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The objective of this research was to develop a robust gene expression-based prognostic signature and scoring system for
predicting overall survival (OS) of patients with high-grade serous ovarian cancer (HGSOC). Transcriptomic data of HGSOC
patients were obtained from six independent studies in the NCBI GEO database. Genes significantly deregulated and as-
sociated with OS in HGSOCs were selected using GEO2R and Kaplan-Meier analysis with log-rank testing, respectively.
Enrichment analysis for biological processes and pathways was performed using Gene Ontology analysis. A resampling/cross-
validation method with Cox regression analysis was used to identify a novel gene expression-based signature associated with
OS, and a prognostic scoring system was developed and further validated in nine independent HGSOC datasets. We first
identified 488 significantly deregulated genes in HGSOC patients, of which 232 were found to be significantly associated with
their OS. These genes were significantly enriched for cell cycle division, epithelial cell differentiation, p53 signaling pathway,
vasculature development, and other processes. A novel 11-gene prognostic signature was identified and a prognostic scoring
system was developed, which robustly predicted OS in HGSOC patients in 100 sampling test sets. The scoring system was
further validated successfully in nine additional HGSOC public datasets. In conclusion, our integrative bioinformatics study
combining transcriptomic and clinical data established an 11-gene prognostic signature for robust and reproducible pre-
diction of OS in HGSOC patients. This signature could be of clinical value for guiding therapeutic selection and
individualized treatment.

1. Introduction

Ovarian cancer (OC) represents the most lethal gynaeco-
logical malignancy and the fifth leading cause of death in
women, with a 5-year survival rate around 10% [1]. Due to
lack of early screening and diagnostic measures, most

patients are diagnosed with OC at an advanced stage.
Globally, more than 239,000 women are diagnosed with OC
and 152,000 succumb to this disease each year [2].

OC has been shown to have considerable complexity and
heterogeneity in biology, drug response, and survival time
[3], representing a major obstacle for its precision medicine
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practice. OCs of epithelial origin constitute approximately
90% of all the cases, whereas ovarian sex cord stromal tumor,
ovarian germ cell tumor, and secondary tumor of ovarian
metastasis (e.g., Krukenberg tumor) are less frequent [4].
High-grade serous ovarian carcinoma (HGSOC) is the most
predominant in epithelial OCs, accounting for 70-80% of
OC deaths [5]. The majority of HGSOCs can be grouped into
four subtypes based on gene overexpression levels specific
for each subtype: mesenchymal, immunoreactive, differen-
tiated, and proliferative [6].

HGSOC has been characterized by both genetic alter-
ations, including inherited BRCA gene mutations, TP53
mutations, DNA damage, chromosomal instability [6, 7],
and changes in RNA and miRNA expression and methyl-
ation status [8]. Microarray and next-generation sequencing
technologies have become vital tools for identifying these
changes genomewide, providing novel opportunities for the
identification of biomarkers for diagnosis, prognosis, ther-
apeutic targets, and treatment response. For instance, many
multigene biomarkers based on transcription patterns have
been associated with prognosis across tumor types [9-14]. A
number of groups have sought to use genomewide gene
expression data to identify multigene signatures aimed at
predicting clinical outcomes, therapy responses, and sub-
types in OC [13-18]. Many existing signatures were gen-
erated using partial genome annotations, limited number of
patients, or used targeted gene selecting. Thus, it is very
much warranted to identify and develop clinically valuable
gene signatures for OC prognosis, especially when based on
comprehensive and unbiased whole-genome data.

In this study, we employed a multistep bioinformatic
strategy that uses omics information and clinical data to
build a gene expression prognostic scoring system in
HGSOC. We previously developed this approach to identify
and successfully validate a 53-gene signature associated with
OS of gastric cancer [11] and a 27-gene signature for lung
adenocarcinoma [12]. Here, we used fifteen publicly avail-
able datasets of HGSOC:s; six were used to identify an 11-
gene signature associated with patient prognosis using Cox
regression analysis and cross-validation. We then used nine
independent HGSOC datasets to validate the prognostic
scoring system and signature’s performance. Moreover, in
comparison with an existing 5-gene expression signature for
ovarian serous cystadenocarcinoma (CAC) [15], we showed
that our signature was superior in determining overall
survival for this type of epithelial ovarian carcinoma.

2. Materials and Methods

2.1. Patient Datasets. To broadly mine all the available in-
formation on HGSOCs, we have screened and used 15 in-
dependent datasets in the current study. Six public datasets
from the NCBI Gene Expression Omnibus (GSE18520,
GSE26712, GSE40595, GSE38666, GSE27651, and GSE2328)
provided the HGSOC gene transcript data to identify genes
differentially expressed between tumor and normal ovarian
tissues. TCGA HGSOC data were used to identify the gene
signature and develop the prognostic scoring system for
predicting OS of patients. Nine additional datasets
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(GSE32063, GSE19829 GPL570, GSE30161, GSE3149, OV-
AU-ICGC, GSE14764, GSE9891, GSE 17260, and
GSE32062) were used for independent validation of the gene
signature and prognostic scoring system.

2.2. Statistical Analysis. By employing a 1.5-fold change
cutoff and adjusted p-value <0.05, the differentially expressed
genes between normal versus HGSOC tissues were identified
with GEO2R. Differentially expressed genes associated with
OS in patients with HGSOC were selected using KM survival
analysis (Kaplan-Meier plotter (http://kmplot.com)) with a
hazard ratio (HR) with 95% confidence intervals and log-rank
p value cutoff for each gene at 0.05 [19].

2.3. Gene Ontology Pathway Analysis and Network
Construction. Metascape (http://www.metascape.org) was
used to assess overrepresentation of Gene Ontology cate-
gories in biological networks [20]. Cytoscape 3.4.0 (http://
www.cytoscape.org) was applied to generate and visualize
the gene coexpression networks, to better understand the
biological processes enriched, as well as their relationships in
the form of a network instead of the tabular text format
[21, 22]. Note that KEGG pathway (http://www.genome.jp/
kegg), GO Biological Processes (http://geneontology.org),
Reactome Gene Sets (http://www.reactome.org), and
CORUM (http://mips.helmholtz-muenchen.de/corum) were
ontology sources of gene network, pathway, and process
enrichment analysis.

2.4. Gene Expression Signature-Based Prognostic Risk Score.
Clinical data of HGSOC patients were obtained from the
TCGA dataset (http://cancergenome.nih.gov), with which
a biomarker panel associated with OS was reachable. 100
random selections of 307 patients from TCGA were
conducted and used as training sets. The remaining pa-
tients for each selection were used as test sets to validate
the reliability of the identified biomarker panel for
prognosis.

Forward conditional Cox regressions using SPSS were
carried out on each of the 100 training sets in order to isolate
the biomarker panel. Selected genes were recorded and those
that appeared in at least 20% of 100 training sets were in-
cluded in our biomarker panel. Subsequently, Cox re-
gression was repeated on all 100 training sets using our 11-
gene signature as covariates and using the forced entry
(enter) method to obtain the coefficient values for each
biomarker. 100 coeflicients for every gene in the biomarker
panel were then obtained, and the average of them was used
to estimate the true coefficient of each gene. A formula was
created to act as the prognostic scoring system, and all the
patients can get their scores accordingly:

11

Z (genei coefficient) * (geneiexpression level). (1)
i1

The patients in the training sets were ranked by their
prognostic scores and divided into three equal-sized cohorts.
The corresponding prognostic scores at cut points were
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recorded and averaged as the true cut point scores, with
which the patients in the test sets were also split into three
groups: “good”, “intermediate”, and “poor” groups. Dif-
ferences in OS among the three groups in all the test sets
were determined by constructing Kaplan-Meier plots and
performing log-rank tests.

2.5. Validation in Independent Datasets and Comparison with
an Existing Signature. The 11-gene biomarker panel was
further validated in nine independent datasets (Table S1).
New coeflicients for the 11 genes were obtained from Cox
regression. Prognostic scores for all patients were calculated,
and patients were ranked based on their scores and divided
into three equal-sized cohorts. Kaplan-Meier analysis and a
log-rank test were conducted to determine differences in
survival, as previously described [11, 12].

We compared the performance of our 11-gene signature
with a recently published 5-gene signature for prognosis of
ovarian serous CAC [15]. A multivariate Cox regression
analysis was conducted with the 5 genes on the same 100
training sets as described above for our inner validation.
Coefficients for each of the 5 genes used in [15] and scores of
all 307 patients were calculated as above. Then patients were
divided into tertiles (good, intermediate, and poor) based on
their prognostic scores, and the cut point scores were
recorded and averaged. Kaplan-Meier analysis was per-
formed, and a log-rank test was used to demonstrate dif-
ferences in OS among different groups for all test sets.

3. Results

3.1. Identification of Deregulated Genes in HGSOCs. To
identify genes that are consistently deregulated in HGSOC,
we performed a meta-analysis and compared gene transcript
levels in six publically available datasets containing tran-
scriptomic data for both HGSOC and normal ovarian tissues
(n=397 from GSE18520, GSE26712, GSE40595, GSE38666,
GSE27651, and GSE2328) using GEO2R. For each dataset,
we compared HGSOC gene expression to gene expression in
normal ovarian tissues (Figure 1).

The criteria for significant differential expression for
each gene were set to a 1.5-fold change and adjusted p-value
<0.05. A total of 562 probe IDs (260 downregulated and 302
upregulated) were consistently up- or downregulated across
all six datasets, representing 488 unique genes (222 down-
regulated and 266 upregulated) (Figure 1 and Table S2).

3.2. Analysis of Deregulated Genes and Overall Survival of
HGSOCs. The prognostic value for each of the 488
deregulated genes individually in HGSOC patients was
evaluated in a large public clinical database which integrates
gene expression and patient survival using Kaplan-Meier
survival analysis (Figure 2(a)). The effects of high or low
expression levels of these genes on OS were assessed using
Kaplan-Meier survival analysis and compared statistically
using the log-rank test, with representative genes shown in
Figure 2(b). The results showed that 232 out of the 488 genes
were significantly associated with OS (adjusted p-value

<0.05; Figure 2(b) and Table S3). The hazard ratio (HR) for
82 genes was <1 (higher gene expression associated with
good prognosis), which are referred as protective genes,
whereas 150 genes had a HR >1 (higher gene expression
associated with poor prognosis), which are considered risk
genes.

3.3. Gene Ontology (GO) Analysis of Prognostic Genes in
HGSOC. To understand the potential biological functions of
the 232 genes significantly associated with OS in HGSOC
patients, we conducted Gene Ontology (GO) analysis using
Metascape and found significant enrichment of many cel-
lular process and pathway-related genes associated with
cancer development including cell division, epithelial cell
differentiation, p53 signaling pathway, and vasculature de-
velopment (Figure 3(a) and Table S4). The interconnectivity
of related GO terms was visualized using Cytoscape where
individual GO terms are displayed as nodes connected based
on similarity (Figure 3(b)).

3.4. Establishment of an 11-Gene Prognostic Scoring System in
HGSOCs. Figure 4(a) shows the strategy we employed to
isolate a prognostic biomarker signature and to develop a
scoring system based on the 232 genes that were found to be
significantly associated with OS in HGSOC patients. We first
used a random resampling method to split 307 patients from
the TCGA dataset into 100 training (200 patients) and 100
testing (107 patients) sets. The training sets were then used to
isolate a prognostic signature, and the testing sets were used
for validation. First, we performed a multivariate Cox re-
gression analysis in all 100 training sets to identify statis-
tically significant independent genes within the 232 genes for
predicting OS. Genes that recurred in at least 20% of 100
training were assembled into an 1l-gene signature:
RAD51API, CADPS2, DSE, ITGBS, PDE10A, GALNTIO,
SNX1, MTHFD?2, C9orf16, PYCR1, and ARL4 (Table S5). For
each of the 11 genes in the signature, gene function and
known roles in ovarian and other cancers are summarized in
Table Sé6.

A prognostic score for each cancer patient was used to
assess each patient’s risk of death and was defined as the
linear combination of logarithmically transformed gene
expression levels weighted by average Cox regression co-
efficients (Table S7) obtained from 100 training datasets
[11, 12]. The prognostic scores were assigned for all patients
in both training and test sets. In each training set, the pa-
tients were divided into tertiles based on their prognostic
score. The cutpoint scores were recorded and averaged for
each of 100 training sets. Based on the average scores, each
test set was split into three groups, i.e., good, intermediate,
and poor. We then performed Kaplan-Meier and log-rank
test analysis to determine significant differences in OS
among different groups for all test sets (Figure 4(b)). The
hazard ratios (HR) for the “intermediate” and “poor” groups
in comparison with the “good” groups were calculated for
each test set. In 99% of the test sets, patients in the “poor”
groups had a significantly shorter OS than those in the
“good” groups (HR confidence interval above “17)
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FIGURE 1: Human datasets of ovarian cancer and normal sample tissues. Samples were obtained from six independent gene transcript
datasets containing HGSOC and normal ovarian cases. To identify genes (common probe IDs) consistently deregulated in HGSOC, a fold-
change cutoff of 1.5 and adjusted p-value <0.05 were used for each dataset.

(Figure 4(c), top panel), while in more than 60% of the test
sets, patients in the “intermediate” groups showed a sig-
nificantly shorter OS than those in the “good” groups
(Figure 4(c), bottom panel). These results validated the
discriminative ability of this 11-gene signature and prog-
nostic scoring system to stratify patients with good or worse
prognosis.

3.5. Independent Validation of the 11-Gene Scoring System.
To further validate our 11-gene signature, we tested it in nine
independent OC datasets (Table S1). Prognostic scores for all
patients were calculated and patients were ranked based on
their score. Significant differences were identified using
Kaplan-Meier analysis across all nine datasets between
patient cohorts of “good” and “poor” prognosis. Patients
with a high prognostic score had a significantly shorter OS
than those patients who scored low (p < 0.05) (Figure 5). The
HR values range from 1.94 to 9.76 (Table S1) We conclude
that the 11-gene prognostic scoring system reproducibly
predicts overall survival of HGSOC patients.

3.6. Comparison with an Existing Prognostic Signature.
We compared the performance of our 11-gene signature
with a recently published 5-gene expression signature pre-
dicting clinical outcome of ovarian serous CAC [15] by

performing a multivariate Cox regression analysis using the
same strategy described in Figure 4 where for 100 training
sets, coefficients for each of the 5 genes and scores of all the
307 patients were calculated.

Figure 6 shows the HR and 95% confidence interval for
the “intermediate” and “poor” groups in comparison with
the “good” groups in the 100 test sets. For the 5-gene panel,
in 90% of the testing sets, patients in the “poor” groups had a
significantly shorter OS than those in the “good” groups. For
the “intermediate” groups vs. “good” groups, only in 12% of
the testing sets, patients showed a significantly shorter OS. In
comparison, for our 11-gene signature, these two numbers
are 99% and 61%, respectively. In addition, the median HR
of the 11-gene signature was on average 1.46-fold higher in
the “intermediate” vs. “good” groups and 1.73-fold higher in
the “poor” vs. “good” groups compared to the 5-gene sig-
nature (Figure 6). These results indicate that the 11-gene
signature has discriminative ability for determining OS in
ovarian CAC patients, which is also significantly superior to
the 5-gene panel.

4. Discussion

Identification and development of reliable predictive bio-
markers and new therapeutic targets are critical for sig-
nificantly improving cancer patient outcomes. The
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F1GuRre 2: Identification of genes associated with prognostic function in HGSOC. (a) The 562 consistently deregulated probe IDs identified
represent 488 genes in the cancer patients. Through Kaplan-Meier survival analysis, 232 genes were found to be significantly associated with
overall survival of HGSOC patients. Functional annotation was carried out for the 232 genes. (b) Examples of Kaplan-Meier survival curves
for four individual genes significantly associated with overall survival in HGSOC patients, which was divided into two groups to maximize
the difference in survival using log-rank testing between groups. We used HR and log-rank p-value for the curve comparison between the

groups.

objective of this work was to use a multistep bioinformatics
analytic strategy we developed previously [11, 12] to an-
alyze six publicly available omics and clinical datasets to
generate a robust prognostic signature for patients with
HGSOC. We first identified 232 genes associated with OS
that served as candidate markers to provide a prediction of
the prognosis of HGSOC patients. Eventually, we selected
an 1l-gene prognostic signature and scoring system
showing strong discriminative power to separate patients
with good or poor survival. Moreover, the results were
independently validated in each of the nine independent
HGSOC datasets. We also demonstrated that our 11-gene
signature has higher predictive power compared to an
existing prognostic panel developed for ovarian serous

CAC. Taken together, the 11-gene signature could be of
translational value for clinical use. We are currently
working on the development of a multiplex high-
throughput assay to facilitate the clinical use of the sig-
nature. To date, there are still no clinically useful prognostic
biomarkers/scores in OC. However, two multigene ex-
pression-based scores, the Oncotype DX 21-gene breast
cancer assay developed by Genomic Health [9, 23] and the
MammaPrint 70-gene breast cancer recurrence assay by
Agendia [24], have been utilized to guide treatment de-
cisions, such as for adjuvant chemotherapy in breast cancer
[23]. These two tests represent the first prognostic gene
expression assays that have successfully passed multiple
independent clinical trials.
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FIGURE 3: Gene Ontology analysis of 232 genes associated with OS. (a) Network layout of the clusters generated with the complete list of the
232 OS-associated genes in HGSOC. Each node represents one enriched term, where its size is proportional to the number of genes
associated with each term, and its color representing its cluster identity (i.e., nodes of the same color belong to the same cluster). All similar
terms with a kappa similarity score >0.3 are connected by edges (the thicker the edge, the higher the similarity). One term from each cluster
was selected to describe the general function of each cluster. Created by Metascape (http://metascape.org). (b) Top 20 most significant GO

categories associated with the 232 genes.

Microarray and next-generation sequencing technolo-
gies broadened the accessibility of large cancer genomewide
expression profiles. Taking advantage of these unbiased
genomewide approaches, we established multigene signa-
tures for predictive and prognostic purposes, including the
11-gene signature described in this study. To discover a

novel panel of prognostic biomarkers is the first step in
developing a practically valuable assay/score in a clinical
setting. The next steps include multicenter clinical trials and
prospective trials that allow further validation of the efficacy
and accuracy of the signature, in order to make a successful
clinical translation. It should be mentioned that microarray
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FIGURE 4: Strategy to generate an 11-gene prognostic signature and its performance evaluation. (a) We employed multivariate Cox re-
gression analysis on 100 training sets through random sampling for the 232 genes and identified 11 genes selected into our Cox regression
model. Such a signature was used to generate a prognostic scoring system, which was further validated using 100 randomly assembled test
sets. (b) Representative Kaplan-Meier overall survival curves in two test sets. These curves were separated into tertiles according to the
prognostic score calculated using the 11-gene signature. (c) HR values and their 95% confidence interval across the 100 test sets, calculated
using a Cox model based on the prognostic score comparing poor vs. good (top) and intermediate vs. good (bottom).

data-based analyses have generated many single and mul-
tiple gene biomarkers/signatures associated with prognosis
of specific types of cancers including OC. For OC, several
prognostic signatures have been developed based on dif-
ferent platforms, as described before. While these signatures
can predict OC survival, some of them were developed based
on limited patient numbers or conducted within a single
medical center. In addition, signatures developed in earlier
years were either based on incomplete genome annotations
or based solely on existing knowledge. Nevertheless, we
expect that with ongoing and future prospective studies,
some of these preclinical biomarker signatures, including the
11-gene signature described here, will be fully evaluated for
their value in the clinical settings.

Ovarian cancer, like many other cancers, occurs through
the accumulation of genetic alterations, which can result in
deregulation of gene expression. So far, there is still limited
information on the genes that are associated with prognosis
of OC. Table S6 summarizes the known functions for each
gene in the 1l-gene panel in tumor development and
prognostic relevance. Of them, six have already been im-
plicated in the development and progression of HGSOC:s in
previously published studies [25-31]. Six genes (RAD5IAPI,
DSE, ITGB8, GALNTI10, SNX1, and MTHFD2) were re-
ported to provide useful prognostic information about the
survival in various types of cancer [25, 27, 28, 32-36], in-
cluding three genes (RAD5IAPI, ITGBS8, and GALNTIO)
which were reported to be prognostic for OC [25, 28, 32].
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FIGURE 5: Validation of the 11-gene signature using four independent ovarian cancer cohorts. We analyzed the Kaplan-Meier plots
generated for the four cohorts used by applying the 11-gene signature. The patient cohort was split by the median based on the prognostic
index, and the log-rank p-values of the curve comparison between the risk groups and HR are shown. The HR values and 95% confidence

intervals were calculated using Cox survival analysis.

RAD51API, which encodes an RADS5I accessory protein,
participates in the homologous recombination DNA damage
response pathway. The finding in this study is in agreement
with DNA repair defects in HGSOCs. Upregulation of
RADS5IAPI predicted poorer OS in patients with ovarian
cancer [25]. DSE (SART2) gene has been shown to be fre-
quently upregulated in human brain tumors and other types
of cancer [37]. Moreover, elevated DSE expression in glioma
is associated with a worse tumor grade and poor OS [37].
Elevated levels were also detected in cervical, ovarian, and
endometrial cancers [34]. ITGB8 encodes a f3-subunit of
integrin, and integrins play a regulatory role on cancer cells
through survival- and metastasis-related signaling pathways
[34]. Upregulation of ITGB8 has been shown in several types
of cancers, including HGSOCs. In addition, it was found that

its expression is an independent biomarker for predicting
unfavorable survival of patients with HGSOCs [27]. In-
tegrative network analysis of TCGA data has shown that
GALNTIO0 was highly predictive for the OS of ovarian cancer
patients [28]. There is evidence that SNXI may play a role in
tumorigenesis and its downregulation is significantly corre-
lated with poor OS of colon cancer patients [29]. MTHFD?2 is
a gene associated with cancer development, and its high
expression is associated with poor prognosis of many types of
cancer, for example [36-38]. Five of these genes, CADPS2,
MTHFD2, PDEIOA, PYCRI, and ARL4, have never been
reported to have a role in OC (Table S6). Interestingly, the
genes in the multigene panels reported in the literature, in-
cluding our 11-gene signature, are rarely overlapping, which
may reflect the disparity in tumor samples, microarray
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Figure 6: Comparison of HR and 95% confidence interval between the 11-gene and 5-gene signatures. For both 11-gene and 5-gene
signatures, the HR of all the 100 test sets was calculated using a Cox model based on the prognostic score between groups (poor vs. good: top;
intermediate vs. good: bottom). The differences between the two signatures were significant for both the poor vs. good groups and the

intermediate vs. good groups (p <0.0001).

designs, database selection, and analytical approaches. The
genes in this signature may be novel potential therapeutic
targets for HGSOC:s.

The genes included in our signature might also be po-
tential biomarkers or targets for the treatment of OC.
Personalized treatment is often highlighted in today’s
clinical practice, where the molecular features such as ge-
netic background of an individual patient’s tumor determine
the prime treatment modalities. For example, Prexasertib
(LY2606368), a cell cycle checkpoint kinase 1 and 2 in-
hibitor, showed clinical activity and was tolerable in HGSOC
patients with BRCA wild-type disease [39].

In conclusion, as the most lethal gynaecological malig-
nancy, OC is undoubtedly a challenge for patients, medical
practitioners, and researchers. In this study, with an unbiased
multistep bioinformatics analytic strategy, we identified an
11-gene prognostic biomarker panel which robustly and
accurately predicts overall survival in patients with HGSOC:s.
Gene Ontology analysis revealed several important enriched
cellular processes and pathways in HGSOCs. Together, our
results pave the way for developing a clinical assay for guiding
therapeutic selection and individualized treatment.
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the average Cox regression coeflicient for each gene used to
calculate the prognostic score. (Supplementary Materials)

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2017,” CA: A Cancer Journal for Clinicians, vol. 67, no. 1,
pp. 7-30, 2017.

[2] B. M. Reid, J. B. Permuth, and T. A. Sellers, “Epidemiology of
ovarian cancer: a review,” Cancer Biology & Medicine, vol. 14,
no. 1, pp. 9-32, 2017.

[3] P. T. Kroeger Jr., and R. Drapkin, “Pathogenesis and het-
erogeneity of ovarian cancer,” Current Opinion in Obstetrics
and Gynecology, vol. 29, no. 1, pp. 26-34, 2017.


http://metascape.org
http://downloads.hindawi.com/journals/jo/2019/3614207.f1.zip

Journal of Oncology

[4] J. Prat, “New insights into ovarian cancer pathology,” Annals
of Oncology, vol. 23, no. 10, pp. x111-x117, 2012.

[5] R. Vang, I.-M. Shih, and R. J. Kurman, “Ovarian low-grade
and high-grade serous carcinoma,” Advances in Anatomic
Pathology, vol. 16, no. 5, pp. 267-282, 2009.

[6] Cancer Genome Atlas Research Network, “Integrated geno-
mic analyses of ovarian carcinoma,” Nature, vol. 474,
no. 7353, pp. 609-615, 2011.

[7] U. A. Matulonis, A. K. Sood, L. Fallowfield et al., “Ovarian
cancer,” Nature Reviews Disease Primers, vol. 2, no. 1, p. 16061,
2016.

[8] G. E. Konecny, C. Wang, H. Hamidi et al., “Prognostic and
therapeutic relevance of molecular subtypes in high-grade
serous ovarian cancer,” JNCI: Journal of the National Cancer
Institute, vol. 106, no. 10, article dju249, 2014.

[9] S. Paik, S. Shak, G. Tang et al., “A multigene assay to predict
recurrence of tamoxifen-treated, node-negative breast can-
cer,” New England Journal of Medicine, vol. 351, no. 27,
pp. 2817-2826, 2004.

[10] J. R. Kratz, J. He, S. K. Van Den Eeden et al., “A practical
molecular assay to predict survival in resected non-squamous,
non-small-cell lung cancer: development and international
validation studies,” The Lancet, vol. 379, no. 9818, pp. 823—
832, 2012.

[11] P. Wang, Y. Wang, B. Hang et al., “A novel gene expression-
based prognostic scoring system to predict survival in gastric
cancer,” Oncotarget, vol. 7, no. 34, pp. 55343-55351, 2016.

[12] E.G. Chen, P. Wang, H. Lou et al., “A robust gene expression-
based prognostic risk score predicts overall survival of lung
adenocarcinoma patients,” Oncotarget, vol. 9, no. 6,
pp. 6862-6871, 2018.

[13] D. Spentzos, D. A. Levine, M. F. Ramoni et al., “Gene ex-
pression signature with independent prognostic significance
in epithelial ovarian cancer,” Journal of Clinical Oncology,
vol. 22, no. 23, pp. 4648-4658, 2004.

[14] T. Bonome, D. A. Levine, J. Shih et al., “A gene signature
predicting for survival in suboptimally debulked patients with
ovarian cancer,” Cancer Research, vol. 68, no. 13, pp. 5478-
5486, 2008.

[15] L. W. Liu, Q. Zhang, W. Guo, K. Qian, and Q. Wang, “A five-
gene expression signature predicts clinical outcome of ovarian
serous cystadenocarcinoma,” BioMed Research International,
vol. 2016, Article ID 6945304, 6 pages, 2016.

[16] R. W. Tothill, A. V. Tinker, J. George et al., “Novel molecular
subtypes of serous and endometrioid ovarian cancer linked to
clinical outcome,” Clinical Cancer Research, vol. 14, no. 16,
pp. 5198-5208, 2008.

[17] B. Gyorffy, A. Lanczky, and Z. Szallasi, “Implementing an
online tool for genome-wide validation of survival-associated
biomarkers in ovarian-cancer using microarray data from
1287 patients,” Endocrine-Related Cancer, vol. 19, no. 2,
pp. 197-208, 2012.

[18] G.P. Sfakianos, E. S. Iversen, R. Whitaker et al., “Validation of
ovarian cancer gene expression signatures for survival and
subtype in formalin fixed paraffin embedded tissues,” Gy-
necologic Oncology, vol. 129, no. 1, pp. 159-164, 2013.

[19] B. Gyorfty, P. Surowiak, J. Budczies, and A. Lanczky, “Online
survival analysis software to assess the prognostic value of
biomarkers using transcriptomic data in non-small-cell lung
cancer,” PLoS One, vol. 8, no. 12, Article ID e8224, 2013.

[20] S. Tripathi, M. O. Pohl, Y. Zhou et al., “Meta- and orthogonal
integration of influenza “OMICs” data defines a role for UBR4
in virus budding,” Cell Host & Microbe, vol. 18, no. 6,
pp. 723-735, 2015.

11

[21] G. Bindea, B. Mlecnik, H. Hackl et al., “ClueGO: a cytoscape
plug-in to decipher functionally grouped gene ontology and
pathway annotation networks,” Bioinformatics, vol. 25, no. 8,
pp. 1091-1093, 2009.

[22] 1. H. Goenawan, K. Bryan, and D. J. Lynn, “DyNet: visuali-
zation and analysis of dynamic molecular interaction net-
works,” Bioinformatics, vol. 32, no. 17, pp. 2713-2715, 2016.

[23] J. A. Sparano, R. J. Gray, D. F. Makower et al., “Adjuvant
chemotherapy guided by a 21-gene expression assay in breast
cancer,” New England Journal of Medicine, vol. 379, no. 2,
pp. 111-121, 2018.

[24] F. Cardoso, L. J. van’t Veer, J. Bogaerts et al., “70-gene sig-
nature as an aid to treatment decisions in early-stage breast
cancer,” New England Journal of Medicine, vol. 375, no. 8,
pp. 717-729, 2016.

[25] D. Chudasama, V. Bo, M. Hall et al., “Identification of cancer
biomarkers of prognostic value using specific gene regulatory
networks (GRN): a novel role of RAD51AP1 for ovarian and
lung cancers,” Carcinogenesis, vol. 39, no. 3, pp. 407-417,
2018.

[26] S. Tanaka, N. Tsuda, K. Kawano et al., “Expression of tumor-
rejection antigens in gynecologic cancers,” Japanese Journal of
Cancer Research, vol. 91, no. 11, pp. 1177-1184, 2000.

[27] J.He, Y. Liu, L. Zhang, and H. Zhang, “Integrin subunit beta 8
(ITGB8) upregulation is an independent predictor of un-
favorable survival of high-grade serous ovarian carcinoma
patients,” Medical Science Monitor, vol. 24, pp. 8933-8940,
2018.

[28] Q. Zhang, ]. E. Burdette, and J. P. Wang, “Integrative network
analysis of TCGA data for ovarian cancer,” BMC Systems
Biology, vol. 8, no. 1, p. 1338, 2014.

[29] L. N. Nguyen, M. S. Holdren, A. P. Nguyen et al., “Sorting
nexin 1 down-regulation promotes colon tumorigenesis,”
Clinical Cancer Research, vol. 12, no. 23, pp. 6952-6959, 2006.

[30] W.Ju, B. C. Yoo, I. J. Kim et al., “Identification of genes with
differential expression in chemoresistant epithelial ovarian
cancer using high-density oligonucleotide microarrays,”
Oncology Research Featuring Preclinical and Clinical Cancer
Therapeutics, vol. 18, no. 2-3, pp. 47-56, 2009.

[31] J. Wang, C. Chen, H. F. Li, X. L Jiang, and L. Zhang, “In-
vestigating key genes associated with ovarian cancer by in-
tegrating affinity propagation clustering and mutual
information network analysis,” European Review for Medical
and Pharmacological Sciences, vol. 20, no. 12, pp. 2532-2540,
2016.

[32] L. Liu, Y. Xiong, W. Xi et al., “Prognostic role of N-Ace-
tylgalactosaminyltransferase 10 in metastatic renal cell car-
cinoma,” Oncotarget, vol. 8, no. 9, pp. 14995-15003, 2017.

[33] X.-Y. Zhan, Y. Zhang, E. Zhai, Q.-Y. Zhu, and Y. He, “Sorting
nexin-1 is a candidate tumor suppressor and potential
prognostic marker in gastric cancer,” Peer], vol. 6, p. e4829,
2018.

[34] J. Koseki, M. Konno, A. Asai et al., “Enzymes of the one-
carbon folate metabolism as anticancer targets predicted by
survival rate analysis,” Scientific Reports, vol. 8, no. 1, p. 303,
2018.

[35] H. Lin, B. Huang, H. Wang et al., “MTHFD2 overexpression
predicts poor prognosis in renal cell carcinoma and is as-
sociated with cell proliferation and vimentin-modulated
migration and invasion,” Cellular Physiology and Bio-
chemistry, vol. 51, no. 2, pp. 991-1000, 2018.

[36] K. Noguchi, M. Konno, J. Koseki et al., “The mitochondrial
one-carbon metabolic pathway is associated with patient



12

survival in pancreatic cancer,” Oncology Letters, vol. 16, no. 2,
pp. 1827-1834, 2018.

[37] W. C. Liao, C. K. Liao, Y. H. Tsai et al., “DSE promotes
aggressive glioma cell phenotypes by enhancing HB-EGF/
ErbB signaling,” PLoS One, vol. 13, no. 6, Article ID 0198364,
2018.

[38] R. Ata and C. N. Antonescu, “Integrins and cell metabolism:
an intimate relationship impacting cancer,” International
Journal of Molecular Sciences, vol. 18, no. 1, p. 189, 2017.

[39] J.-M. Lee, J. Nair, A. Zimmer et al., “Prexasertib, a cell cycle
checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type re-
current high-grade serous ovarian cancer: a first-in-class
proof-of-concept phase 2 study,” The Lancet Oncology, vol. 19,
no. 2, pp. 207-215, 2018.

Journal of Oncology



