neuroborreliosis in both humans and C3H

mice.30,31 The type I IFN pathway is clearly a central component of inflammation associated with Lyme disease, but the correlations between

the type I IFN responses in C57BL/6 mice and humans are still unclear.32

IFNg has been shown to play a role during B. burgdorferi infection in both mice and in humans, however its role in pathogenesis is uncer-

tain. IFNg-deficient C3H mice were found to have modest increases in ankle swelling compared to their wild-type counterparts,33 though

conversely, treatment with anti-IFNg antibodies reduced C3H joint swelling.34 In C57BL/6 mice, knockout of IL-10 can induce ankle swelling

during infection, with anti-IFNg antibodies reducing swelling to wild-type levels, suggesting IFNgmay drive arthritis in this IL-10�/� model.35

IFNg may also reduce the severity of Lyme carditis through several mechanisms, including promoting macrophage phagocytosis of bacte-

ria.36 The abundance of macrophages present in our dataset and the enrichment in the ‘‘phagocytosis’’ GO pathway suggests this could

be happening in the joints of these mice in response to IFNg. In humans with Lyme arthritis, there is elevation of IFNg in synovial fluid,

compared to patients with osteoarthritis.17 In addition, synovial tissue from patients with Lyme arthritis has been found to express lower levels

of tissue repair genes.6 Like many of the other cell types, synoviocytes and fibroblasts captured in our dataset had an elevated IFNg-response

signature at week two post-infection, suggesting that these non-hematopoietic cells switch to a pro-inflammatory immune cell-like pheno-

type following B. burgdorferi infection. The process by which synoviocytes and fibroblasts become inflammatory has been shown to occur in

response to IFNg signaling in both Lyme arthritis and rheumatoid arthritis,17,37,38 suggesting that this might be a central axis in joint inflam-

mation across indications. Though wild-type C57BL/6 mice ultimately resolve infection and have little lasting joint inflammation, it is possible

that IFNg could prevent the tissue repair by synoviocytes, fibroblasts, andmacrophages in othermousemodels and in humans. IFNg, which is

a common Th1 cytokine, was expressed by the Tcell.2 sub-cluster. The balance between Th1 and Th2 responses may ultimately influence the

outcome of infection and any lasting Lyme complications.17,39,40

We found that for all cell types, themajority of transcriptional changes peaked at two weeks of infection. In particular, macrophage/mono-

cyte gene expression returned to near baseline by week four, which was unexpected given that bacterial burden in the joints remains high at

four weeks post-infection.12 This suggests that themacrophagesmay have become less responsive to stimulation by B. burgdorferi over time.

We have previously shown using an in vitro model of repeated stimulation that macrophages develop immune memory that dampens sub-

sequent inflammatory responses upon repeated encounters with B. burgdorferi.41 This may be a protective mechanism in cases where the

activation of the immune system is more damaging than the infection. Similarly, T cells may exhibit an exhausted phenotype with repeated

stimulation that can dampen inflammatory signaling. In particular, we have previously demonstrated that the T cell exhaustion pathway PD-1/

PD-L1 is upregulated during infection andmay play a role in the C57BL/6 resolution of inflammation.12 Using scRNA-seq, we found that other

exhaustion markers, such as Tigit and Ctla4 are upregulated at week two post-infection, further suggesting that the long-term infection of

B. burgdorferi can impact multiple cell populations.
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In wildmice, B. burgdorferi is treated by the immune system as a commensal organism that elicits little to no inflammatory response despite

continued presence of the bacteria within the animal. While humans and inbredmice do develop an inflammatory response including arthritis,

natural history studies (done in humansbefore the discovery of the efficacy of antibiotics) found that these responses resolve spontaneously over

time without antibiotic treatment. Our data similarly suggest that the peak in transcriptional changes quickly resolves fairly early in infection. It

seems likely thata similarphenomenonoccurs inhumans.With theadventofantibiotic therapy for Lymedisease,most symptomsof inflammation

are resolved quickly with treatment. However, in a small subset of humanswith Lyme arthritis, joint inflammation can persist even after antibiotic

therapy.5 It hasbeen shown thatB. burgdorferimembrane components canbe retained for longperiods of time andmay continue to stimulate a

response.24 Why it does so in only a subset of patients has been a mystery. Our studies provide insight into the natural evolution of the immu-

nologic response to B. burgdorferi and may provide clues as to what may cause pathological inflammation in certain predisposed patients.

Limitations of the study

Althoughmurine and human Lyme arthritis share many similarities, there are known differences both in the course of the disease and some of

the inflammatory cytokines expressed. Furthermore, each mouse strain responds differently to B. burgdorferi, and it has not yet been estab-

lished which strain of mice may more closely mimic human disease. Because C57BL/6 mice have milder joint pathology compared to some

other mouse strains, it is unknown if the transcriptional changes we observed at week two post-infection reflect a general response to

B. burgdorferi in the tissue or are strain and species specific. Additionally, our validation efforts were mainly focused on cytokine/chemokine

production in the ankle joint where it was possible to compare our results with prior work. Future work should aim to further dissect how

certain cell types/sub-populations interact across different pathways, how joint pathology at different time points correlates with the tran-

scriptional changes we observed, and ultimately how these differ across mouse strain and in human joint tissue.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD16/32 (clone S1700E) BioLegend Cat# 156603; RRID: AB_2783137

Anti-mouse CD45 (clone 30-F11) BioLegend Cat# 103125; RRID: AB_493536

Anti-mouse CD3 (clone 17A2) BioLegend Cat# 100241; RRID: AB_2563945

Anti-mouse CD4 (clone GK1.5) BioLegend Cat# 100411; RRID: AB_312696

Anti-mouse CD44 (clone IM7) BioLegend Cat# 103007; RRID: AB_493686

LIVE/DEAD Fixable Aqua Invitrogen Cat# L34957

Bacterial and virus strains

Borrelia burgdorferi B31 Petnicki-Ocwieja et al.42 N/A

Chemicals, peptides, and recombinant proteins

Liberase TL Millipore Sigma Cat# 5401020001

DNase I, RNase free Thermo Fisher Cat# EN0521

RPMI 1640 Corning Cat# 10-040 CV

PBS Gibco Cat# 14190250

FBS R&D Systems Cat# S11550H

CaCl2 Fisher Scientific Cat# C79-500

BSA Rockland Cat# BSA-50

EDTA Corning Cat# 46-034-CI

Critical commercial assays

EasySep Dead Cell Removal (Annexin V) Kit StemCell Technologies Cat# 17899

CD45 MicroBeads Miltenyi Biotec Cat# 130-052-301

MiniMACS Separator Miltenyi Biotec Cat# 130-042-102

Single Cell K Chip 10x Genomics Cat# 1000286

Chromium Single Cell 5’ Library and

Gel Bead Kit v2

10x Genomics Cat# 1000263

Library Construction Kit 10x Genomics Cat# 1000190

Mouse Cytokine/Chemokine 31-

Plex discovery assay

Eve Technologies Cat# MD31

Deposited data

Single cell RNA-sequencing raw data This paper NCBI GEO: GSE233850

Source code This paper http://www.github.com/mjlwalsh/

Bb_scRNAseq

Experimental models: Organisms/strains

Mouse: C57BL/6 mice The Jackson Labs Cat# 000664

Software and algorithms

Cellranger v6.0.0 10x Genomics http://www.10xgenomics.com/

support/software/cell-ranger

Mm10 reference genome v3.0.0 10x Genomics http://www.10xgenomics.com/support

R v4.1.1 R Project https://www.r-project.org/

R Studio Posit https://posit.co/downloads/

Seurat v4.0.5 Stuart et al.43 https://satijalab.org/seurat/

DropletUtils v1.14.2 Griffiths et al.44 Bioconductor

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Linden T. Hu

(Linden.Hu@Tufts.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All raw and processed scRNA-seq data is deposited in the GEO database and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table. All original code has been deposited at GitHub and is publicly available as of the date of pub-

lication. The URL is listed in the key resources table. Any additional information required to reanalyze the data reported in this paper is avail-

able from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

Seven-week old female C57BL/6Jmice were purchased from Jackson Laboratory (Bar Harbor, ME) and were group housed at Tufts University

School of Medicine. All experiments were approved by the Institutional Animal Care and Use Committee at Tufts University (IACUC, Protocol

#B2021-84). Mice were euthanized through CO2 asphyxiation followed by cervical dislocation in accordance with guidelines from the Amer-

ican Veterinary Medical Association (AVMA) and was approved by the Tufts IACUC.

Bacteria

Low passage isolates of Borrelia burgdorferi (strain B31) were cultured in Barbour-Stoenner-Kelly II (BSK-II) complete medium at 37�C to log-

arithmic phase and cell density determined by using a Petroff-Hauser counting chamber.42

METHOD DETAILS

Infection of mice and preparation of tissue

Mice were inoculated subcutaneously in the center of the abdomen with 105 spirochetes in 100 ml or with 100 ml BSK-II medium for uninfected

controls. B. burgdorferi infection was confirmed by culturing of live spirochetes from the ears in BSK-II medium at time of sacrifice and visu-

alization of spirochetes using dark-field microscopy. All mice were infected at the same time for single-cell RNA sequencing and sacrificed at

indicated time points. Specifically, at two, four, six and eight weeks post-infection, 10 mice were sacrificed and ankle joints harvested. Ankle

joints were processed as previously described.12 Briefly, joint tissue was digested for 1 hour at 37�C in RPMI containing 0.2 mg/ml liberase TL

(Roche) and 1 unit/ml DNase (Thermo), inverting every 15 minutes. Cells from the 10 mice used per time point were pooled and were then

filtered through a 40 mmfilter and washed in PBS containing 2%FBS and 1mMCaCl2. Live cells were obtained throughmagnetic sorting using

the EasySep Dead Cell Removal (Annexin V) Kit (StemCell Technologies) per manufacturer’s instructions. Following dead cell removal, cells

were washed inMACSbuffer (PBS containing 0.5%BSA and 2mMEDTA) andCD45+ andCD45- cells separated usingCD45MicroBeads and a

MiniMACS Separator per manufacturer’s instructions (Miltenyi Biotec).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DESeq2 v1.38.2 Love et al.45 Bioconductor

fgsea v1.24.0 https://doi.org/10.1101/060012 Bioconductor

Molecular Signature Hallmark gene set v7.2 Liberzon et al.46 https://www.gsea-msigdb.org/

GO gene set v7.5.1 https://geneontology.org/ https://geneontology.org/

OmniPath v3.5.25 Türei et al.47 Bioconductor

ComplexHeatmap v2.14.0 Gu et al.48 Bioconductor

ggplot2 v3.4.0 Hadley Wickham https://ggplot2.tidyverse.org/

Prism GraphPad https://www.graphpad.com/features

FlowJo v10.8.1 TreeStar https://www.flowjo.com/
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Single cell RNA library preparation and sequencing

Cells were twice washed in RPMI containing 10% FBS, counted via hemocytometer, and resuspended to a concentration of 1,000 cells/ml. Cell

suspensions were loaded onto a 10x Chromium instrument with Single Cell K Chip per manufacturer’s protocol with a targeted recovery of

10,000 cells per sample. Library preparation was performed with the Chromium Single Cell 5’ Library and Gel Bead Kit v2 (Part Number

1000263). Library preparation was performed with the Library Construction Kit (Part Number 1000190) and samples were sequenced on an

Illumina HiSeq instrument with 2x150bp sequencing. Both the CD45+ and CD45- samples for each time point were sequenced immediately

after library preparation.

Single-cell RNA sequencing pre-processing

The 10x Genomics Cellranger (v.6.0.0) pipeline was used to align raw sequencing reads to the murine Mm10 reference genome (10x Geno-

mics, v.3.0.0) to generate cell read count matrices for each sample.49 Count matrices for each time point (both CD45- and CD45+; 10 total)

were read into R (v.4.1.1) using the Seurat package (v.4.0.5).43 Raw read count matrices were processed with the DropletUtils package

(v.1.14.2)44 to exclude empty droplets using the ‘emptyDrops’ function, keeping only cell barcodes with an FDR < 0.01. Genes detected in

fewer than 3 cells were discarded from the read matrices. Low quality cells were removed if they contained mitochondrial reads higher

than 2 standard deviations above themean and fewer than 500 unique genes detected. Counts from all samples weremerged into onematrix,

split by sample, and log normalized across each sample. Tominimize batch effects, the top 2000 highly variable genes were selected for each

sample, and then ‘SelectIntegrationFeatures’ was used to determine the top 2000 highly variable genes across all samples. Week 0 (CD45-

and CD45+) samples were used as a reference with Reciprocal Principle Component Analysis (RPCA), selecting the top 50 dimensions for inte-

grating the datasets together (using the ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions), which reduces batch-specific effects and

allows for comparative scRNA-seq analysis across experimental conditions (i.e. time).43,50 The integrated dataset was then scaled and

PCA was performed, from which the top 50 dimensions were used to generate a Uniform Manifold Approximation and Projection

(UMAP). Clusters were identified by constructing a Shared Nearest-Neighbor (SNN) graph using the top 50 dimensions of the PCA and 20

k-nearest neighbors with the ‘FindNeighbors’ function before using the Louvain algorithm for modularity optimization with ‘FindClusters’.

Clustering analysis of single cell data

Based on the parameters above, 39 unique clusters were identified. ‘FindAllMarkers’ was used to identify cluster-defining genes (Table S1),

from which these 39 unique clusters were grouped into fibroblast-like, myeloid, lymphoid, vascular, or dividing cells based on expression of

genes including Col3a1, Csf1r, Cd79a, S100a9, Prg4, Cd3d, Cd209a, H2-Aa, andMki67. From these broader groups, clusters were assigned

into 17 more distinct cell types using marker gene expression including the genes listed above. For macrophage, T cell, fibroblast, synovio-

cyte, B cell, and neutrophil clusters, sub-clustering was performed from the main population to identify heterogeneity. Each cell group to be

sub-clustered was subsetted from the main population, a new set of 2000 variable features was found, the count matrices were rescaled and

another PCA/UMAP was generated as above. Doublet clusters were identified from these sub-clusters based on co-expression of genes from

multiple cell types (for example, co-expression of Lyz2 and Hbb-bs in a macrophage/monocyte sub-cluster). Doublet clusters were removed

and singlets re-clustered as above to generate the final sub-clustered population UMAP. Cluster-defining genes for each cell subset was

calculated using the ‘FindAllMarkers’ Seurat function.

Differential gene expression analysis

For each main cell population, we performed a pseudobulk method of differential gene expression.51,52 From each of the 10 samples (CD45+

and CD45- for the five timepoints), count matrices were summed across genes for each sub-cluster. Samples with fewer than 2 cells in a con-

dition were dropped from analysis. CD45- and CD45+ samples from the same time point were treated as replicates for pseudobulk analysis

and theDESeq2 package (v.1.38.2)45 was used to identify differentially expressed genes. For all sub-clusters except macrophages, mitochon-

drial (‘‘mt-XX’’), ribosomal (‘‘RplX’’ or ‘‘RpsX’’), and poorly annotated genes (‘‘Gm-’’) were removed from gene lists prior to differential gene

analysis. In addition, for T cells and B cell sub-clusters, TCR (e.g. Tr(a/b/g/d)(v/j)) and immunoglobulin genes (e.g. Ig(klh)(vmg)), respectively,

were removed prior to analysis. A likelihood ratio test (LRT) was used to compare samples over time against a reduced model taking into

account cell number for each condition. To visualize gene changes over time, normalized pseudobulk counts were scaled across genes, aver-

aged across replicates, and plotted by week. Psuedobulk data can be found in Tables S2, S4, S5, S6, S7, and S8. For clusters with too few cells

to perform pseudobulk differential gene analysis, the ‘FindMarkers’ function was used with the Wilcoxon Rank Sum test.

Gene set enrichment analysis

Pseudobulk analysis comparing week 0 (uninfected) to week 2 within each sub-cluster was also performedwith an LRT as above. Fold changes

from these comparisons were supplied for Gene Set Enrichment Analysis (GSEA) using the fgsea package (v.1.24.0) and tested against either

theMolecular SignatureHallmark (v.7.2)46 or GO (v.7.5.1) gene sets. As in pseudobulk analysis, certain geneswere removedprior toGSEA (see

above section for specific genes removed). All of the GSEA results can be found in Table S3. For M1/M2 signature analysis of MacMono sub-

clusters, count matrices were summed across genes for each sub-cluster, combining weeks together. Log2 fold change was calculated on

scaled pseudobulk expression for each cluster vs. every other cluster. GSEA was performed using the fgsea package with the previously

described M1/M2 signature gene sets11 as input.
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Cell-cell communication analysis

A publicly available library of receptor-ligand pairs was obtained from OmniPath (v.3.5.25, R) via the ‘import_ligrecextra_interactions’ func-

tion,47 and differential expression results were then queried for these receptor-ligand pairs. Differential gene expression results were filtered

to genes that were found in the library of receptor-ligand pairs that additionally had a log-fold-change > 1 (week 2 vs. week 0) and an

FDR < 0.05. All unique combinations where both the receptor and ligands were differentially expressed were aggregated and can be found

in Table S9. Select differentially-expressed receptor-ligand pairs where analogous ELISA data were available were visualized with the Com-

plexHeatmap package (v.2.14.0, R).48

Cytokine assessment

Cytokines assessment was conducted in Helble et al.12 and reanalyzed for this study using Prism software. Briefly, mice were infected subcu-

taneously with B. burgdorferi and ankle joints excised at specific time points. Protein was extracted and submitted to Eve Technologies for

Mouse Cytokine/Chemokine 31-Plex discovery assay. Results were normalized to the total protein concentration.

Flow cytometry analysis

Ankle joint tissue was processed into a single cell suspension as described above (see ‘‘Infection of mice and preparation of tissue’’). Rather

than sorting for live cells and separating CD45+/CD45- cells, ankle joint cells were stained in MACS buffer with the following fluorochrome

conjugated antibodies (all antibodies were purchased from BioLegend except where otherwise noted): CD16/32 (S17011E), CD45

(30-F11), CD3 (17A2), CD4 (GK1.5), CD44 (IM7) and a LIVE/DEAD Fixable Aqua Dead Cell Stain Kit (Invitrogen). Flow cytometry data were

collected on an LSR II (BD Biosciences) and analyzed using FlowJo (Tree Star).

Visualization

The R packages Seurat, fgsea, and ggplot2 (v.3.4.0) were used to make all graphs pertaining to scRNA-seq. The experimental schematic was

generated with BioRender. ELISA and flow cytometry data were plotted with GraphPad Prism.

QUANTIFICATION AND STATISTICAL ANALYSIS

For cytokine assessment and flow cytometry data, differences were considered statistically significant if the P value was less than 0.05. Data

were graphed as the means G standard errors of the means (SEM). For all figures, * P < 0.05, *** P < 0.001, and **** P < 0.0001.
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