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The pattern of gene expression in a developing tissue determines the spatial

organization of cell type generation. We previously defined regulatory inter-

actions between a set of transcription factors that specify the pattern of gene

expression in progenitors of different neuronal subtypes of the vertebrate

neural tube. These transcription factors form a circuit that acts as a multistate

switch, patterning the tissue in response to a gradient of Sonic Hedgehog.

Here, by simplifying aspects of the regulatory interactions, we found that

the topology of the circuit allows either switch-like or oscillatory behaviour

depending on parameter values. The qualitative dynamics appear to be con-

trolled by a simpler sub-circuit, which we term the AC–DC motif. We argue

that its topology provides a natural way to implement a multistate gene

expression switch and we show that the circuit is readily extendable to pro-

duce more distinct stripes of gene expression. Our analysis also suggests that

AC–DC motifs could be deployed in tissues patterned by oscillatory mech-

anisms, thus blurring the distinction between pattern-formation mechanisms

relying on temporal oscillations or graded signals. Furthermore, during

evolution, mechanisms of gradient interpretation might have arisen from

oscillatory circuits, or vice versa.
1. Introduction
The formation of functioning, architecturally complex tissues during embryonic

development relies on the spatially and temporally organized production of

multiple distinct cell types. Understanding how this is achieved requires insight

into the underlying molecular mechanisms. In broad terms, the transcriptional

programme of a cell determines cellular identity. Thus, the spatial arrangement

of the transcriptional programmes operating within the developing tissue

determines the pattern of cell differentiation. In order for these programmes

to be spatially organized a source of positional information to apprise cells of

their location and a mechanism to convert this information into the appropriate

transcriptional programme are required.

Several mechanisms have been identified. One strategy exploits oscillations

that produce regular transitions in gene expression. Such oscillations, when

applied across a growing field of cells, generate repeated domains of gene

expression. A well-established example of this is somitogenesis, which divides

vertebrate mesoderm into reiterated blocks of tissue, arrayed along the

anterior–posterior axis [1]. A second strategy involves secreted molecules,

termed morphogens, which establish signalling gradients across a field of

cells. In simple terms, the spatial metric could be provided by the concentration

of the morphogen. However, it has become apparent that the duration of signal-

ling can also contribute to the positional identity of a cell [2,3]. Both oscillatory

and morphogen mechanisms represent biological examples of multistate

switches in which a single input signal (time and morphogen, respectively)

produces multiple discrete outputs. However, the mechanisms by which

these multistate switches are implemented remain poorly understood.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2012.0826&domain=pdf&date_stamp=2012-12-12
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Moreover, it remains unclear whether there are mechanisms

in common between oscillatory and morphogen strategies

of pattern formation.

To address these questions, we have focused on a specific

example of pattern formation in which the secreted protein

Sonic Hedgehog (Shh) patterns ventral regions of the ver-

tebrate neural tube. In this tissue, Shh controls a multistate

switch that establishes the distinct identities of neural pro-

genitors that generate the distinct differentiated neuronal

subtypes [4]. Shh is secreted from the notochord, which

underlies the ventral neural tube, and the floor plate, located

at the ventral midline of the neural tube, and diffuses to form

a ventral-to-dorsal gradient. In response to this Shh gradient,

progenitors in the ventral neural tube regulate the expression

of a set of transcription factors (TFs); these include the

homeobox proteins Pax6 and Nkx2.2 and the basic helix–

loop–helix protein Olig2. The expression of these three TFs

distinguishes discrete domains of progenitors that generate

the three most ventral neuronal subtypes. The spatial pattern

of expression depends on graded Shh signalling and, in vitro,

high concentrations and longer durations of Shh activate

Nkx2.2 compared with Olig2, whereas Pax6 is expressed in

the absence of Shh signalling [5,6].

Shh signalling acts via an intracellular signal transduction

pathway that culminates in the regulation of Gli TFs (Gli1, 2

and 3), a family of zinc finger containing transcriptional effec-

tors [7,8]. Exposure of cells to Shh results in a net increase in

the transcriptional activator function of Gli proteins. Gain-

and loss-of-function studies indicate that most, if not all,

the activities of Shh are transduced by Gli activity. Consistent

with involvement of graded Shh signalling in their induction,

Gli activity is necessary for the expression of Olig2 and

Nkx2.2. Moreover, increased durations and higher levels of

Gli activity are needed for the expression of Nkx2.2 than

Olig2. In addition, Pax6, Olig2 and Nkx2.2 are part of a

gene regulatory circuit that comprises a set of cross-repressive

interactions between the TFs. Specifically, Pax6 and Nkx2.2

cross-repress each other’s expression, as do Olig2 and

Nkx2.2. Additionally, Olig2 represses Pax6 expression [9].

These cross-regulatory interactions have been proposed to

be important for interpretation of Shh signalling and the gen-

eration of the discrete switches in gene expression that

characterize the distinct progenitor domains. Here, we exam-

ine this idea and study the features of the gene regulatory

circuit that allow for the interpretation of a graded signal.

We further address whether the regulatory logic of this circuit

can confer other properties on the response of the individual

genes in the circuit.

The nonlinear behaviour exhibited by the Shh regulation

of the TFs Pax6, Olig2 and Nkx2.2 is characteristic of many

gene regulatory networks. In particular, the presence of

multiple feedback loops make these networks difficult to

intuitively understand simply by analysing molecular and

genetic experiments. Mathematical modelling provides a

convenient method to integrate such networks into a single

coherent conceptual framework that allows for the eluci-

dation of the logic and key principles of the circuit [10,11].

Sets of parameters for which the system exhibits

biologically plausible behaviour can be determined and

the presence of alternative behaviours and any emergent

properties can be investigated.

Many mathematical models for gene regulatory networks

have been developed (reviewed in Smolen et al. [12,13] and
Hasty et al. [14]). A common approach is to describe the chan-

ging level of expression of each gene using ordinary

differential equations (ODEs). In this way, a network is

described as a dynamical system comprising a set of linked

ODEs. An advantage of this approach is that a large

amount of mathematical theory is available that allows

these systems to be explored (e.g. stability analysis, bifur-

cation analysis, perturbations methods) giving an in-depth

understanding of the system. For example, Tyson & Othmer

[15], extending the work of Goodwin [16], used this approach

to explore feedback loops in biochemical pathways with

arbitrarily many components, determining conditions for

the existence and stability of steady states and periodic sol-

utions. The repressive loops in their system did not admit

multistability. Subsequently, Cherry & Adler [17] considered

more general models of two mutually repressive proteins and

found conditions for bistability, which allowed the system to

behave as a switch. Saka & Smith [18] demonstrated how

this could be exploited to produce a morphogen response for

two TFs. Smith [19] analysed generic N-species cyclic networks

in which genes were connected by repressive interactions. This

suggested qualitatively distinct behaviours depending on

whether N was even or odd: when N was even, the system

behaved as if regulated by positive feedback and had multiple

steady states. In contrast, when N was odd the system exhibited

periodic oscillations [19]. Similarly, Yang et al. [20] demon-

strated how a three-gene network could generate oscillations

by two different mechanisms.

A limitation of modelling approaches using ODEs is that,

with the exception of the simplest systems, it is usually not

possible to determine analytical solutions and numerical

analysis can be computationally expensive. For these reasons,

hybrid methods, which combine ODEs with aspects of

Boolean algebra, have been deployed. With this framework,

Boolean on–off switches represent the regulatory events

that are characterized by sharp thresholds, whereas continu-

ous input–output relations model the remaining events. This

approach has been successfully applied to the analysis of the

E. coli–phage lysis–lysogeny switch [21]. A class of hybrid

model are piecewise linear models, which were pioneered

by Glass & Kauffman [22] (see also [23,24]). The hybrid

approach has a computational advantage over systems of

ODEs and is more readily amenable to extensive numerical

simulations and analysis.

In this paper, we use a simple four-node circuit depicted

in figure 1a to study the logic of the interplay between Shh

signalling and the cross-repressive properties of the TFs

Pax6, Olig2 and Nkx2.2. This network contains a subnetwork

(figure 7b(ii)), which we term the ‘AC–DC signalling motif’.

We use this motif to show how a relatively simple mathemat-

ical framework can reveal novel principles in the strategies by

which tissues are patterned. In §2, we formulate a simplified

version of the mathematical model presented in [9]. This

model falls into the category of hybrid model described

above. We explore the model analytically in §3. Numerical

simulations of the reduced system verify our analysis and

we show how the results compare to those from the full

model in §4. The analysis indicates that the same motif can

be used to interpret a temporal and spatial morphogen

gradient and to generate oscillatory patterns. We find that

the subnetwork, mentioned above, controls the qualitative

dynamics of the network operating in the neural tube and,

in §5, we propose that it represents a novel regulatory



0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

T/TO

(b)(a)

R
 (

T
) 

=
 1

/(
1 

+
 (T

/T
O

)n )
;

H
(T

) 
=

 H
ea

vi
si

de
 f

un
ct

io
n

 

R(T); n = 1
R(T); n = 2
R(T); n = 5
R(T); n = 50
H(T)

Pax6 (P)

Olig2 (O)

Shh (S)

Nkx2.2 (N)

Figure 1. (a) Diagram of the gene circuit controlling the specification of neural progenitor domains in the vertebrate neural tube. The diagram shows the
interactions between the morphogen Shh and the three TFs Pax6, Olig2 and Nkx2.2. (Pointed arrowheads indicate induction, while blunt arrowheads indicate
repression.) (b) An illustration of how Hill functions approach a Heaviside (step) function, as the Hill coefficient tends to infinity. T represents the concentration of a
repressor. The blue lines show repressive Hill functions, R(T ), with Hill coefficients 1, 2, 5 and 50. The red line shows a repressive Heaviside function, H(T ).
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motif. In §6, we suggest that this motif is a natural one to give

rise to three stripes of gene expression (here corresponding to

three neural progenitor domains). We consider how the motif

is likely to be generalized in a system with more than three

stripes. We discuss our results in §7.
2. Model formulation
During neural tube patterning, Shh is secreted from the ven-

tral pole of the neural tube. Shh signalling is mediated by Gli

activity. In our model, we quantify this signalling with a

parameter S which can be considered to be a measure of

the Shh-induced Gli transcriptional activity. In the progenitor

cells of the neural tube, Pax6 is expressed in the absence of

Shh, whereas both Olig2 and Nkx2.2 are induced by Shh.

Nkx2.2 and Olig2 cross-repress each other, as do Nkx2.2

and Pax6 [3,9]. In addition, Pax6 is repressed by Olig2. The

regulatory architecture of this circuit is represented in

figure 1a.

At this stage, we ignore stochastic effects involved in tran-

scription, translation and decay and also transcriptional time

delays. We model the cross-repressive interactions that link

Pax6, Olig2 and Nkx2.2 together in a gene regulatory circuit

as a dynamical system with an inducible signal. Our math-

ematical framework is a system of ODEs that describe the

temporal evolution of the concentrations of the proteins

Pax6, Olig2 and Nkx2.2, P(t), O(t) and N(t), respectively, at

different cellular Gli activities (S). In [9], we assumed that

the repressive effect of one TF on another could be rep-

resented by a declining Hill function in the production term.

The structure of this network contains positive and nega-

tive feedback loops between P, O and N. Although the

architecture of the network looks relatively simple, the pres-

ence of these loops makes the system more complex than

anticipated. To simplify the analysis, we let the repressions
on Nkx2.2 and Olig2 become infinitely sharp (Hill coefficients

tend to infinity), so that we replace Hill functions by Heavi-

side (i.e. on–off ) functions (figure 1b). This approximation

is in agreement with experimental observations that cross-

repression between Olig2 and Nkx2.2 as well as repression

of Pax6 on Nkx2.2 can be discrete, either on or off [25,26].

These studies show that Olig2 is completely inhibited by

overexpression of Nkx2.2, and Nkx2.2 is completely inhibited

by overexpression of Pax6. Furthermore, our recent work [9]

provides evidence that Olig2 can inhibit Nkx2.2 induction. In

contrast, the level of expression of Pax6 is spatially graded

[26,27], so we retain the Hill function form for the repression

on Pax6 by Olig2 and Nkx2.2. We arrive at the following

equations:

dP
dt
¼ a

1þ ðN=NcritÞh1 þ ðO=OcritÞh2
� k1P; ð2:1Þ

dO
dt
¼ bS

1þ S

� �
HðNcrit1 �NÞ � k2O ð2:2Þ

and
dN
dt
¼ gS

1þ S

� �
HðOcrit1 �OÞHðPcrit1 � PÞ � k3N:

ð2:3Þ

Degradation constants ki, where i ¼ 1,2,3, describe the first-

order decay of the proteins. We note that dilution owing to

exponential growth may contribute to protein decay, but,

since the key element we wish to explore is the transcriptional

cross-repression, for simplicity, we ignore more complicated

decay functions. The maximum rates of production of P, O
and N are given by the positive constants a, b and g, res-

pectively. H(. . .) is the Heaviside function, that is, H(x) ¼ 1 if

x � 0 and H(x) ¼ 0 if x , 0. The values Pcrit1, Ocrit1 and Ncrit1

are the critical values of P at which P switches off N production,

of O at which O switches off N production and of N at which N
switches off O production, respectively. In the Hill function

repression of P, h1 and h2 are Hill coefficients, which describe
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how sharply the repression of P depends on N concentration

and O concentration, respectively. If O is absent, Ncrit is the

concentration of N at which P production is half-maximal.

Likewise, if N is absent, Ocrit is the concentration of O at

which P production is half-maximal. We note that we have

also investigated the effect of having cooperativity in the

signal (S) mediated induction of O and N (i.e. Hill coeffi-

cients greater than one), but found that this does not have

a marked effect on the system’s behaviour. For simplicity,

we therefore consider here only Michaelis–Menten forms of

the induction. In addition, in mouse mutants lacking Pax6

and Olig2, Nkx2.2 expands up to the limit of the Olig2

domain observed in wild-type embryos. We therefore

assume that the critical values of S at which N and O are

induced are the same.
ce
10:20120826
3. Steady states, linear stability analysis and
model behaviour as Shh concentration
is varied

In this section, we study the model (2.1)–(2.3). We determine

analytical conditions on the model parameters that differen-

tiate between the two biological scenarios: a tripartite

expression pattern with a multistate switch in the expression

of the TFs, and the presence of temporal oscillations in TF

expression for some Shh levels. The quantitative (and poten-

tially tunable) features of the gene circuit that allow us

to differentiate these two cases will be the basis of the new

signalling AC–DC motif we propose.

The simplification of using discrete Heaviside functions

for the cross-repression functions on O and N allows the

steady states of the dynamical system to be determined ana-

lytically. The system has three possible steady states, B1, B2 or

B3 which vary with S:

B1 ¼ P ¼ a

k1ð1þ ð�b=Ocritk2Þh2Þ
;O ¼

�b

k2
;N ¼ 0

 !
; ð3:1Þ

B2 ¼ P ¼ a

k1ð1þ ð�g=Ncritk3Þh1Þ
;O ¼ 0;N ¼ �g

k3

 !
ð3:2Þ

and B3 ¼ P ¼ a

k1ð1þ ð�b=Ocritk2Þh2 þ ð�g=Ncritk3Þh1Þ
;

 

O ¼
�b

k2
;N ¼ �g

k3

�
: ð3:3Þ

Here, �bðSÞ ¼ bS=ð1þ SÞ and �gðSÞ ¼ gS=ð1þ SÞ, so that

these vary with S. We note that for each state, P alone is

expressed as S! 0.

It is straightforward to show that each of the states is

stable where it exists. The criteria for existence of each state

are as follows.

(a) B1 exists (and is stable) if and only if

�bðSÞ . k2Ocrit1 and=or a . k1Pcrit1 1þ
�b

Ocritk2

� �h2
" #

:

(b) B2 exists (and is stable) if and only if

�gðSÞ . k3Ncrit1 and a , k1Pcrit1 1þ �g

Ncritk3

� �h1

" #
:

(c) B3 exists (and is stable) if and only if

�bðSÞ , k2Ocrit1; �gðSÞ , k3Ncrit1 and a , k1Pcrit1

� 1þ �g

Ncritk3

� �h1

þ
�b

k2Ocrit

� �h2
" #

:

We note that states B2 and B3 cannot coexist, but, depending

on the parameter values, state B1 can coexist with either of the

other two states.

We now consider what happens to the system as the level

of S is gradually increased (sufficiently gradually that

the system may be considered always to be at steady state).

To ensure that N is inactive at low values of S, we require

a . k1Pcrit1. The system will hence evolve to state B1, which

has zero N concentration. As the level of S is gradually

increased, in order for this state to lose stability at some

point (such that N is activated), we require �b , k2Ocrit1. We

note that in this simplified system, we only get realistic tripar-

tite behaviour, without N being activated uniformly across

the domain, if O never represses N. Intuitively, this is

because, in the absence of N, the concentration of O increases

with the level of S, so that if a cell, in which O is capable of

repressing N, sees an increasing level of S, it is impossible

for that repression to be switched off and therefore for N to

be expressed.

It is worth pointing out that the condition that O never

represses N is only a requirement because of the all-or-

nothing nature of the repression in our system. We have

shown [9] that the full model system can give rise to realistic

tripartite behaviour even when O represses N. Most of the

key qualitative behaviours of this full system, however,

are displayed also by the system without the repression of

N by O. Minor quantitative differences do exist with and

without O repression of N. For example, if O represses N,

then N expression is delayed in wild-type embryos relative

to O mutants.

In order for O to be switched off at high values of S, we

require B2 to become stable and hence �g . k3Ncrit1. The

inequalities necessary for the existence of B2 are then

improved by further increasing the value S; therefore, once

B2 is attained it cannot be left. In summary, if N is not to

be induced by low levels of S and O is not to be active at

high levels of S, then there are two possible routes through

the steady states as the value of S increases:

(1) B1! B2; or

(2) B1! B3! B2.

We set Pmax ¼ a/k1, Omax ¼ b/k2 and Nmax ¼ g/k3. Then

for one of these biologically relevant routes to occur, necess-

ary and sufficient conditions on the parameters are (for a

derivation see appendix A)

Nmax

Ncrit1
. max 1;

Omax

Ocrit1

� �
ð3:4Þ

and

1 ,
Pmax

Pcrit1
, 1þmin

Nmax

Ncrit

� �h1

;
NmaxOcrit1

NcritOmax

� �h1

;

(

Omax

Ocrit

� �h2

;
Ocrit1

Ocrit

� �h2

)
: ð3:5Þ
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The first route is taken if

Pmax

Pcrit1
� 1þ OmaxNcrit1

OcritNmax

� �h2

; ð3:6Þ

otherwise, the second route is adopted. In the second route,

as S increases, there is an overlap in the existence of B1 and

B3 and hence there is a range of Shh concentration for

which the system is bistable and hysteresis is exhibited.

This means that the level of S required to switch on N
expression is higher than that required to maintain N, once

it is activated.

In both routes, there are two possibilities for the transition

to the state B2. In the first route, generically, as the level of S is

increased, there is either an overlap in the existence of B1 with

B2, or there is a gap. At a critical set of parameter values,

there is a sharp transition into B2 from B1 at a fixed value

of S. In the second route, there is either a direct switch

(with no gap or overlap) in existence from B3 to B2, or there

is a gap. In the cases where there is a gap in steady states,

oscillations result. For levels of S that fall within this range,

when N switches off O, it is not sufficient to keep P switched

off. This allows P to rise, which in turn switches off N. Con-

sequently, this allows the reactivation of O that then represses

P, allowing the level of N to rise again. The process then

repeats. The resulting dynamics are oscillatory, changing

from N high to P high to O high and repeating. By contrast,

in the case of an overlap or a direct switch in stability, when

the levels of N rise and switch off O, the activity of N is

capable of exerting sufficient repression on P to maintain its

own expression.

In the first route, the condition for a gap in existence/

stability between B1 and B2 is

NmaxOcrit

NcritOmax

� �h1h2

,
Pmax

Pcrit1
� 1

� �h2�h1

: ð3:7Þ

(In the case where h1 ¼ h2, this simplifies to Nmax/Ncrit ,

Omax/Ocrit.)

In the second route, the condition for a gap in stability/

existence between B3 and B2 is

Pmax

Pcrit1
. 1þ Ncrit1

Ncrit

� �h1

: ð3:8Þ

In summary, there are four distinct possibilities for the be-

haviour of the system as the level of S is increased, given that,

for low values of S, N is absent, and, for high S values, O is

absent.1 These possibilities are

(1) N off! O off,

(2) N off! N and O co-expressed! O off,

(3) N off! N, O and P oscillate! O off,

(4) N off! N and O co-expressed! N, O and

P oscillate! O off.

The critical values of Shh concentration for which

the transitions between behaviours occur are given in

appendix B. In the first two possibilities, there is bistability

around the transition to N on, and so the system displays hys-

teresis. We note that, had we not chosen parameters such that

N is expressed at high S and O is not, we would have found

parameter values for which the system oscillates for all S
values above a threshold. When S is very low, there are no

oscillations, since P alone is expressed. However, it is possible

for oscillations to occur as S!1.
As we have mentioned, state B1 can coexist with state B2

or with state B3. In addition, the states are stable when they

exist. Typically, we expect the system initially to have seen

no Shh, so initially, S ¼ 0 and so N ¼ O ¼ 0 and P ¼ a/k1.

If S is increased gradually (slowly compared with the degra-

dation of N, O and P), then the system will remain in B1 until

that state ceases to exist. By contrast, if a cell starts, for

example, in state B2 (expressing Nkx2.2) and S is gradually

decreased, the system will stay in B2 until that state ceases

to exist. We have discussed (and experimentally verified)

this hysteretic property of the system in [9].
4. Numerical results
In this section, we illustrate the predictions of the analysis in

the previous section using numerical simulations in which

there is a switch from B1 (no N ) direct to B2 (no O) with

increasing S or a switch from B1 via B3 (where N and O are

co-expressed) to B2. We also illustrate how the transition to

B2 can either be direct or can be separated from the previous

steady state by a range of values of S for which the system

displays oscillations.

The numerical simulations in this section were performed

using the MATLAB ODE solver ode45. For the bifurcation dia-

grams, the maximal and minimal values of O were then

computed, once the system had converged to steady state

or to oscillations. For the simulations of the Heaviside

model, since the vector field is discontinuous, there are iso-

lated points at which the solution is not continuously

differentiable. We checked the results by comparing with

numerical simulations of the Hill function model with very

high Hill coefficients in the equations for N and O. The

unstable steady states shown in figure 5 were computed

numerically by solving the relevant algebraic equations.

Figure 2 shows numerical simulations for parameter

values corresponding to possibilities (1) and (3) from the pre-

vious section, indicating how the levels of the three TFs vary

as a function of S for two different parameter sets. We use

h1 ¼ h2 and in figure 2a the parameters satisfy Nmax/Ncrit .

Omax/Ocrit, so that the transition to B2 is direct. By constrast,

in figure 2b the parameters satisfy Nmax/Ncrit , Omax/Ocrit,

so that there is an intermediate range of values of S for

which there are temporal oscillations. Since, for these

values of S, the system does not converge to steady state,

the long-term values of P, O and N are not shown here.

Instead, in figure 2c, we show either the stable steady state

values of O (in red), or, once the system has converged to a

limit cycle, the maximum (in black) and minimum (in cyan)

values of O. In figure 2d , we illustrate the temporal behaviour

of the model with parameter values as in figure 2a, for a level

of S just above the transition from B1. The model predicts that

first P is active, then O and finally N. In all of the numerical

simulations of this section, we use initial conditions corre-

sponding to the steady-state values in the absence of S,

i.e. P ¼ a/k1, O ¼ N ¼ 0. In figure 2e, we illustrate the tem-

poral behaviour of the model with parameter values as in

figure 2b, for a level of S just above the transition from B1.

Here, temporal oscillations in the TFs are evident; activation

of O is followed by activation of N, which is followed by

activation of P, then O and so on.

Figure 3 shows numerical simulations for parameter

values corresponding to possibilities (2) and (4) from §3,
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Figure 2. Numerical profiles of the simplified model, illustrating the existence of a sharp switch (a,d ) or oscillations at intermediate S levels (b,c,e) in the expression
profiles of Pax6 (blue), Olig2 (red) and Nkx2.2 (green) in the transition B1! B2. Model parameters are: a ¼ 5, b ¼ 5, g ¼ 5, h1 ¼ 2, h2 ¼ 2, Ocrit ¼ 1,
Pcrit1 ¼ 0.5, Ocrit1 ¼ 5, Ncrit1 ¼ 2, k1 ¼ 1, k2 ¼ 1, k3 ¼ 1 and in (a) and (d ) Ncrit ¼ 0.9 and (b), (c) and (e) Ncrit ¼ 1.1. In (a) and (b), the profiles are generated
at t ¼ 60, at which time the profiles have converged to steady state (to within a tiny tolerance), if they ever will do so. If they do not, we simply leave a gap in the
plot. In (c), we show the steady-state value (red line) or maximum (black line) and minimum (cyan line) values of O for parameters as in (b), once the system has
converged either to steady state or to a limit cycle (we use t ¼ 500), plotted against S. In (d ) and (e), we plot time courses of P, O and N for parameters as in (a)
and (b), respectively, and for fixed S. The values of S used in (d ) and (e) are marked with arrows in (a) and (b), respectively.
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indicating how the levels of the three TFs vary in response to

different levels of S for two different parameter sets. In both

cases, there is first a transition from O on and N off to

co-expression of O and N as S increases. In figure 3a, the

parameters satisfy Pmax/Pcrit1 , 1 þ (Ncrit1/Ncrit)
h1, so that

the transition to B2 (i.e. the subsequent switching off of O)

is direct. By contrast, in figure 3b the parameters satisfy

Pmax/Pcrit1 . 1 þ (Ncrit1/Ncrit)
h1, so that there is an inter-

mediate range of values of S for which there are temporal

oscillations. In figure 3c, we show for the system as in

figure 3b, either the stable steady-state values of O (in red),

or, once the system has converged to a limit cycle, the maxi-

mum (in black) and minimum (in cyan) values of O. In

figure 3d, we illustrate the temporal behaviour of the model

with parameter values as in figure 3a, for a value of S
above the transition from B3. This reveals the sequential acti-

vation of P, then O and finally N. In figure 3e, we illustrate the

temporal behaviour of the model with parameter values as in

figure 3b, for a level of S above the transition from B3 but
below the transition to B2. In this case, temporal oscillations

in the TFs are evident, activation of O is followed by N,

which is followed by P, then O, etc.

Figures 4 and 5 show simulations of the full model with

Hill functions, instead of Heaviside functions describing the

repression of N and O (see appendix C); the other parameters

are as in figure 2. For simplicity, we consider the case when

h3 ¼ h4 ¼ h5 ¼ h and figure 4 shows the case h ¼ 2, whereas

figure 5 shows the case h ¼ 5. In these simulations, as in

those above, it is possible to observe either a switch from

high P to high O to high N or for there to be an intermediate

range of S for which the TFs oscillate. However, the more gra-

dual repression functions provided by the Hill functions tend

to cause transitions to occur at higher values of S. The effect

of Hill function repression on N and O on the existence of

oscillations is complex. For h ¼ 2, oscillations are absent

(figure 4); however, for h ¼ 5 there is an extended range of

values of S for which oscillations occur (figure 5c,d ) and

indeed there is a range of values of S for which the system,
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Figure 3. Numerical profiles of the simplified model, illustrating the existence of a sharp switch (a,d ) or oscillations at intermediate S levels (b,c,e) in the expression
profiles of Pax6 (blue), Olig2 (red) and Nkx2.2 (green) in the transition B1! B3! B2. Model parameters are: a ¼ 3, b ¼ 5, g ¼ 4, h1 ¼ 2, h2 ¼ 2, Ocrit ¼

1, Pcrit1 ¼ 1, Ocrit1 ¼ 5, Ncrit1 ¼ 2, k1 ¼ 1, k2 ¼ 1, k3 ¼ 1 and in (a) and (d ) Ncrit ¼ 1 and in (b), (c) and (e) Ncrit ¼ 2. In (a) and (b), the profiles are generated
at t ¼ 60, at which time the profiles have converged to steady state (to within a tiny tolerance), if they ever will do so. If they do not, we simply leave a gap in the
plot. In (c), we show the steady state value (red line) or the maximum (black line) and minimum (cyan line) values of O for parameters as in (b), once the system
has converged either to steady state or to a limit cycle (we use t ¼ 500), plotted against S. In (d ) and (e), we plot time courses of P, O and N for parameters as in
(a) and (b), respectively, and for fixed S. The values of S used in (d ) and (e) are marked with arrows in (a) and (b), respectively.
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with other parameters as in figure 2a, shows oscillations.

Moreover, for certain values of the parameters, the system

displays damped oscillations. This is not possible in the

simplified model using Heaviside functions, since when

the steady states exist, they are stable nodes (the eigenvalues

of the Jacobian matrix are 2k1, 2 k2 and 2k3). We also

note that oscillations, when they exist, are simple and

periodic—a proof of this for the Hill function model is

given in appendix D.

It is clear from these numerical simulations that the sim-

plified Heaviside function model accurately predicts how

the system will behave for very strong repressive interactions

that result in sharp cross-repression functions on N and O
but, as expected, it is less accurate at recapitulating the

effect of weaker repressive activities. Importantly, the generic

types of behaviour displayed by the simplified model—either

switches between the regimes of expression of each of the

transcription factors, with hysteresis, or intermediate regimes
of oscillations—are features of the system whether Heaviside

or Hill functions are used to describe the repression func-

tions. The precise ranges of the parameters for which

oscillatory behaviour occurs are determined by the sharpness

of the repression functions. Indeed, it is surprising how dif-

ferently (in quantitative terms) the system can respond in

the case h ¼ 5 from the limiting case with Heaviside function

repressions on N and O. Thus, the simplified model helps

explain the mechanisms by which switch-like or oscillatory

behaviour can arise, but without more detailed measurement

of the cross-repression functions, it should not be considered

a fully quantitative model of neural tube patterning.
5. The AC – DC signalling motif
Our analysis indicates that the gene circuit described in

figure 1a can either behave as a three-way multistate
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Figure 4. Numerical profiles of the full model, with parameters as in figure 2, but with Hill coefficients h3 ¼ h4 ¼ h5 ¼ 2. In this case, as in figure 2, when
Ncrit ¼ 0.9 there is a straight switch from Pax6 dominance at low Shh, to Olig2 dominance at intermediate Shh, to Nkx2.2 dominance at high Shh, although Nkx2.2
and Olig2 are coexpressed for a large range of Shh concentration (a,c). For Ncrit ¼ 1.1 (b,d ), unlike the simplified model, there is no intermediate regime
of oscillations, and Nkx2.2 never dominates Olig2. In (a) and (b), the profiles are generated at t ¼ 60, at which time the profiles have converged to steady state
(to within a tiny tolerance), if they ever will do so. In (c) and (d ), we plot time courses of P, O and N for parameters as in (a) and (b), respectively, and for fixed S.
The values of S used in (c) and (d ) are marked with arrows in (a) and (b), respectively.
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switch—expressing P at low levels of S, O at intermediate levels

and N at high levels—or it can display oscillations in the TF

levels for intermediate values of S. It is clear from the inequal-

ities (3.4)–(3.8) that we can let Ocrit1! 1 and not qualitatively

affect the results. Thus, the repression of N by O is not neces-

sary to the tripartite patterning or the oscillatory behaviour.

It may of course have another role, for example, in attenuating

noise in the system. However, for the purposes of this study,

we may neglect the repression of N by O. We term the remain-

ing gene circuit the AC–DC signalling motif (figure 6), since it

is capable either of switch-like or oscillatory behaviour,

depending on the parameter values.

Considering the simplified case in which the system takes

route 1 and h1 ¼ h2, oscillatory behaviour is seen if Nmax/
Ncrit , Omax/Ocrit; otherwise, the behaviour is switch-like.

The condition for oscillatory behaviour is therefore equivalent

to the requirement that the repression of P by O is stronger

than that of P by N. With this in mind, if we consider the

motif in figure 6, the oscillatory behaviour is achieved if the

red connections dominate the green one. In these cases, the

circuit approximates a repressilator [28] and consists of a

three-component negative feedback loop, which generically

exhibits oscillations. Conversely, if the green connection is stron-

ger than the red connections, then the circuit generates positive

feedback between A and C. Positive feedback loops show

bistability, switch-like behaviour and hysteresis [29]. Thus,

changes in the strength of repression between the TFs would

be sufficient to change the behaviour of this circuit. In this
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Figure 5. Numerical profiles of the full model, with parameters as in figure 2, but with Hill coefficients h3 ¼ h4 ¼ h5 ¼ 5. In this case, as in figure 2,
when Ncrit ¼ 1.1 there is an intermediate range of Shh concentrations for which the system exhibits oscillations (c,d, f ). This range is extended in size relative to the
simplified model. In addition, there is also an intermediate range of Shh concentration for which the system exhibits oscillations, when Ncrit ¼ 0.9 (see (a) and (c)).
The diagrams of the steady state values (red line, solid when the state is stable and dashed when it is unstable), maximum (black line) and minimum (cyan line)
values of O, once the system has converged to either a steady state or a limit cycle (we use t ¼ 500), are shown in (c) for parameters as in (a), and in (d ) for
parameters as in (b). We note that there can be more than one unstable steady state, but, for clarity, we only show the continuation of the state which was stable
before the bifurcation to the limit cycle. We show for comparison the temporal profiles of the TFs for S ¼ 5 for Ncrit ¼ 0.9 (e) and Ncrit ¼ 1.1 ( f ). Only in the
latter case is S ¼ 5 within the range of S leading to oscillations. In (a) and (b), the profiles are generated at t ¼ 60, at which time the profiles have converged to
steady state (to within a tiny tolerance), if they ever will do so. The values of S used in (e) and ( f ) are marked with arrows in (a) and (b), respectively.
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view, the AC–DC motif is a tunable positive/negative feedback

loop, displaying switch-like or oscillatory behaviour.
6. The logic of multipartite expression
The AC–DC signalling motif may be the natural design

for a transcriptional network involved in tissue patterning.

The regulatory logic of such a network should encode

spatial domains of gene expression in response to appropriate

cues. In the simplest case of a morphogen that specifies just

two domains of gene expression (the precursors to two

types of differentiated cells), then an obvious network

design that is sufficient to transform a graded signal

into two distinct regions of gene expression is given in

figure 7a. Explicitly, once the level of signal produced by
the morphogen passes a threshold it induces one of the TFs

(which we label O). This TF then represses a second (which

we label P) that is expressed in the field of cells independent

of the morphogen. Hence, at high concentrations of the mor-

phogen, O alone is expressed whereas at low concentrations,

P alone is expressed.

An intuitive logic then allows the extension of the simple

case to specify three gene expression domains. Label the

TFs N (expressed at high morphogen concentration), O
(expressed at intermediate morphogen concentration) and

P (expressed at low morphogen concentration). First, N
needs to be induced by the morphogen, necessitating an acti-

vating link from the morphogen (S) to N. Second, since O is

no longer expressed at high morphogen concentration, it

should be repressed by N. Third, in order that P is not

switched back on at high concentrations when O is repressed,



A

C

morphogen
input

B

Figure 6. The AC – DC circuit. Depending on whether the green or the red
interactions are stronger, the circuit behaves as a positive or negative
feedback loop. It can either display bistability and hysteresis or oscillations.
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(i)

(ii)
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Figure 7. The logic of multipartite expression. A natural circuit to give rise to
two domains of gene expression in response to morphogen is given in (a).
S denotes the morphogen, O the TF expressed at high morphogen
concentration and P the TF expressed at low morphogen concentration.
(b) Alternative circuits that may be able to give rise to three domains of gene
expression. Once again S denotes the morphogen, N is the TF expressed at
high, O at intermediate and P at low morphogen concentration. As detailed in
the text, (i) requires differential sensitivity of O and N to the morphogen to
give three domains of TF expression. (ii) The AC – DC circuit, which can give
rise to three domains of gene expression for a wide range of parameters.
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N should repress P. Finally, in order that N is not switched on

at intermediate values of the morphogen, it should be

repressed by either P or O. Including these interactions

gives us two possible networks which may be capable of spe-

cifying three domains of gene expression. They are displayed

in figure 7b(i) and (ii). The topology shown in figure 7b(i) is

symmetric with respect to O and N. This means that in

order for the symmetry to be broken and O to be expressed

at intermediate morphogen concentrations while N is

expressed at high concentrations, there must be quantitative

differences in the sensitivities of N and O to S and in the

cross-repression parameters. Thus, we would expect this to

work only if O is more sensitive to the morphogen, but N,

once expressed, represses O more strongly than O represses

N. In this case, it is relatively simple to analyse the network,

since P has no influence on N and O. The system of ODEs

therefore decouples and we can first solve for N and O in

terms of S, as is done in [17] (see also [18]). In the simplified

model of §2, it is straightforward to see that the network in

figure 7b(i) cannot give rise to three domains of gene

expression, since, if O represses N at intermediate concen-

trations, it will continue to do so at high concentrations. In

the full model, it is possible for three domains of gene

expression to arise with the network in figure 7b(i), but the

parameters have to be carefully chosen, such that O is very

slightly more sensitive to the morphogen, while N represses

O more strongly than O does N. This sensitivity to par-

ameters suggests that it might be biologically less plausible.

For instance, it might not be biologically feasible to tune

the parameters, perhaps because the TFs are used in other

processes that constrain their flexibility. This would make it

unlikely for the motif to be discovered by evolution or

maintained if it were adopted. In addition, the parameter

sensitivity might result in a system that lacks robustness

and is prone to degradation by the noise inherent in

biological processes.

By contrast, the second circuit (figure 7b(ii)) does not suf-

fer from the same disadvantages. This topology corresponds

to that of the AC–DC network, which we have shown

above can give rise either to three domains of gene expres-

sion (with hysteresis near the boundaries) or oscillations

for intermediate ranges of the morphogen concentration.

Since the three-domain multistate switch behaviour of this

circuit is the outcome for a wide range of parameter values,

we conclude that the AC–DC network has a very natural

topology to give rise to tripartite gene expression. It appears

to be a more plausible mechanism that could be produced

by evolution and once adopted it is sufficiently flexible to
be retained during subsequent natural selection. We note

that the actual network of morphogen and transcription

factors involved in ventral neural tube patterning is a super-

position of the networks in figure 7b(i) and (ii). However,

as we noted in §3, the repression of Nkx2.2 by Olig2 seems

to be unimportant in the patterning process, at least at this

simple level of analysis, which neglects noise and time

delays. Nevertheless, we expect that there will exist alternative

network designs which will be capable of interpreting

the morphogen.

The AC–DC network topology can be further extended,

using similar logic, to produce four or more domains of

gene expression. To extend a three domain network to four

domains by adding a TF, we term Q, to be expressed at a

higher morphogen concentration than N: Q should be

induced by the morphogen and should repress the other

three TFs, ensuring none of them is expressed at the highest

concentrations of morphogen. In order to make the network



extended network

P O N

S

Q

Figure 8. A diagram of a network capable of generating four stripes of gene
expression. Q is expressed at the highest levels of the morphogen S, followed
by N, followed by O, while P is expressed at the lowest levels.
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robust, P should repress Q. In addition, to prevent Q from

being expressed at concentrations of the morphogen below

its threshold, Q should be repressed by N and/or O. Similar

to the case in figure 7b(i), if N represses Q but O does not,

then the network topology is symmetric with respect to N
and Q, so that only quantitative differences can cause the

asymmetry in expression. However, if Q is repressed by N,

O and P, this produces a circuit (figure 8) capable of robustly

producing four domains of gene expression. Thus, although

the reasoning becomes increasingly complicated, the same

mechanism can be used to generate multiple switches in

gene expression.
7. Discussion
Understanding the mechanisms that pattern embryonic tis-

sues is a central question of developmental biology. In most

embryonic tissues, initially homogeneous fields of cells

become subdivided into distinct regions each of which

expresses a different set of genes. One way in which this pat-

terning process is controlled relies on morphogens—graded

signals—that specify different gene expression domains as a

function of the level of signalling. Thus, morphogens must

effect a multistate switch in the developing tissue. While

much attention has focused on the mechanism of graded sig-

nalling and the consequences of this for the precision and

robustness of tissue patterning, less consideration has been

given to how the multistate switch is implemented. In this

study, motivated by empirical data from the vertebrate

neural tube, we provide evidence that the activity of a gene

regulatory circuit, which connects three TFs through a set

of repressive interactions, provides a reliable and adaptable

multiway switch. We term this circuit the AC–DC motif.

Our analysis suggests that the mechanism that underpins

this motif offers a natural way to achieve a multistate

switch as it provides the robustness and flexibility demanded

by an evolving biological system. We further show that the

regulatory logic of the AC–DC motif can be used to extend

the switch to produce additional states each of which

depends on different levels of signalling. Together these

features suggest that this mechanistic strategy might be

employed in other developing tissues patterned by

morphogens.

In addition to morphogen gradients, temporal oscillations

are deployed in developing tissues to produce pattern. In par-

ticular, the presence of oscillations in a growing field of cells

can be used to generate recurrent gene expression patterns

and structures [30,31]. Moreover, oscillations in TFs are cen-

tral to various basic cellular functions [32–35]. Strikingly,

our analysis indicates that, in addition to a multiway
switch, the AC–DC circuit is capable of producing oscil-

lations in TF expression in response to a defined range in

the level of the signal, and we define the kinetic parameters

responsible for selecting between oscillations and a multistate

switch. The ability of the AC–DC motif to generate oscil-

lations as well as a multistate switch raises the possibility

that this circuit, or closely related versions, are employed to

generate oscillations in developing tissues. For instance, it is

notable that gradients of Wnt and FGF signalling are present

during somitogenesis and the oscillations that are responsible

for somite formation are produced in regions of tissue

exposed to specific ranges of concentrations [1]. Thus, it is

conceivable that an AC–DC motif is deployed downstream

of graded signalling to generate the oscillations necessary

for somitogenesis.

Whether the AC–DC motif produces oscillations or a

multistate switch is determined by the strength of specific

repressive interactions within the circuit and there is a conti-

nuum of parameter values that link these two types of

behaviour. Thus, it is possible to transition between a multi-

state switch and oscillations by gradually adjusting the

relevant parameters. This raises the intriguing possibility

that the AC–DC motif might have first arisen during

the course of evolution as either an oscillator or a multiway

switch. Then during subsequent natural selection the cir-

cuit might have been co-opted to generate the alternative

behaviour. Among the parameters that distinguish oscillatory

and multistate switch behaviour are Ocrit and Ncrit (compare

for example figure 5a,c and 5b,d). An increase in these

parameters results in a requirement for increased concen-

trations of O and N to repress their target gene. An obvious

biological correlate to this change is an alteration in the bind-

ing affinity of the TFs for their target sites. In vivo, this is

determined by a combination of factors, including the

sequence of DNA bound by the TF and the presence of

protein co-factors that interact with the TF. Hence, changes

in the DNA sequence of the relevant binding sites in the

enhancer of the target genes that alter binding affinity

provide one plausible mechanism by which a change in

behaviour of an AC–DC circuit could be achieved.

Alternatively, modification in the expression or function of

co-factors during evolution could also produce a change

from oscillation to a multiway switch. In this case, the differ-

ential expression of co-factors in different tissues, or at

different developmental stages, would allow the AC–DC

motif to be deployed within the same species in both oscil-

latory and multiway switch form. This versatility suggests

that the AC–DC motif is an attractive circuit that once discov-

ered would provide a substrate that could be modified and

redeployed repeatedly to perform different tasks during sub-

sequent evolution.

Models which can display oscillations or switch-like

behaviour have been presented before for chemical systems.

These include the Belousov–Zhabotinsky chemical reactions

[36] and the hypothetical system of reactions named the

Brusselator [37] (see [38] for a review). In addition, hypothe-

tical gene regulatory circuits with structures resembling the

AC–DC motif, albeit lacking the input signal, have been con-

sidered [20,39].2 Yang et al. focused on the oscillatory

behaviour of the network within single cells (it is capable

of two types of oscillation: relaxation oscillations and repres-

silator-style oscillations). The analysis led to the conclusion

that oscillations are feasible even when positive feedback
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dominates in the network (where we predict bistability), if

there is a separation of time scales. The relaxation oscillations

produced in this way are possible in the specific example that

we analyse, if the dynamics of O are much slower than N and

P. Although this is conceivable, there is no experimental evi-

dence to support the idea that the dynamics of the different

TFs differ markedly and it would require, for example, that

the half-life of O differs considerably from N or P. Yang

et al. also show that the motif is capable of producing two

stable steady states if cells are coupled together through

one of the factors. This is interpreted as a mechanism leading

to stable ‘differentiation’, but it would require the movement

of one of the TFs between cells. An alternative, perhaps more

biologically plausible, possibility demonstrated by our analy-

sis is that the topology of the network allows either oscillations

or a multiway switch in individual cells as a function of the

strength of repressive interaction within the circuit. Impor-

tantly, we show how the level of an input signal can provide

a spatially varying parameter in the dynamical system that

allows a three-way switch or spatially localized oscillations in

a tissue. In general, motifs like the AC–DC motif illustrate

that knowledge of the topology of a circuit is not sufficient to

understand its qualitative dynamic behaviour and that

detailed quantitative analysis coupled with experiments are

required to fully explore its potential (see [38,40] for further

examples).

In summary, we have presented a model of gene regu-

lation derived from empirical observations of the patterning

of progenitor cells in the neural tube. The model is based

on the morphogen control of a network of TFs. A simplifica-

tion involving the assumption that some of the regulatory

interactions are threshold-like allowed the analysis of the

model dynamics. This revealed that, depending on the par-

ameter values, the network produces sharp switches from

one gene expression domain to another (with hysteresis) as

the morphogen concentration changes or the network gener-

ates oscillations for specific values of the morphogen. We

show these alternative behaviours result from a tunable dom-

inance of either positive or negative feedback between the

TFs. We argue that the logic of the circuit makes it a natural

motif to use to produce stripes of gene expression and that

this strategy could be re-used during the course of evolution

to effect either differential spatial patterns or oscillations

in gene expression.

In future, we intend to investigate the noise transmission

properties of the AC–DC motif and the Shh system. The mor-

phogen concentration seen by each cell contains temporal

fluctuations and transcription, translation and molecular

degradation are noisy processes and yet the boundaries

between gene expression domains are sharp. In addition,

the repression of Nkx2.2 by Olig2 does not seem necessary

for the deterministic dynamical properties of the system.

We would like to investigate whether it has an effect on

the noise transmission. In addition, we are interested

in the robustness of the formation of the Shh gradient [41]

and in the interaction between gradient formation and

interpretation [42].
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Endnotes
1Since we assume that N and O expressions are dependent on S, they
must be low at low S. However, to be consistent with the biological
data, we demand that N does not increase immediately as S increases.
Thus, low but non-zero S will give rise to high P, low O and no N. It
is also inevitable, from the continuous repression of P by N and O,
that if either N or O is very large, P will be low.
2We note that Yang et al. use a different form of repression function
from that in our model. In the second equation of (3) in [20], the pro-
duction rate of ‘v’ consists of a sum of two decreasing Hill functions.
This means that both repressors must have a high concentration to
repress the controlled gene ‘v’ to low levels. In the neural tube, it
appears that a high concentration of either Nkx2.2 or Olig2 is sufficient
to repress Pax6 and similarly a high concentration of either Pax6 or
Olig2 is sufficient to repress Nkx2.2 to low levels. Thus, we use the
repression functions in the forms indicated in equations (C 1)–(C 3).
Appendix A. Derivation of conditions (3.4) – (3.6)
for biologically realistic routes through the
steady states to be taken
The condition for B1 to be stable at low signal is: as S! 0,

condition (a) in §3 becomes

a . k1Pcrit1

so

Pmax

Pcrit1
. 1: ðA 1Þ

The condition for B2 to be stable at high signal is: as

S! 1, condition (b) in §3 becomes

g . k3Ncrit1 and a , k1Pcrit1 1þ g

Ncritk3

� �h1

" #

so

Nmax

Ncrit1
. 1 and

Pmax

Pcrit1
, 1þ Nmax

Ncrit

� �h1

: ðA 2Þ

Furthermore, in order to make the transition out of B1, B1

should become unstable as S is increased. This means that

there exists S such that

�bðSÞ , k2Ocrit1 and a , k1Pcrit1 1þ
�b

Ocritk2

� �h2
" #

:

The former condition gets harder to satisfy as S increases,

whereas the latter condition gets easier to satisfy. Therefore,

increasing S can only cause a transition out of B1 by starting

to satisfy the latter condition, while the former condition still

holds. Therefore, such a transition will occur when

a ¼ k1Pcrit1 1þ
�b

Ocritk2

� �h2
" #

;

provided this can occur, i.e. a , k1Pcrit1[1 þ (b/Ocritk2)h2],

and provided �b(S) , k2Ocrit1 when it does, i.e. provided (a/

k1Pcrit1 2 1)1/h2 Ocrit , Ocrit1.

Thus, the transition out of B1 occurs if and only if

Pmax

Pcrit1
, 1þ Omax

Ocrit

� �h2

and
Pmax

Pcrit1
, 1þ Ocrit1

Ocrit

� �h2

: ðA 3Þ

The conditions for B2 to exist get easier to satisfy as S
increases, so once the transition to B2 is made, the system
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should stay in B2. The transition out of B1 however can be to B3

or to a state in which no steady state is stable. In this case, we

need to exclude the possibility that the system transitions back

to B1, by satisfying the first condition of criterion (a) in §3,

before it can transition to B2. Such a transition should again

be permanent, since the first condition of criterion (a) in §3

becomes easier to satisfy as S increases. We note that states

B2 and B3 are mutually exclusive (�g . or , k3Ncrit1), so our

condition in equation (A 2) ensures that the system cannot

stay in B3 as S! 1.

Given the conditions established so far, a transition back

to B1 (by satisfying the first condition of criterion (a)) in §3

occurs before a transition to B2 if and only if �bðSÞ ¼ k2Ocrit1

is satisfied before (i.e. for a lower value of S) both

�gðSÞ . k3Ncrit1 and a , k1Pcrit1½1þ ð�g=Ncritk3Þh1 � are satisfied.

That is, if either

�gðSÞ , k3Ncrit1 when �bðSÞ ¼ k2Ocrit1

or

a . k1Pcrit1 1þ �g

Ncritk3

� �h1

" #
when �bðSÞ ¼ k2Ocrit1;

i.e. either

k2Ocrit1
g

b
, k3Ncrit1; so

Nmax

Ncrit1
,

Omax

Ocrit1

or

Pmax

Pcrit1
. 1þ gk2Ocrit1

bNcritk3

� �h1

; so
Pmax

Pcrit1
. 1þ NmaxOcrit1

NcritOmax

� �h1

:

Thus, the final conditions for one of the biologically relevant

routes through states to occur are

Nmax

Ncrit1
.

Omax

Ocrit1
and

Pmax

Pcrit1
, 1þ NmaxOcrit1

NcritOmax

� �h1

: ðA 4Þ

The first and third conditions of criterion (c) in §3 are auto-

matically satisfied at the transition out of B1. So (given the

previous conditions) transition to B3 occurs if and only if

�gðSÞ , k3Ncrit1 when a ¼ k1Pcrit1 1þ
�b

Ocritk2

� �h2
" #

;

if and only if

�gðSÞ , k3Ncrit1 when �b ¼ k2Ocrit
Pmax

Pcrit1
� 1

� �1=h2

;

if and only if

g

b
Ocritk2

Pmax

Pcrit1
� 1

� �1=h2

, k3Ncrit1;

if and only if

Pmax

Pcrit1
, 1þ OmaxNcrit1

OcritNmax

� �h2

: ðA 5Þ

If this condition is not satisfied, then the system can never

transition to B3, since �gðSÞ , k3Ncrit1 gets harder to satisfy

as S increases.

(We note that if we want high S to correspond to S taking

a finite maximal value, rather than 1, we simply re-scale b

and g.)
Appendix B. Threshold values of Shh
concentration at transitions
Let u ¼ S/(1 þ S), so that S ¼ u/(1 2 u).

The transition out of the state B1 occurs when

u ¼ Ocrit

Omax

Pmax

Pcrit1
� 1

� �1=h2

: ðB 1Þ

In the case of a straight transition into B2 this is clearly also the

value of u for transition into B2. If instead there are oscillations

followed by a transition into B2, this later transition occurs when

u ¼ Ncrit

Nmax

Pmax

Pcrit1
� 1

� �1=h1

: ðB 2Þ

In the case where there is a transition from B1 to B3, this

always occurs for u as in equation (B 1). The subsequent

transition out of B3 occurs for

u ¼ Ncrit1

Nmax
: ðB 3Þ

This can either lead directly to B2 or to oscillations. In the

latter case, the final transition from oscillations to B2 occurs

for u as in equation (B 2).
Appendix C. Full model equations
The full model equations, including Hill function repression

on N and O, are given by

dP
dt
¼ a

1þ ðN=NcritÞh1 þ ðO=OcritÞh2
� k1P; ðC 1Þ

dO
dt
¼ bS

1þ S

� �
1

1þ ðN=Ncrit1Þh3
� k2O ðC 2Þ

and

dN
dt
¼ gS

1þ S

� �
1

1þ ðO=Ocrit1Þh4 þ ðP=Pcrit1Þh5
� k3N; ðC 3Þ

where h3 is the Hill coefficient determining how sharp the

repression of O by N is, h4 is the Hill coefficient determining

how sharp the repression of N by O is and h5 is the Hill coef-

ficient determining how sharp the repression of N by P is.

The other parameters are as in §2.
Appendix D. Demonstration that a Poincaré –
Bendixson-type result holds for the system with
Hill function repressions
We consider the full model equations (C1)–(C3), with S fixed

for ðP;O;NÞ [ R3
þ. We write x ¼ (P, O, N) and

fðxÞ ¼

a

1þ ðN=NcritÞh1 þ ðO=OcritÞh2
� k1P

b

1þ ðN=Ncrit1Þh3
� k2O

g

1þ ðO=Ocrit1Þh4 þ ðP=Pcrit1Þh5
� k3N

0
BBBBBBB@

1
CCCCCCCA
:

We note that the region (0,Pmax) � (0,Omax) � (0,Nmax) is

forward invariant. It is also convex and hence p-convex

(where x; y [ R3
þ, x � y if and only if xi � yi, i ¼ 1,2,3 and a

set U is p-convex whenever x; y [ U and x � y implies that

the straight line between x and y belongs to U ).
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We also note that f [ C2 ((0,Pmax) � (0,Omax) � (0,Nmax))

and the system is competitive in (0,Pmax) � (0,Omax) �
(0,Nmax), since

@fi
@xj
� 0; i = j; x [ ð0;PmaxÞ � ð0;OmaxÞ � ð0;NmaxÞ:

@f2=@x1 ¼ 0, since P does not influence the level of O. The

other entries of Dxf are strictly negative on (0,Pmax) �
(0,Omax) � (0,Nmax). This means that Dxf is irreducible on

(0,Pmax) � (0,Omax) � (0,Nmax).

The system thus satisfies the conditions for theorem 2.2 in

[43], which says ‘Let L be a compact a or v limit set of an irre-

ducible cooperative or competitive system in R3. If L contains

no equilibria then L is a closed orbit.’

Thus, there is a Poincaré–Bendixson-type result for this

system; therefore, if the system converges towards oscil-

lations, these must be periodic and non-chaotic.
 .org
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