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Traumatic brain injury (TBI) is associated with high mortality and disability, with a
substantial socioeconomic burden. With the standardization of the treatment process,
there is increasing interest in the role that the secondary insult of TBI plays in outcome
heterogeneity. The secondary insult is neither detrimental nor beneficial in an absolute
sense, among which the inflammatory response was a complex cascade of events and
can thus be regarded as a double-edged sword. Therefore, clinicians should take the
generation and balance of neuroinflammation following TBI seriously. In this review, we
summarize the current human and animal model studies of neuroinflammation and
provide a better understanding of the inflammatory response in the different stages of
TBI. In particular, advances in neuroinflammation using proteomic and transcriptomic
techniques have enabled us to identify a functional specific delineation of the immune cell
in TBI patients. Based on recent advances in our understanding of immune cell activation,
we present the difference between diffuse axonal injury and focal brain injury. In addition,
we give a figurative profiling of the general paradigm in the pre- and post-injury
inflammatory settings employing a bow-tie framework.

Keywords: neuroinflammation, traumatic brain injury, advance, bow-tie framework, take seriously
BACKGROUND

With an incidence of more than 50 million people per year and a leading cause of death and
disability, traumatic brain injury (TBI) brings a substantial social and economic burden worldwide
(1). There are two distinct subtypes of TBI: one is focal brain injury (FBI), which is caused by the
brain hitting against the cranium; the other is diffuse axonal injury (DAI) (2), which results from a
rotational motion that leads to brain stretching and tearing. TBI is a complex event that refers to any
insult to the brain, resulting in primary (direct) mechanic injury and secondary (indirect) insult to
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the brain parenchyma (3). It remains challenging to fully reveal
the pathologically heterogeneity following TBI as it is linked to
excitotoxicity, neuroinflammation and cytokine damage, and
oxidative damage (4).

On account of the inflammation and white matter (WM)
degeneration that will persist for many years after just one single
TBI (5), the role of neuroinflammation following TBI has come
into focus in recent studies (6, 7). To our knowledge, immune
activation can be produced both by endogenous brain cells and
circulating inflammatory cells, and together, they are driven by a
variety of cytokines and chemokines (8). It is a sterile immune
response for the absence of pathogen infection, and many
endogenous damage-associated molecular pattern molecules
(DAMPs) are generated in the processes. Moreover, the
purinergic signaling [including P1 receptors in response to
adenosine and P2 receptors in response to adenosine
triphosphate (ATP) or adenosine diphosphate (ADP)] will
provide energy for immune activation (9). Collectively, it can
quickly trigger an inflammatory cascade of the local signaling in
neurons, glia (microglia and astrocytes), and the exogenous
signal in peripheral recruit cells (monocyte, macrophages,
neutrophils, and T cells) within minutes following TBI (10). In
addition, the microglia phenotypes are highly plastic since they
depend on the different microenvironmental settings of TBI (e.g.,
M1-like will increase uncontrolled neuroinflammation, and M2-
like is more likely associated with an anti-inflammatory effect)
(11). The astrocytes can provide support and nutrition to
homeostasis and play an essential role in glial scar formation
that obstructs axon regeneration (12). In short, the
neuroimmune response following TBI is often complicated,
which can be summarized as 1) more than one single cell and
pathway, and 2) a simple classification of a cytokine or cell as
detrimental or beneficial may not be appropriate.

Applying the graph theory in interpretation was proven to be
a powerful way to reveal the regularity of biological evolution.
Significantly, a bow-tie framework (13) can figuratively integrate
the concepts of degeneracy and pluripotency in the dynamic,
organized types. Generally speaking, we can use its overall
structure to display both a highly fluctuating or “sloppy”
program and a high concentration or “tidy” environment. In
the past, a bow-tie framework was used for grasping the immune
system’s complexity, which offers a way to understand the
common principle of the metabolic process, protein
interactome, and gene circuits (14, 15). Along with the
development of transcriptomic and proteomic profiling,
immune cell studies have moved from the simplistic microglial
M1/M2 classification scheme to the specific delineation of innate
immune functions (7). Therefore, it is practicable to present a
panoramic view of the immunological events that follow TBI and
describe the dynamic aspects of neuroinflammation.

This review will briefly present the neuroinflammation in TBI
and summarize the relative difference in DAI. We point out the
available advances of TBI-related neuroinflammation in current
human and animal model studies. We also highlight the
challenge of putting immunotherapies for altering clinical
outcomes in patients with TBI.
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IMMUNOGENICITY IN THE CENTRAL
NERVOUS SYSTEM

In the central nervous system (CNS), the critical role of resident
microglia has been receiving increasing concern as it can be
either pro-inflammatory or anti-inflammatory (16). The
different immunological phenotypes of microglia reflect their
contradictory functions in maintaining homeostasis and their
contribution to TBI recovery or aiding injury (17). Meanwhile,
the inflammatory response is equally essential in astrocytes
following TBI; it plays a critical role in the energy metabolism
supply and blood–brain barrier (BBB) injury and can produce
neuroprotective factors or cytotoxic mediators. As far as we
know, the glial responses following TBI are not isolated but
coordinated and integrated, and the crosstalk between microglial
activations and astrocytic responses has been widely studied (18).
In response to TBI, the activation of microglia will promote
astrogliosis and persistent inflammation, and the astrocytes will
communicate with it through the cytokines or chemokines they
release. In addition, the infiltrating immune subsets that were
recruited from the circulation and accumulated in the brain are
indispensable for neuroinflammation in TBI (19). It has been
found that those subsets include CNS-associated macrophages
(CAMs), various types of monocytes (Ly6Clo or Ly6Chi types,
monocyte-derived cells), classical or plasmacytic dendritic cells
(cDCs or pDCs), T cells, B cells, and natural killer (NK) cells
(20). However, there are insufficient investigations about the
timing and spatial activation level, as well as the crosstalk
between CNS immune cells and peripheral invasive subsets.

It has recently been found that meningeal lymphatic vessels
(mLVs) are involved in CSF clearance (21). To the best of
our knowledge, mLVs could alter the accessibility of immune
neuromodulators carried by CSF-borne to the brain parenchyma,
thereby changing their effects on the immunogenicity of CSF (22).
An interesting phenomenon is it can be dysfunctional with the
occurrence of TBI, of which the increased intracranial pressure
plays a crucial role. The rejuvenation of mLVs’ drainage function
in an animal model can ameliorate TBI-induced pathogenesis
(23). Although the BBB dysfunction and mLVs can be regarded as
the paths of the intra- and extracranial immune component
exchange, the exact one they take and priority of each route
remain controversial.

S ignificant ly , the advanced proteomic profi l ing
technologies enable us to catch the phenotype information of
neuroinflammation in different TBI phases; the high-throughput
single-cell sequencing (scRNA-seq) technologies allow us to
identify homeostatic or disease-specific myeloid subsets (24).
For example, gene profiling and pathway analyses enable us to
distinguish invading peripheral monocytes from resident
microglia (25); scRNA-seq reveals distinct inflammation-induced
microglia signatures under inflammatory conditions (26); scRNA-
seq gave a comprehensive transcriptional and translational resource
to explain the differences of neuroinflammation caused by gender
difference (27). Moreover, a recent study found that the CD4 T cell
in a healthy brain was distinct from those in the circulation, and the
resident microglia will suspend in the absence of CD4 T cells (28).
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At this point, it can accurately distinguish the brain-resident
immune cells from the infiltrating immune cells in patients
with TBI.

Collectively, the immunogenicity of CNS is composed of
innate immunity and peripheral infiltrating immune cells.
Recent evidence has shown that TBI will raise the phenotypic
difference between microglia, macrophages, and DC, and the
infiltrating subsets will alter the microglia activation. To date, the
crosstalk between microglia and circulating immune cells;
the role of cytokines, chemokines, and signaling pathways in
the activation process; and the functions of regulators in the M1/
M2 polarization have made the aspects of neuroinflammation
induced by TBI particularly topical (29–31). Regardless of the
complexity of CNS immunogenicity, it is practical to establish
the regularity of neuroinflammation through the synopsis of
some critical mediators following TBI.
TRIGGERING SIGNAL

Initiators
As an initial signaling mediator, DAMPs are regulated by the
pattern recognition molecules such as toll-like receptors (TLRs),
nucleotide-binding oligomerization domain-like receptors
(NLRs), scavenger receptors, and the purinergic system to
initiate the inflammatory cascade (32). The most critical
transmembrane regulators, TLRs, were observed in neurons,
microglia, astrocytes, and oligodendrocytes. Experimental studies
have shown that the TLR2 and TLR4 will be upregulated more
than two-fold at 24 h, peak at 7 days, and decline at 14 days in the
peripheral lesion (33). The primary cellular sources of TLRs are
the microglia in injured cortex areas and astrocytes in subcortical
WM (34). Based on the adaptor protein recruited by TLRs, the
TLR-related signaling pathways can be classified as a myeloid
differentiation primary response gene 88 (MyD88)-dependent
pathway and MyD88-independent pathway. The expression of
MyD88 protein will increase from 6 h to 7 days after TBI, peaking
on the third day, parallel to the increase of Nuclear transcription
factor (NF-kB) and pro-inflammatory cytokines. To our
knowledge, MyD88 was colocalized with microglia in the
injured areas and with astrocytes in subcortical WM (33).
Moreover, the expression of NF-kB will peak at 7 days and then
begin to decrease at 14 days after TBI. TLR4 and transforming
growth factor-b-activated kinase 1 expression increased
significantly after TBI. Meanwhile, the function of TLR4 in the
TBI process has been examined in the previous controlled cortical
impact (CCI) model, of which TLR4-deficient mice had smaller
brain lesions than wild-type controls (35). Recent studies have
shown that inhibiting the TLR4 signaling pathway will attenuate
the inflammation through regulating the microglial M1/M2
phenotype (36). Therefore, it is necessary to evaluate the
distribution of TLRs and the role of downstream signals as they
may be associated with the repair and regeneration of the CNS.
However, the time paradigm of different TLR expressions is
worthy of a detailed investigation to determine whether early
activation is beneficial while later activation is detrimental (37).
Frontiers in Immunology | www.frontiersin.org 3
Inflammasomes
Upon the recognition of DAMPs, the macromolecular complex,
referred to as an inflammasome, includes NLR (e.g., NLRP3,
NLRP1) and non-NLR proteins [e.g., absent in melanoma 2
(AIM2)]. NLRs were cytosolic receptors for DAMPs, and they
can promote the cleavage of pro-caspase-1 into its active form
(caspase-1) via interactions with caspase activation and
recruitment domains (CARDs) located within the
inflammasome or in association with an apoptosis-associated
speck-like protein containing a CARD (ASC) (7). The activation
of caspase-1 will mediate the interleukin (IL)-1b and IL-18
secretion, which are excellent diagnostic and predictive
biomarkers of TBI (38). Inflammasomes can assemble in
macrophages, microglia, or astrocytes, and their activation
form can generate pro-inflammatory or anti-inflammatory
cytokines. NLRP3 inflammasome has been widely studied as it
plays a crucial role in regulating cerebral edema and secondary
inflammation (39). Interestingly, a previous study found that the
heightened levels of NLRP1, ASC, and caspase-1 detected in the
CSF are correlated with a more unfavorable neurological
outcome in patients with moderate and severe TBI (40).
Further studies have indicated that the NLRs and AIM2
inflammasome-mediated pyroptosis could aggravate BBB
damage (41), and the pyroptosis process can be attenuated via
the HMGB1/TLR4/NF-kB pathway (42). However, a recent CCI
mice study suggested an irrelevant role of the NLRP1 and ASC
inflammasome on histopathology and motor recovery (43). At
this point, further studies are required to explore whether NLRP1
and/or NLRP3 inflammasome activation will uniformly alter the
pathogenicity in TBI.

Endogenous Proteins
Meanwhile, multiple endogenous proteins such as high mobility
group box one protein (HMGB1) and heat shock proteins
(HSPs) will upregulate in neural and inflammatory cells
following TBI. HMGB1, a cytokine released by glia and
neurons upon inflammasome activation and that activates Toll
4 and the receptor for advanced glycation end products (RAGE).
The HMGB1-RAGE interaction that mediated HMGB1
endocytosis followed by direct NF-kB activation has been
widely studied, while the HMGB1 interacts with MD-2 to
trigger TLR-4, and downstream signaling was relatively rare
(36, 44). Despite the fact that the HMGB1 blockade can
dampen neuroinflammation post-TBI, the effects of HMGB1
antagonism on neurogenesis remain been elucidated. Acetylated
HMGB1 represents the active release of immune cells, while non-
acetylated HMGB1 indicates a passive release from necrotic cells.
Indeed, HMGB1 is passively released following TBI, which
results in an activated microglia phenotype and facilitates
increased BBB permeability via increased AQP4 expression in
astrocytes (45). Recent experimental evidence has demonstrated
the positive effects of HMGB1 antagonism on the pathological
and behavioral parameters following TBI. However, some
fundamental problems such as elucidating isoform, receptor,
cell, and clinical impact require further investigation (46).
HSPs, the protein chaperones induced by TBI, are known to
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participate in the TLR/NLR signaling pathway and serve as TLR
ligands. Importantly, HSPs can present pro- and anti-
inflammatory effects and stimulate immune responses by
activating antigen presentation. Previous studies found that
HSP70 significantly increases the lesion size, increasing the
expression of metalloproteinases with worsened behavior (47).
Further studies found that it provides neuroprotection via anti-
inflammatory effects by the HSP70/NF-kB/IL-6/synapsin I axis
in the injured brains and also found that TBI will lead to different
types of transcriptional activation or inhibition (48). However, it
remains to be seen whether there is a dynamic or temporal
relationship in the HSP70-mediated pro- or anti-inflammatory
processes after TBI.

Purinergic Receptors
The purinergic receptors play a pivotal role in neuroinflammation
responses as it serves as an alarmin that induces extracellular ATP
release (49). The initial evidence was that purinergic receptor
signaling participates in the activation and morphological
transformation of microglia. A subsequent cell interaction study
found that microglia transform astrocytes into a neuroprotective
phenotype via the downregulation of the P2Y1 purinergic receptor
(50, 51). It is known that the P2X7 receptor, an gated ion channel
activated by ATP, can induce BBB disruption and the chemotaxis of
peripheral immune cells to the CNS (52). For example, it can
promote neutrophil recruitment to the damaged brain parenchyma
within 1–3 ho following TBI. Moreover, it has been found that the
antagonists and immune inhibitors of P2X7 receptors can reduce
the number of apoptotic neuron deaths and increase the survival of
the neurons in the injured and adjacent regions (53). A recent CCI
study reported that the pharmacological inhibition of Pannexin-1
(Panx1), an essential conduit for ATP, will markedly reduce
immune cell infiltration and BBB leakage (54). Those data
demonstrate that the responses mediated by purinergic receptors
are diverse and are influenced by the receptor expression pattern,
nature and timepoint of the injury, and type of immune cell
activation. In addition to the above-mentioned signaling pathway,
purinergic signaling can also contribute to the activation of
inflammasomes. Although it was less reported in the TBI, it has
been confirmed that the activation of the P2X7 receptor contributes
to the activation and proliferation of NLRP3 (55).

Molecule Expression
To our knowledge, the expression patterns of inflammatory
genes in parenchymal and non-parenchymal injured tissues are
qualitatively similar. The genes associated with cytokines,
chemokines, glial activation, antigen presentation, and
phagocytosis, among others, can be upregulated and/or
deregulated after TBI. It is noteworthy that the fastest
restoration to the baseline expression level will take at least 10
days, so repeated measurements are required during this period
to obtain an accurate diagnosis (56). In a comparing study, more
than 89% of CCI differentially expressed mRNAs were observed,
including changes in inflammatory genes, such as macrophage
inflammatory protein (MIP)-1a (CCL3), CXCL1, IL-1a, IL-1b,
and IL-6 (57). Nowadays, significant advances in identifying a
molecule expression program that guides the ensuing immune
Frontiers in Immunology | www.frontiersin.org 4
response following TBI comes from the application of scRNA-
seq and transcriptome sequencing technology. A recent study
revealed that CNS-resident macrophages could quickly generate
context-dependent subsets, guided by the dynamics of molecule
expression during neuroinflammation (19). Another study found
that a deficient C-C chemokine receptor-2 (Ccr2) after TBI will
reduce the expression of the IFN-responsive gene (IRF7), which
will shape our understanding in finding the targets from the
diversity and crosstalk of neuroinflammation (30). Therefore,
permanent changes in the CNS molecular expression may
explain the immune heterogeneity observed in patients with TBI.

Complement Activation
The complement system could not be neglected as it can present
either deleterious or neuroprotective effects in TBI. It can be
activated via three different pathways: the classical, alternative,
and mannose-binding lectin (MBL) pathways. Recently, many
studies have found that neurons and glial cells can synthesize
complements; the mRNA-encoding receptors of C3a and C5a are
widely expressed in the CNS (58). Initial immunohistochemistry
studies found that C1q, C3b, C3d, and the membrane attack
complex (MAC) were elevated in clinical patients and animal
models after TBI. Subsequent shreds of evidence suggested that
C3 inhibition was associated with reduced peripheral neutrophil
and leukocyte infiltration, and C5 inhibition was related to the
reduction in leukocyte infiltration and edema in the vicinity of
the lesion, and increasing the MAC attachment to cell
membranes will improve neuronal loss and worse neurological
outcomes (59, 60). Similarly, a reduced microglial activation and
neuronal death can be obtained when administrating a C5
complement inhibitor or a C6 antisense oligonucleotide (61,
62). In addition, there has been evidence that reactive microglia
activate the complement by the local synthesis of MAC/C5b-9
complex, which involves the activation of the complement
cascade (63). There has also been supporting evidence that the
complement-mediated microglial phagocytosis of synapses
provides the pathological relationship between acute injury and
chronic neurodegeneration (64).
MICROGLIA ACTIVATION

As the first responders to TBI, microglia will be activated rapidly
and change their morphology to form larger cell bodies with
ramified cellular structures (65). After activation, microglia can
proliferate and migrate to the injury location and polarize and
induce the release of cytokines (66). This process is mediated by
purinergic receptors (P2Y6, P2X4, and P2Y12) and Tyro3, Axl,
and myeloid-epithelial-reproductive (Mer) (TAM) receptor
tyrosine kinases (31). Microglia proliferation starts within 24 h
and can continue for several weeks (67). Although the microglial
polarization remains uncertain, the M1 and M2 phenotypes are
the two widely used terminologies of activated microglia (68).
The M1 phenotype majorly secretes pro-inflammatory cytokines
(e.g., IFN-g, TNF-a, and IL-1b) and chemokines (e.g., CCL-2,
CCR-2, and CXCL-1), while M2 phenotype will be involved in
the release of anti-inflammation cytokines for CNS repair (69).
March 2022 | Volume 13 | Article 855701
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Indeed, microglial M1/M2 always plays a mixable role in pro-
and anti-inflammatory responses; the M1 phenotype can secrete
the anti-inflammatory cytokine IL-10, and the M2 phenotype
presents an anti-inflammatory effect (70). If the M2 phenotype
becomes overwhelmed and the M1 phenotype activity increases
during the insult, chronic neuroinflammation and long-term
damage will occur continuously (6). At this point, the redirection
of microglia polarization to the M2 phenotype seems to be an
excellent path to TBI immunotherapy for their neuroprotective
contribution. For example, the peroxisome proliferator-activated
receptor g (PPAR-g) pathway (71) and TLR4 signaling pathway
(72, 73) have been proven to be related to the attenuation of
inflammation by promoting the polarization of beneficial M2
microglia. However, the spatial phenotype is still challenging for
current microglial studies because it can rapidly change their
morphology according to the dynamic microenvironment.

Inflammatory gene studies that profile microglia gene
expression at the single-cell level is becoming the current hot
topic. In an scRNA-seq study, a time-dependent and injury-
associated change in microglial gene expression networks has
been found, of which a biphasic pattern of IL-4, IL-10, and
interferon-gamma (IFN-g) gene expression changes between 14
and 60 days post-injury (74). It has been found that microglia
exhibited distinct clustering with an increased IFN-1 and
neurodegenerative or damage-related genes at 7 days post-TBI;
it was a critical time point in the transition from acute to chronic
pathogenesis (18, 75). Meanwhile, gene manipulation techniques
such as the Cre-Lox approach and the microglia-specific
promoters would also expand our understanding of the role of
microglial genes following TBI. Recently, there is strong evidence
that the cell-specific knockout of p38a in microglia will
significantly reduce the production of pro-inflammatory
cytokines or chemokines and the recruitment of monocytes
into the brain (76). Similarly, the overexpression of the
charged multi-vesicular body protein 4b (CHMP4B) can
relieve the microglial necroptosis (77). Therefore, further
conditional and inducible gene manipulation experimentation
could be carried out to investigate the microglia that contribute
to TBI-related neuroinflammation.

In addition, microglia-derived extracellular vesicles (EVs) are
suggested to be involved in neuroinflammation and cell
communication following TBI (78). It has a well-defined lipid
bilayer with the surface markers of the reflection of the cell
origination and an aqueous core including the cytokines, growth
factors, and microRNAs (miRNAs) (79). There are 49 unique
proteins in the EV released from activated microglia, and they
can carry a variety of molecular constituents such as miRNAs (80).
For example, microparticles (MPs), a member of the EV family
loaded with pro-inflammatory molecules, could independently
initiate inflammatory responses in the injured brain and stimulate
systemic immune responses (81). It has been reported that increased
miR-124-3p in microglial exosomes can inhibit neuroinflammation
and contribute to neurogenesis (82), and EVs can carry anti-
inflammatory molecules for reducing neuroinflammation
following TBI (83). Moreover, miRNA-21-5p are highly enriched
in neuron-derived exosomes after M1 microglial polarization
Frontiers in Immunology | www.frontiersin.org 5
following TBI. Evidence had shown that the localization of
miRNA-21-5p increased in the lesion as the M1 microglia
gathering and cyclic cumulative damage between neurons and
microglia was caused by miR-21-5p and exosomes. Similarly,
exosomes with miRNA-124-3p are released by microglia, which
can present anti-inflammatory and neuroprotective effects through
M2 microglial activation (84). At this point, the microglia can be
manipulated to form a pro-regenerative or neuroprotective
phenotype following TBI (85).
PERIPHERAL IMMUNE CELL
INFILTRATION

Neutrophils are often among the first peripheral immune cells
infiltrating into contused brain tissue within a few hours following
TBI, directed by the purines, cytokines (e.g., TNF-a and IL-1b),
and neutrophil chemoattractant molecules (e.g., CXCL1, CXCL2,
and CXCL3) (7). Combined with the expression of adhesion
molecules (ICAM-1), neutrophils can accelerate the migration
through BBB and the brain parenchyma (86). The contribution of
infiltrated neutrophils to TBI pathogenesis varies as follows: 1)
neutrophil depletion can reduce edema and microglial activation
(87); 2) similar results can be obtained in the CCL2 genetic
deficient model (88), and 3) the neutrophil extracellular traps
(NETs) can improve neurological function (89). Collectively, the
available changing of those pathogeneses might be related to
oxidative signaling [e.g., reactive oxygen species (ROS)], as it
often alters the expression of the NADPH and iNOS enzymes in
different TBI courses (90).

After the neutrophil recruitment, it is often followed by the
arrival of monocytes, then converted into macrophages in the
injured brain. It occurs within 1–2 days for monocytes entering
the CSF and parenchyma and remains there for weeks after TBI
(91). Hereto, the widely accepted mechanism of monocyte
recruitment following TBI was the local production of the
chemokine CCL2 in CSF (92). Macrophages can be either
beneficial or detrimental, depending on their functional
properties. It is worth noting that the phenotypic differentiation
between peripheral macrophages and the resident microglia is age-
dependent, so they may be an available aggregation unit rather than
a different entity (93). Although it is difficult to distinguish the
microglia and macrophages, flow cytometry has recently made it
possible to discriminate between the two cell types. A comparative
study found that ROS were more obvious in macrophages rather
thanmicroglia, and the NADPH-2, IL-1b, and CD68 were higher in
macrophages, whereas the TGF-b1, IL-6, and TNF-a are higher in
microglia (94). In this regard, macrophages can be regarded as the
aggravating cell type, while the activated microglia may play a
favorable role during the acute phase of TBI. The latest
advancement is a study that identifies the beneficial effect derived
from a combination of the macrophage colony-stimulating factor
(M-CSF), IL-6, and transforming growth factor-b (TGF-b), termed
M6T, especially the cosecretion of microglia, macrophages, and
endothelial cells (95).
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T cells infiltrating into the damaged brain parenchyma can be
observed in the CCI model posttraumatic 3–5 days, and a
prominent infiltration was confined to the perilesional cortex
and hippocampus. To be more specific, most parenchymal T
cells were resident memory CD8+ T cells, which may be
mediated by mLVs (96). It has been found that the depletion
of regulatory T cells (Tregs) can increase T-cell infiltration
reactive gliosis and IFN-g gene expression (97). Despite scarce
evidence existing, the pharmacological depletion of CD8+ T cells
may produce a neuroprotective effect via a Th2/Th17
immunological shift (98). It will draw our attention to the
specific subsets of infiltrating T cells and even B cells that
affect the neurological dysfunction or neuroimmune response.
GLIAL INTERACTION

It has been found that the microglial activation following TBI
could promote astrogliosis and persistent neuroinflammation,
and the ATP releasing from purinergic receptors on astrocytes
that lead to microglial recruitment has been generally considered
a communication signal (99). Although purinergic receptors
seem to be pivotal mediators, astrocytes and microglia can
communicate through the cytokines and extracellular
mediators (exosomes) they release. Previous studies found that
the HMGB1 released by neurons will activate TLR4 in microglia
and subsequently release IL-6, which, in turn, activates astrocytes
to increase the AQP4 expression, which eventually causes
astrocyte swelling and brain edema following TBI (100).
Recently, an exosome study found that miR-873a-5p, one of
the astrocyte-derived exosomes’ critical components, can
attenuate the microglia-mediated neuroinflammation by
inhibiting the NF-kB signaling pathway (101).

Indeed, inhibiting microglia activation can reduce white
matter injury (WMI) because the preservation of myelin is
related to M2 microglial polarization switching modulation via
the PTEN/PI3K/Akt signaling pathway (102). Emerging
evidence shows that the protein kinase R-like endoplasmic
reticulum kinase (PERK) in neurons will upstream M1
microglial polarization and increase IFN-b releasing, which is
followed by Th1 cell infiltration, eventually causes the decline of
oligodendrocyte precursor or mature oligodendrocytes cells
(103). More recently, the PERK signaling-mediated crosstalk
between microglia and oligodendrocytes has been highlighted
again as it was consistent with the finding that WMI or
oligodendrocyte loss is favored by the pro-inflammatory
environment (104).

There are still lacking direct communication theories between
astrocytes and oligodendrocytes in neuroinflammation following
TBI. Interestingly, it has been found that IL-33, mainly produced
by astrocytes and oligodendrocytes, will be elevated to the
maximum after 72 h, and it promotes the recruitment of
microglia/macrophages following TBI (105). Moreover,
astrocytes and oligodendrocytes can communicate through
connexins (Cx), in that the astrocytic Cx43 joined with the
oligodendrocytic Cx47 regulates both myelination and
Frontiers in Immunology | www.frontiersin.org 6
demyelination (106). Recently, a study has found that the
upregulated functional astrocytic Cx43 expression will promote
the mitochondria transmission from astrocytes to neurons,
which might benefit the protection of neurons after TBI (107).
Thus, it remains to be determined experimentally whether the
Cx43 can be a bridge molecule to untangle the complex
relationship between astrocytes and oligodendrocytes in TBI-
related neuroinflammation.

Moreover, beyond that, the impact of neuron-glial antigen 2
(NG2) glia on microglial activation has been confirmed
experimentally, of which NG2 glia regulates the neuroinflammatory
response via the TGF-b2 axis (108). It has also been found that the
lack of NG2 exacerbates neurological deterioration through the
abnormal activation of microglia or astrocytes and increased
peripheral immune cell recruitment to the injured brain (109). At
this point, NG2 glia may counteract adverse glial responses and thus
achieve neurological function repair in TBI. Indeed, the contribution
of NG2 glia to neuroinflammation and their communications to the
other glia following TBI and the molecular players (transcripts and
proteins) that differentiate NG2 cells in this scenario remains an
open question.

The intercellular crosstalk between astrocytes and microglia
has contributed an essential role to the neuroinflammation
following TBI (65). To date, several signal pathways were
found to participate in the crosstalk between the microglia and
the astrocytes, oligodendrocyte, neurons, and NG2 cells
(Figure 1). Finding the integration and coordination of the
glial responses to TBI is a broad field worthy of exploration.
DIFFERENCE IN THE DIFFUSE
AXONAL INJURY

As discussed previously in this review, the inflammatory
response in FBI is characterized by the microglial activation
and leukocyte infiltration around the parenchymal contusion. In
contrast to the FBI, the damage of DAI scattered throughout the
subcortical WM, including the corpus callosum, thalamus, and
brain stem (110). To our knowledge, when TBI damages gray
matter (GM) and WM, astrocytes proliferate preferentially in
GM, while microglia are more abundant in WM, and the WM
lesion will exert a strong influence on the GM glial cell
proliferation at early 3 days post-injury (111). The difference of
the inflammatory response between FBI and DAI should be
considered carefully because widespread meningeal injury and
extensive WMI often appears in it (Figure 2).

Increasing evidence has revealed the difference in cellular
immune response, cytokine activation, and chemokines in DAI.
It has been found that the microglia that express the lectin
galectin-3/Mac-2 will last up to 28 days and were most evident at
24 h post-injury (112). The activated microglia are located
mainly in the hippocampus and cortex as early as 4 h and
MHC-II upregulation in WM tracts at 24 h following injury. It is
noteworthy that the meningeal and perivascular macrophage
infiltration had marginal influence from 24–48 h up to 2 weeks.
Moreover, a little parenchymal infiltration of the lymphocytes
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and granulocytes was observed throughout the brain, which
means a small contribution of those two populations of
immune cells in the neuroinflammation of DAI (110). In
addition to focusing on the number of activated microglial
cells and macrophages, electron microscopy findings suggest
that they exhibit consistent immune cell interactions for more
than 1 week. Although precise interactions remain uncertain,
spatiotemporal microstructural immune cell alterations will be a
focus of the follow-up studies (113).

Meanwhile, it has been reported that the high expression of
IL-1b was strongly correlated to the DAI (114), and the
inflammation of the levels of TNF-a and Il-1b is dynamically
controlled by macrophages (115). Previous evidence suggested
that neuroinflammation was enhanced with the increase of IL-
1b, IL-6, and TNF-ɑ (116). Despite the upregulation of ICAM-1
in the cortex, thalamus, and corpus callosum, there was no
infiltration of neutrophils detected in DAI. Moreover, MCP-1
(a recruitment factor of borne monocytes) rather than MIP-2 (a
chemotactic factor for neutrophils) was significantly elevated
after DAI. These findings imply that a massive immunogenic
signal activation always takes precedence over the peripheral
immune infiltration in DAI. Indeed, a recent study found that
there was a significant increase for five chemokines (CCL11,
CX3CL1, CXCL5, CCL2, CCL3), ten cytokines (IL-1a, IL-1b,
IL-4, IL-6, IL-10, IL-13, IL-17a, IL-18, IFN-g, TNF-a), and four
Frontiers in Immunology | www.frontiersin.org 7
growth factors [EGF, GM-CSF, leptin, vascular endothelial
growth factor (VEGF)] following DAI (117). At this point,
DAI could induce more inflammatory biomarker activation
than FBI.

Accordingly, a more significant glial aviation involved in
cytokine/chemokine release and cytokine-mediated signaling
was found more complicated in the neuroinflammation of DAI
than FBI (110). It is reasonable to believe that using FBI models
to generalize the general inflammatory response process in DAI
often risks conclusions inappropriately. For example, the M2
microglia phenotype was previously known to be associated with
anti-inflammatory and neurogenesis effects in the FBI. However,
neuroinflammation persists without improvement despite the
acute enrichment of the M2 microglial phenotype in DAI (118).
THE REGULARITY OF
NEUROINFLAMMATION FOLLOWING TBI

Although the role of innate and adaptive immunity in CNS has
not been entirely clear, TBI is the leading risk factor that destroys
the homeostasis in it. Neuroinflammation following TBI has now
been recognized as a complex interaction between central and
peripheral soluble components, influenced by the baseline
characteristics (age, sex), types of injury (focal, diffuse), degrees
FIGURE 1 | The crosstalk of cells in the neuroinflammation. After TBI, the microglia can interact with astrocytes, the oligodendrocyte, neurons, and NG2 cells
through several pathways, and the “closed-loop” mechanisms of their communications remain unclear. In addition, the differentiation between the NG2 cells and
polydendrocytes or oligodendrocytes is still not clear, and their difference might play a role in neuroinflammation. (black color: settled cell–cell crosstalk mechanisms,
red color: possible crosstalk mechanisms need to be certified).
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of injury (mild, moderate, severe), secondary insult, genetic
variability, and therapeutic interventions (6). The regularity of
this process includes the following steps: initial signaling, resident
microglial activation, gene expression, complement activation,
peripheral immune cell recruitment, and adaptive immunity. To
our knowledge, bow-tie is a general term that refers to an ordered
and recurrent system underlying the complexity of technological
networks (119). With this in mind, we figuratively present a
panoramic paradigm of the pre- and post-TBI inflammation
with the help of the bow-tie characteristic (Figure 3).
Significantly, TBI could accelerate immune aging, displaying
chronic deficits that affect the long-term consequences of
systemic immune function (120). Therefore, there are reasons to
believe that the persistent neuroinflammation follow-up TBI leads
to several neurological disorders, including epilepsy,
Frontiers in Immunology | www.frontiersin.org 8
neurodegenerative disorders, chronic traumatic encephalopathy,
and Alzheimer’s disease (121).
PERSPECTIVE

Post-TBI inflammation can be beneficial by promoting both
the clearances of debris and neuron regeneration and/or
detrimental because it mediates neuronal death and chronic
neurodegeneration. Applying the graph theory to interpret the
complexity of neuroinflammation following TBI is a crossproductof
a multidisciplinary approach. After TBI, the activity of microglia
and infiltrating macrophages is crucial to the majority of
neuroinflammation, and glial interaction signals might represent
the new target of research on the mechanism of neuroimmune
FIGURE 2 | A brief comparison of the neuroinflammation in two main subtypes of TBI. In the FBI (the left side), it begins with the complement activation and the
initiators (including HMGB1, HSP, and ATP) releasing from the damaged meninges and parenchyma within minutes following brain injury. Those compliments will
bind to DAMP sensors such as purinergic receptors and TLRs that immediately induce resident microglia activation followed by inflammasome assembling. Then, a
variable number of cytokines and chemokines generating and the NF-kB translocating into the nuclei induce an immunological reprogramming. Meanwhile, it can
also induce the recruitment of neutrophils and macrophages to the injured meninges and/or perivascular regions, by which more chemokines and cytokines
proliferate and the inflammatory response amplifies. In the DAI (the right side), in addition to the above-mentioned processes, the MBP is released from the damaged
neural myelin involved in CSF circulation. T cells can be recruited to the damage site via a damaged BBB and/or meningeal lymphatic vessel, and the local APCs
subsequently present it. Moreover, massively activated astrocytes and oligodendrocytes and their crosstalk can participate in immunogenic signal activation, which
takes precedence over peripheral immune infiltration (such as neutrophils and macrophages).
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response after TBI. Future studies on neuroinflammation should
specify the patient characteristics, injury type and severity, dynamics
in neuroinflammation, and even immune cell heterogeneity. In
addition, an individualized design of immune tolerance therapy is
required because targeting the same inflammatory pathways in
different types of TBI might turn over the anticipated neurological
effects in immunotherapy. A possible hypothesis is that the collective
signaling pathways that generate classically and alternatively activated
neuroinflammation may be related to TBI-induced injury. It is a
fundamental principle to study neuroinflammation and every kind of
pathway and the relationship between them. All in all, our bow-tie
framework can help set goals for different stages of immunotherapy in
TBI patients: for the acute phase, reverse neuroinflammation to
achieve neuroprotection; for the chronic phase, stop
persistent neuroinflammation.
Frontiers in Immunology | www.frontiersin.org 9
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and dynamic changes in inflammatory gene expression, cell activation, and their interaction network.
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