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A B S T R A C T   

Context and background: Corona virus (COVID) has rapidly gained a foothold and caused a global pandemic. 
Particularists try their best to tackle this global crisis. New challenges outlined from various medical perspectives 
may require a novel design solution. Asymptomatic COVID-19 carriers show different health conditions and no 
symptoms; hence, a differentiation process is required to avert the risk of chronic virus carriers. 
Objectives: Laboratory criteria and patient dataset are compulsory in constructing a new framework. Prioritisation 
is a popular topic and a complex issue for patients with COVID-19, especially for asymptomatic carriers due to 
multi-laboratory criteria, criterion importance and trade-off amongst these criteria. This study presents new 
integrated decision-making framework that handles the prioritisation of patients with COVID-19 and can detect 
the health conditions of asymptomatic carriers. 
Methods: The methodology includes four phases. Firstly, eight important laboratory criteria are chosen using two 
feature selection approaches. Real and simulation datasets from various medical perspectives are integrated to 
produce a new dataset involving 56 patients with different health conditions and can be used to check asymp-
tomatic cases that can be detected within the prioritisation configuration. The first phase aims to develop a new 
decision matrix depending on the intersection between ‘multi-laboratory criteria’ and ‘COVID-19 patient list’. In 
the second phase, entropy is utilised to set the objective weight, and TOPSIS is adapted to prioritise patients in 
the third phase. Finally, objective validation is performed. 
Results: The patients are prioritised based on the selected criteria in descending order of health situation starting 
from the worst to the best. The proposed framework can discriminate among mild, serious and critical conditions 
and put patients in a queue while considering asymptomatic carriers. Validation findings revealed that the pa-
tients are classified into four equal groups and showed significant differences in their scores, indicating the 
validity of ranking. 
Conclusions: This study implies and discusses the numerous benefits of the suggested framework in detecting/ 
recognising the health condition of patients prior to discharge, supporting the hospitalisation characteristics, 
managing patient care and optimising clinical prediction rule.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) pandemic represents the 
biggest global shock in decades affecting all major life aspects [1,2]. 
Tentatively called as 2019 novel coronavirus (2019-nCoV), the virus has 

been officially named as Severe Acute Respiratory Syndrome 
Coronavirus-2 (SARS-CoV-2) by the International Committee of Tax-
onomy of Viruses (ICTV) [86,87]. COVID-19 is caused by SARS-CoV-2 
and has spread worldwide [3]. This illness is highly infectious and 
was announced by WHO as a global public health emergency [88]. By 24 
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September 2020, COVID-19 cases have reached over 32,310,000 
worldwide with 797,914 deaths. With pursued global efforts, the num-
ber of cured patients has increased. However, new problems arise in the 
follow-up and re-examination of cured patients [4]. A recent retro-
spective review was conducted on medicine concerns regarding the 
readmission of patients with COVID-19. Many of them are readmitted 
because their real-time reverse transcription-polymerase chain reaction 
(RT-PCR) result of SARS-CoV-2 was positive again after their discharge 
[4,5]. The number of positive RT-PCR results of SARS-CoV-2 in recov-
ered patients has recently increased [5,6], indicating that the actual 
virus is still not completely eliminated. With the reduction of drug and 
treatment course after discharge, the virus widely spreads in the body, 
resulting in the positive nucleic acid test. These patients are called 
asymptomatic carriers who could infect other people and become 
chronic virus carriers [4,7]. Prioritising infected patients and differen-
tiating their critical health conditions while considering asymptomatic 
carriers are highly beneficial to laboratories and stakeholders and would 
support hospitalisation concerns in recognising health conditions [8], 
timely managing patients care [9], optimising clinical prediction rules 
[10,11], and enhancing decision-making for patients prior to discharge 
[4,12,13]. Additionally, early recognition and stratification according to 
priority levels upon admission to the emergency department (ED) are 
important for the quality and safety of emergency medicine [14,15]. 
Distinguishing mild from serious health situations for patients with 
COVID-19 can also provide recommended discharge guidelines for 
medical sectors [4,16]. During hospitalisation, the clinical data of pa-
tients include age, sex, symptoms, comorbidities, laboratory character-
istics, treatments and outcomes [17]. However, multivariable 
adjustment of age and gender did not provide evidence for the associ-
ation between prioritisation and detection of outcomes and health 
conditions of COVID-19 [17]. Symptoms and laboratory characteristics 
are the clinical respiratory signs in detecting COVID-19 infection. The 
main clinical manifestations (symptoms) collected are fever, cough, 
sputum, dyspnoea, fatigue, myalgia, anorexia and nausea [4,18,19]. 
Nevertheless, most chronic virus carriers have normal chest CT with no 
signs of viral infection and no symptoms; this occurrence produces a new 
challenge for health sectors [4]. Thus, symptoms are not the main basis 
for detecting health conditions, especially for asymptomatic carriers [4, 
19]. The challenges brought by this phenomenon are related to the 
differentiation among mild and critical patients with COVID-19 via 
multi-laboratory criteria [7,16,18,20]. Additionally, asymptomatic 
carriers show slight varying laboratory characteristics; hence, discrim-
inating their health conditions from other infection patients increase the 
complexity of diagnosis [7]. In some cases, RT-PCR-positive chronic 
virus carriers tend to have normal health conditions during laboratory 
examination, and others exhibit abnormality [7]. 

When dealing with rapidly spreading diseases such as COVID-19, 
differentiation among chronic patients is a problematic but crucial 
task. The best prioritisation technique for asymptomatic carriers and the 
required criteria to achieve this goal must be established [21]. One 
possible way is to develop a new framework that can handle the progress 
above. However, the prioritisation of patients with COVID-19 including 
asymptomatic carriers to overcome these challenges remains a complex 
decision-making problem [22,23]. Particularly, the laboratory criteria 
collected from academic literature are numerous and widely vary. One 
study [19] used six criteria, and another [7] reported eight. One work 
[4] concluded 18 laboratory criteria that can be utilised to handle our 
aim. Among these 18 characteristics, the most important ones that can 
affect the priority process are not determined yet. Suitable approaches to 
evaluate and identify the importance laboratory criteria should be 
selected for prioritisation configuration. A clear demonstration of such a 
problem may cast doubt because the existing published works failed to 
produce a comprehensive patient dataset considering the laboratory 
criteria for this subject. 

Detecting health conditions by using the most important criteria with 
respect to the appropriate weight allocated for each criteria is 

considered a multi-criteria decision matrix that can describe the specific 
problems of prioritisation [24,25]. Different weights are often given for 
various criteria which further increase the complexity of the task [26]. 
According to medical guidelines [4,7], each criterion has its reference 
range of examination results. The optimal range, in which some criteria 
are at low reference range and the others are at the high reference range, 
seriously affect the detection of health conditions [27,28]. This inverse 
relationship between criteria causes a trade-off. Thus, prioritisation is a 
complex multi-attribute decision-making problem, in which each pa-
tient is considered an alternative for the decision maker. In this 
circumstance, a new intelligent framework is essentially required to 
overcome these challenges. This work develops a method that can 
support precise differentiation and prioritisation methodology to solve 
these issues. The proposed technique is a result of literature review 
concentrated on works reporting using such method. Multi-criteria 
decision-making (MCDM) techniques are further discussed and ana-
lysed in the literature review section. 

This study presents integration methods for prioritising and detect-
ing the health conditions of patients with COVID-19 based on multi- 
laboratory criteria while considering asymptomatic carriers. The pro-
posed technique evaluates discrimination procedures against asymp-
tomatic carriers to give a possible recommendation prior to discharge 
from the hospitals to satisfy the requirements. The contributions of this 
research to the state-of-the-art are multi-faceted. In the first phase, 
identification using two feature selection approaches (i.e. data-driven 
and knowledge-driven) was implemented to select the eight most 
important laboratory criteria. All laboratory criteria were collected from 
literature for further analysis and discussion. Two datasets for patients 
with COVID-19 were then integrated based on the analysis of laboratory 
characteristics and clinical guiding principles [7,29] to produce a new 
dataset. Simulation data were generated based on reliable reference 
ranges and occurrence records validate by experts in the respiratory 
field with more than 10 experience years to include different health 
conditions. The outcome of the first phase is to develop a new decision 
matrix based on a crossover of (i) multi-laboratory characteristics 
criteria and (ii) lists of infected patients for patient prioritisation 
throughout the designed methodology. In the second phase, the objec-
tive weights of multi-criteria were extracted according to entropy. Third 
phase adapted TOPSIS for ranking. Finally, the outcome prioritisation 
results from an objective perspective were validated objectively. The 
proposed methodology could be set as a standard and guide when 
changing the used methods or including new criteria to develop another 
decision matrix. However, within the research context, the framework 
was presented as distinct in the respiratory field, particularly for 
COVID-19 to solve estimation issues from medical perspectives. 

The rest of this paper is organised as follows. Section 2 describes the 
literature review with three clusters of research that address the gap 
analysis for the prioritisation COVID-19-infected patients. Section 3 
presents the methodology phases. In Section 4, the results are presented 
and further discussed with sets of claim points to examine the impor-
tance of this study. Finally, Section 5 concludes the paper. 

2. Literature review 

An extensive literature search was conducted to identify articles that 
deal with prioritisation issues of infected patients with COVID-19. 
Clinical studies were reviewed comprehensively, and the need for a 
prioritisation method based on Artificial Intelligence (AI) was confirmed 
to provide a clear vision of prioritisation concepts contributing to this 
virus. Accordingly, MCDM techniques (i.e. TOPSIS and entropy) were 
reviewed as a recommended solution to solve this complex situation. 
This map-matching of review was developed to further explore the AI 
fields and create novel techniques for the prioritisation of coronavirus- 
infected patients. The analysis of directions is illustrated below. 
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• Clinical studies of COVID-19 and patients’ prioritisation needs: this 
study examined issues of clinical studies that need the effects of the 
prioritisation process. In [30] highlighted the priorities need for the 
US Health Community to respond to COVID-19 to better understand 
the burden of COVID-19. To achieve this goal, medical experts need 
to expand testing to all health conditions of patients who have un-
explained ARDS or severe pneumonia, and ultimately to patients 
who have mild symptoms consistent with COVID-19. The experts 
also need clear information regarding the operating characteristics of 
COVID-19 diagnostic tests to make the best clinical and public health 
decisions for the differentiation approach. In [7] reported “trans-
mission of the COVID-19 from an asymptomatic carrier with normal 
chest computed tomography (CT) findings. In this study, six patients 
underwent chest CT imaging, and RT-PCR tests for COVID-19 were 
performed. The sequence of events suggests that the coronavirus may 
have been transmitted by the asymptomatic carrier”. The challenge 
highlighted in this study the patients have different levels of labo-
ratory examination results and asymptomatic carrier conditions has 
the most optimal health situation among others. However, the pri-
ority concept to differentiate asymptomatic conditions among others 
can provide clear guidance to make decisions about the optimal 
health conditions for all patients. The research [21] highlighted an 
important question (from nine questions) about how transmission 
occurred for COVID-19 through asymptomatic. The study mentioned 
that the infected patients with mild symptoms are difficult to 
recognise. The possibility for transmission COVID-19 from asymp-
tomatic to people is confirmed and the health conditions of such 
cases are varied. However, a method for differentiating such 
asymptomatic carriers among others can also solve the mentioned 
challenges. In [4], retrospectively analysed the clinical data and 
laboratory characteristics of eight readmission patients of positive 
RT-PCR test and provided reference for the management and 
follow-up of COVID-19. The phenomenon of positive RT-PCR results 
in recovered patients had arisen recently especially for asymptomatic 
carriers. However, the study presented the laboratory characteristics 
measurements of eight asymptomatic carriers and their health con-
ditions were varied when they return to hospitals after discharge 
which increase the complexity. Yet, no method can detect their 
health conditions before and after discharge. 

As can be seen from the above studies, the development of a meth-
odology that allows for the accurate prioritise of the patients, consid-
ering all health conditions and the importance of laboratory 
characteristics of COVID-19 is quite and can be overcome by the MCDM 
framework. More about prioritisation approaches for different COVIVD- 
19 subjects using MCDM methods are discussed in below.  

• MCDM studies for the prioritisation of patients with COVID-19: a 
framework evaluating the performance of COVID-19 classifiers was 
proposed [31]. This framework can assist decision-makers in medical 
organisations to determine the optimal classifier for COVID-19 
diagnosis. Another work [32] presented a real-time death assess-
ment monitoring of COVID-19 using TOPSIS MCDM to select most 
important risk factors and applied GMDH to estimate death value 
within all confirmed cases. A study [33] investigated some elected 
activities and evaluated their importance and suggested that many 
activities should not be performed during the COVID 19 pandemic 
period. These activities were considered as criteria and then applied 
to an analytic hierarchy process (AHP) for calculating their weights 
and assigned ranks/priorities according to their effect. Our previous 
report [34] presented the prioritisation of patients with COVID-19 
based on eight laboratory examinations tests; however, overcoming 
the mentioned challenges was hindered by the following limitations. 
(i) The evaluation and selection of important laboratory criteria were 
not discussed, thus raising questions for some experts. These criteria 
also have limitations in assessing accurate priority judgments, 

especially for patients with COVID-19 [4,19]. (ii) The study was 
unable to satisfy the acceptable sample size of patient dataset due to 
limited patient data (only six patients). (iii) The obtained results also 
lack a systematic validation guideline among the prioritisation 
scores. (iv) The study reported that a comprehensive analysis must 
be further conducted to overcome the above limitations. For this 
reason, the prioritisation results require a deepened intersection 
between importance laboratory criteria and a large patient dataset 
including additional asymptomatic carrier cases. The obtained re-
sults must be validated by defined methods. The description of 
relevant MCDM studies and the present work in term of aims, method 
and criteria used for COVID-19 case study are shown in Table 1. 

Although the case study of [31] is COVID-19, the authors employed 
Entropy and TOPSIS methods to evaluate the diverse diagnostic models 
of machine learning where the SVM classifier was nominated as the most 
suitable diagnosis model for COVID19. Furthermore, the main objective 
of the study [32] is to identify the important risk aspect and continuous 
monitoring of death due to COVID-19. Result indicates that “contami-
nation due to contact with the infected person” is the main accountable 
factor behind the pandemic COVID-19. However, as a conclusion from 
Table 1, there is no clear study presented a prioritisation method for 
patients with COVID-19 to overcome the mentioned challenges ac-
cording to the topic of this study. Therefore, this study will focus on 
solving this challenge by using the appropriate methods based on de-
cision making technique. 

The recommendation solution for our study is to use MCDM that 
deals with decision problems with respect to decision criteria. MCDM 
has the potential to contribute to a fair, transparent and rational 
priority-setting process. More about MCDM studies and the review of 
needed methods (i.e. TOPSIS and Entropy) utilised with different fields 
are discussed in the below.  

• MCDM studies for prioritisation in other fields: MCDM is commonly 
adopted in numerous fields for diverse applications. It discoveries 
and ranks appropriate solutions to choice the appropriate alternative 
[35,36]. The research in [37] tried to highlight the difficulty of 
choosing the appropriate mHealth application and formed a model to 
compare and evaluate the performances of various mHealth appli-
cations depending on AHP and fuzzy TOPSIS. In [38], problem of 
health-care waste disposal were investigated and two models were 
applied and compared (VIKOR and TOPSIS) to prove their feasibility 
and effectiveness. Two distances were measured, geodesic distance 
and the probability distribution distance to determine the consensus 
degrees. The work in [39] assess the performance of Brazilian 
emergency clinics’ services TOPSIS and neural networks to inspect 
relevant factors in the socioeconomic, demographic and institutional 
areas as indicators of the performance levels accomplished. The 
outcome supply managerial insights concerning the performance of 
public hospitals and chances for superior resource apportionment in 
the healthcare field. The research in [40] assessed healthcare 
vulnerability utilising subjective and ambiguous environmental data 
for the health sector using the fuzzy TOPSIS for the impact of climate 
and air pollution in Korea. The work in [41] developed a classifica-
tion arrangement that concentrated on practical concerns about 
TOPSIS that categorised into application areas, publication year, 
journal name, authors’ nationality, and integrating other 
MADM/MCDM methods. The authors found that TOPSIS methodol-
ogy was applied successfully with many application domains. In 
[42], assessed the development of the best existing software solu-
tions on the medical information systems’ market by employing 
AHP-TOPSIS and reported that the best evaluated software isn’t 
really the best for the usage and development. On the base of the 
eco-environment, geographic and socio-economic factors in Hunan 
province, the paper in [43] proposed a framework to select a site of 
inland NPPs of China by adopting many MCDM methods, however, 
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the effectiveness of the TOPSIS was recommended in this study. The 
research in [44] described Hotel BEER project selection as an MCDM 
problem and Identified the optimal ranking to decrease energy 
consumption of building applying TOPSIS-based QUALIFLEX 
method to rank hotel projects. To prevent waste of research resources 
in the organisation, the work in [45] identified 191 topics and 
divided into many fields of healthcare along with planning and in-
formation technology using AHP- TOPSIS. The research in [46], 
proposed MCDM framework (i.e. entropy, AHP, and VIKOR) to aid 
the chemical manufacturing enterprise to select adequate sustainable 
supplier. The description of the other MCDM studies in term of aims, 
method and criteria used for various fields of study are shown in 
Table 2. 

Nowadays the priority matter is considered very challenges for 
different kind of medical perspectives [48–50]. Recently, the newest 
trend regarding to MCDM methods use is to combine two or more 
methods to recoup the weaknesses in a single method [51]. Entropy and 
TOPSIS have become a commonly integrated MCDM method [52,51]. 
For these explanation the utilisation of weights and target information to 
acquire the relative distances, the ability to offer complete ranking re-
sults, trade-off smoothing by managing nonlinear relationships, the 
straightforwardness at which it tends to be easy programmable method, 
and the reasonableness to be joined with stochastic analysis. In addition, 
the measurement test of the COVID-19 dataset reflects a clear require-
ment for adding an entropy method to the objective function or finding 
the suitable weights [53]. One MCDM methodology to overcome all 
above issues to apply and require high-level of stages were patients’ data 
is also required as presented in next section. 

3. Methodology 

The development methodology for decision-making solution in this 
study can be divided into three phases. The first phase is identification 
for the laboratory criteria, the new dataset with diversity emergency 
levels, and the propose decision matrix for prioritisation process. First 
phase engagement and outcome are to be utilised for the other phases. 
The second phase proposes a particular methodology to set objective 
weights to the multi-laboratory criteria for COVID-19 based on Entropy 
method. The aim of this phase is to investigate the most effected criteria 

for this virus. For the third phase, prioritise the all emergency situations 
of the infected patients with COVID-19 based on integrated Entropy- 
TOPSIS methods. The aim is to investigate ranking results of patients 
with COVID-19 and to compare the obtained results with the results 
presented in previous studies. Finally, the validation of the results 
objectively is presented in phase four. In this way, transferring the 
physicians’ preferences and experiences to an expert system can be 
proven to solve the mentioned challenges. The structure of the research 
methodology phases is shown in Fig. 1. 

3.1. Phase 1: identification 

Three essential stages have been presented in this phase. First, 
feature selection approaches for COVID-19 laboratory criteria is evalu-
ated and discussed based on real dataset to present the eight important 
criteria that affect the prioritisation process for patients with COVID-19. 
Second, the real and simulated dataset for patients with COVID-19 
depend on the selected criteria is presented. Third, the examined 
selected criteria, and patients of COVID-19 from the new dataset (real 
and simulated) are utilised to propose patients’ prioritisation decision 
matrix (DM). 

3.1.1. Feature selection for COVID-19 laboratory characteristics criteria 
In this paper, feature selection is carried out by selecting the critical 

laboratory criteria that form the root cause for the problem under 
consideration, which is the prioritisation of patients with COVID-19. The 
real COVID-19 dataset in the study [4] is used for experimentation. This 
criterion set includes 18 laboratory characteristics for eight patients. As 
mentioned previously, the study of [4] was significantly showed the 
extent of comprehensive coverage in the largest number of laboratory 
criteria. Two commonly approaches were employed for feature selection 
that comprise use of automatic feature selection mechanisms (i.e. 
data-driven) or expert judgment (i.e. knowledge-driven) [54,55]. Mean 
imputation also was used to replace missing values within the data with 
the mean value of that feature/variable. Because of contrasts in their 
implicit processes, the two common feature selection approaches may 
have their novel predispositions that conceivably lead to dissimilar 
order viability. The ANOVA, X2, and ReliefF algorithms [56–60], are 
used as a base to reduce the number of features (criteria) that are most 
valuable to a model. The results of the three algorithms are presented in 

Table 1 
Description of MCDM studies for COVID-19 prioritisation.  

Ref. Aim of the study Method used Criteria used Case study 

[31] Evaluation and 
benchmarking methodology 
to select the best classifiers 
for COVID-19 diagnosis 

Entropy–TOPSIS - Main criteria: time-complexity group reli-
ability, reliability  

- Sub-criteria: precision, f1-score, recall, 
average accuracy, error rate, TP, TN, FP, 
FN 

Public data sources from hospitals and 
physicians of chest X-ray and CT 
images for positive or suspected 
patients of COVID-19, MERS, SARS, 
and ARDS. 

[32]  - Characterise the most 
important risk factors of 
corona virus  

- Real-time monitoring of 
pandemic prevalence 

TOPSIS GMDH (Group Method of Data 
Handling) 

Important risk factors of COVID-19 Confirmed and death cases collected 
from website of (WHO) and some 
Government report between 31-Dec- 
2019 to 05-Apr-2020. 

[33] Remedial activity 
prioritisation 

AHP Social distancing, Hygiene, Shared 
individual things, Needless of touch-things, 
items of daily fresh food, and Immunity/ 
fitness 

Guidelines and safety measures from 
WHO and governing organisations of 
diverse countries 

[34] COVID-19 patient 
prioritisation dependent on 
their health conditions 

AHP and VIKOR laboratory examinations (CRP, eosinophil 
ratios, eosinophils, white blood cell count, 
lymphocyte ratios, lymphocytes, neutrophil 
ratios, neutrophils) 

Six patients with COVID-19 (included 1 
Asymptomatic Carrier with COVID-19) 

The 
presented 
Study 

Prioritisation and detection 
of asymptomatic carriers 
with COVID-19  

- Two feature selection approaches: 
automatic mechanisms (ANOVA, X2,

and ReliefF) and knowledge-driven 
(expert judgment)  

- ENTROPY–TOPSIS (MCDM)  
- Objective validation  

Multi-laboratory Characteristics (White 
blood cell count, count of Neutrophil, count 
of Lymphocyte, Haemoglobin, count of 
Blood platelet, Albumin, C-reactive protein, 
Interleukin 6) 

56 patients (included 8 asymptomatic 
carriers with COVID-19)  
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Fig. 2. Besides, to achieve knowledge-driven approach, specialists in the 
respiratory field with more than 10 years of experience give a subjective 
judgment for the importance of the important laboratory criteria. 
Table 3 concludes the most important eight criteria results for both 
approaches. 

In this study, the effectiveness criteria resulted from the two feature 
selection approaches were empirically evaluate in Fig. 2 and Table 3. 
The results of our evaluation suggest that the criteria elected by experts 
can improve the prioritisation process of the patients, while the subsets 
of features that selected by an automatic feature selection mechanism 
cannot predict the majority of the important criteria. This study criti-
cally examines the assumptions behind and the main justifications for 
this result. Firstly, the automatic feature selection mechanism can be 
defined as the procedure of selecting a certain feature from a massive 
collection of features residing within the data [61]. However, the ex-
periments for the feature selection algorithms was utilised on a limited 
number of eight patients with COVID-19′ data related to the study of [4]. 
Secondly, Fig. 2 shows variances among the features obtained from the 
three algorithms. Thirdly, the use of traditional algorithms for selecting 
features is dependent fundamentally on the correlation between features 
or their bond to the target feature. In our case, all features in principles 
that have the same importance and do not depend on the correlation of 
one feature to another or all the features with a specific target. Never-
theless, the medical expert didn’t satisfy the results obtained from 
feature selection mechanisms and no clear evidence that these criteria 
would actually affect the emergency health situation of patients with 
COVID-19. Therefore, adopting the expert opinion in feature selection is 
considered an optimal choice than using the traditional algorithms. The 
8 selected criteria from the expert judgment that presented in Table 3 
will be utilised for the next section. 

3.1.2. Real and simulation dataset for COVID-19 laboratory characteristics 
In this research, we base our study on real and simulated dataset of 

patients with COVID-19. As mentioned previously, the real data for 8 
infected patients are derived from the study of [4]. The rang of age for 

Table 2 
Description of MCDM studies in prioritising other fields.  

Ref. Aim of the 
study 

Method used Criteria used Case study 

[37] Selection and 
evaluation of 
mHealth 
applications 

AHP, fuzzy 
TOPSIS 

User satisfaction, 
quality of 
information, 
compatibility, 
functionality, 
security, ease of 
access, 
responsiveness, 
and ease of 
learning and 
understanding 

Numerical case 
example for 
different 
mHealth 
applications 

[38] settlement 
solution 
Drawing for an 
MAGDM 
problem 
through HFLTSs 

VIKOR, 
TOPSIS 

public approval, 
waste residuals, 
released-with- 
effects of health, 
reliability, 
treatment- 
usefulness, Net- 
cost-per-tonne 

Example rely on 
the valuation of 
a health-care 
waste disposal 
management 
system defined 
in Shanghai, 
China case 
study [47] 

[39] Experimental 
guide on 
hospital 
services’ 
performance to 
estimate 
performance 
levels’ 
prediction 

TOPSIS, 
Neural 
Networks 

Inputs – TOPSIS 
criteria Surgical- 
beds, beds for 
clinical, life- 
support 
equipment, image 
diagnosis 
equipment, No. of 
nurses, No. of 
physicians, Total 
No. of 
professionals 

Public hospitals 
from 92 
municipalities 
of Rio de 
Janeiro, for a 
period from 
2008 to 2013 

[40] -Vulnerability 
assessment of 
the health 
effects caused 
by climate 
variation 
-Validity of the 
vulnerability 
assessment 
results and the 
occurrence rate 
of 
cardiovascular 
patients 

Fuzzy 
TOPSIS 

Meteorological, air 
pollution, 
vulnerable group, 
vulnerable 
environment, 
disease 
distribution, 
socioeconomic- 
capacity, health/ 
medical-capacity, 
air-pollution 
control 

Climate and air 
pollution data 
from South 
Korea in 2010 

[41] Ranking 
variances 
between the 
TOPSIS and 
other MCDM 
approaches 

TOPSIS Combined-other- 
methods, year of 
publication, 
publication of 
journal, 
nationality of 
author 

266 papers 
about TOPSIS 
applications 
published since 
2000 in 103 
journals of 
scholarly 

[45] Research 
priorities 
ranking for 
organization of 
military health 

AHP, TOPSIS Time priority, 
accordance with 
organizational 
goals, applicability 
and usefulness 

Cross-sectional 
study done in 
2013 (clinics of 
a military 
health 
organization in 
Iran) 

[42] efficiency 
estimation of 
the health 
information 
systems in 
health care 
services and 
delivery 

AHP-TOPSIS  - Number of users 
of information 
systems  

- Data redundancy  
- Monthly growth 

of 
interoperability 
rates  

- Rate of return on 
investment  

- Monthly 
growing of the 

top 20 of the 
most used 
software 
solutions at the 
beginning of 
2016 (from 
Electronic 
Health Record)  

Table 2 (continued ) 

Ref. Aim of the 
study 

Method used Criteria used Case study 

employment of 
data (big data)  

- Valuation of 
compliance with 
HIPPA principles 

[43] Selection of 
Power Plant 
Site of Inland 
Nuclear under 
Z-numbers 

Z -number 
-BWM, Z 
-number 
-DEMATEL, 
and Z 
-number 
-TOPSIS 

Eco-environment, 
physical 
geography, socio- 
economics 

Hunan Province 
of China 

[44] Rank the hotel 
BEER projects 

Fuzzy 
TOPSIS- 
based 
QUALIFLEX 
method, (LD- 
PFOWA) 

Project 
management, 
Project nuancing, 
EPC- innovation, 
supportable 
progress, 
measurement, 
verification, 
preparation of 
workable 
development 
strategy, 
contracting, 
external economics 

Hotel BEER 
project 
selection 
problem for 
energy service 
company 

[46] Manage 
(Sustainable 
supplier 
selection) 
problems 

Picture fuzzy 
exponential 
entropy, 
VIKOR 

, environmental 
and social SSS 
evaluation criteria 

Chemical 
manufacturing 
enterprise, 
China  
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these eight patients was 26–72 years. There were five females and three 
males. One patient had hypothyroidism and anther had obsolete pul-
monary tuberculosis. The eight patients in this dataset were asymp-
tomatic infection and his RT-PCR of SARS-CoV-2 tested positive. The 
patients had no symptoms and their chest CT was almost normal with no 
viral infection signs. The dataset for the COVID-19 in the literature 
either presented with limited number of patients or lack to use sufficient 
laboratory criteria that affect the prioritisation process [62,63]. Most of 

the studies did not include enough laboratory patients’ data. To reduce 
this gap, we propose simulated dataset to increase the number of pa-
tients to 56 based on medical perspective and dependent on reliable 
laboratory reference rages. Therefore, a specialised expert in the respi-
ratory field with more than ten experience years also gives a subjective 
judgment and validated the simulated laboratory characteristics mea-
sures. The development of consensus among experts to review the new 
dataset at the same time is challenging, and the process between data 

Fig. 1. Methodology phases.  

Fig. 2. The obtained results from three automatic feature selection algorithms.  
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generation and data validation can take a long time. Therefore, this 
study is content with only 48 of patients’ data generation. In these 
contexts, the real and simulated laboratory characteristics dataset is 
presented Table 4. The first eight patients are considering the real 
dataset, while the other measures are the simulated dataset. The refer-
ence range for each criterion is considered a guidance medical indicator 
for the patient’s emergency level and also shown in the same table. 
Therefore, the simulation dataset adopted based on the mentioned 
reference ranges to include different emergency levels such as mild, 
sever, and critical. Asymptomatic carriers infection marked with (*) sign 
based on derived dataset as mentioned in study of [4]. For more 
description about the laboratory criteria the reader referred to refer-
ences [18,64–69]. 

3.1.3. Propose DM 
This section presents the proposal of patients’ prioritisation DM. New 

DM based approach can give guidance on prioritisation for all emer-
gency health conditions. The asymptomatic carriers and other emer-
gency levels such mild, sever, and critical for the infected patients must 
be evaluated and distinguished based on the selected criteria. In this 
regard, the DM is revealed in Table 5. 

The proposed DM constructed based on intersection between “Multi- 
Laboratory Characteristics criteria” and “COVID-19 infected patients 
list”. However, according to the problems of patients with COVID-19′

prioritisation that mentioned in the introduction part, the integration 
between the two decision-making methods (i.e. Entropy and TOPSIS) 
considered a substantial approach to decrease the problem complexity. 

3.2. Phase 2: setting weights for laboratory characteristics COVID-19 
criteria 

A detailed description of weighting attribute based on Entropy is 
presented in the steps below. In general, evaluation criteria can be 
categorised into two types: benefit criteria and cost criteria. Benefit 
criterion means that a bigger value is more valuable whereas cost 
criteria are just the opposite. From a medical point of view consider-
ation, all criteria of laboratory characteristics are considered benefit 
criteria except (C7=C-reactive protein) which considered a cost crite-
rion. “The data in have different dimensions, thus it needs to be nor-
malised when needed within Entropy method in order to transform 
various criterion dimensions into the non-dimensional criterion, which 
allows comparison across the criteria” [70]. The problem of determi-
nation of evaluation criteria weights objectively can be solved by En-
tropy method. In MCDM problems “one of the toughest jobs is to assign 
weights accurately to the different criteria with respect to which the 
alternatives are to be ranked” [71,72]. According to [73]“The Entropy 
method is a generic form of Monte Carlo simulation which is applied in 
complicated estimation and optimisation problems for minimising the 
error”. Besides, TOPSIS is used in the next phase for complete the pri-
oritisation process based on the constructed weight from Entropy 
method. For this, the flowchart of integrated Entropy-TOPIP methods is 
illustrated in Fig. 3. Furthermore, Entropy method steps’ details are 
explained in below: 

STEP 1: Establish a Matrix between Criteria and Alternatives 
The system can be viewed as MCDM with (m) and (n) that represent 

alternatives and criteria respectively. This can be represents in matrix 
using Eq. (1) [74]: 

The system can be viewed as MCDM with (m) and (n) that represent 
alternatives and criteria respectively. This can be represents in matrix 
using Eq. (1) [74]: 

D =

C1 C2 ⋯ Cn
A1
A2
⋮

Am

⎡

⎢
⎢
⎣

x11 x12 ⋯ x1n
x21 x22 ⋯ x2n
⋮ ⋮ ⋱ ⋮

xm1 xm2 ⋯ xmn

⎤

⎥
⎥
⎦

(1)  

W = (w1,w1,…,wn)

Where “A1, A2, Am” represent alternatives “C1, C2, ...,Cn” are the 
evaluation criteria and the performance evaluation of alternatives Ai 
under Cn criterion is represented by xij, and wn represents the weight of 
the criterion Cn that fulfilling weights’ summation equal one. 

STEP 2: Normalised DM for each Criterion 
There is a need to normalise the data in DM to transform different 

criterion dimensions into the non-dimensional criterion; this allows 
comparison across the criteria. Normalised DM is computed by Eq. (2) 
[75]: 

Pij =
xij

∑m
i=1 xij

, J ∈ [1..n] (2) 

STEP 3: Determinations of Evaluation Criteria Weights 
The entropy value ej can be measured for each criterion using Eq. (3) 

[76]: 

ej = −
1

ln(m)

∑m

i=1
pij ln

(
pij
)
, i ∈ [1,m], j ∈ [1, n] (3) 

STEP 4: Calculating the Diversity Degree 
The degree of information diversity implicated by every criterion 

should be computed in this step using Eq. (4) [76]: 

dj = 1 − ej, j ∈ [1, n] (4) 

STEP 5: Calculate Weights 
For each criterion weights is given by Eq. (5) [76]: 

wj =
dj

∑n
j=1 dj

, j ∈ [1, n] (5)  

3.3. Phase 3: prioritisation COVID-19 patients 

TOPSIS is used in the prioritisation process due to it is suitability for 
dealing with several attributes and to identify the most suitable alter-
natives (Asymptomatic carriers). The available alternatives (infected 
patients) are scored in descending order, and the most urgent patients 
are ranked depend on TOPSIS. The aggregate score provides an idea on 
which patients should be given more urgent attention than others. As 
with other ranking options, relying on people to rank the most urgent 

Table 3 
Criteria selected by three feature selection algorithms and expert judgment.   

Data-Driven Approaches Knowledge-Driven Approach  

Criteria Selected  Criteria Selected  Criteria Selected  Criteria Selected 

ANOVA 

Albumin 

X2  

Albumin 

Relief 

Alanine aminotransferase 

Expert Judgment 

White blood cell count 
Alanine aminotransferase Aspartate aminotransferase Total bilirubin Neutrophil count 
Aspartate aminotransferase White blood cell count Albumin Lymphocyte count 
White blood cell count Creatinine Aspartate aminotransferase Haemoglobin 
Total bilirubin Interleukin 6 White blood cell count Blood platelet count 
Creatinine Neutrophil count Creatinine Albumin 
Interleukin 6 C-reactive protein Interleukin 6 C-reactive protein 
Lactic dehydrogenase D dimer Lactic dehydrogenase Interleukin 6  
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case is always possible. TOPSIS assigns the rank to each patient depend 
on geometric distance from negative and positive ideal solutions. High- 
emergency patients would have “the shortest geometric distance to the 
ideal positive solution and the longest geometric distance to the ideal 
negative solution according to this technique (i.e. highest value amongst 
others)” [77]. The steps of TOPSIS [77] are illustrated as follows: 

Step 1: Construct the normalised decision matrix 
This process attempts to transform the dimensions of various attri-

butes (vital features) into non-dimensional attributes and perform a 
comparison. The matrix(xij)_(m*n) is normalised from(xij)_(m*n) to the 
matrix R=(rij)_(m*n)via the normalisation method as shown in Eq. (6)”: 

rij = xij

/ ̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
x2

ij

√

(6) 

This step will produce a new matrix R, where R is as follows: 

R =

⎡

⎢
⎢
⎣

r11 r12 ⋯ r1n
r21 r22 ⋯ r2n
⋮ ⋮ ⋮ ⋮

rm1 rm2 ⋯ rmn

⎤

⎥
⎥
⎦ (7) 

Step 2: Construct the weighted (scoring points) and normalised de-
cision matrix 

Table 4 
Real and simulated dataset of multi-laboratory characteristics measurement for patients with COVID-19.  

Multi-Laboratory 
Characteristics 
Measurement 

White blood cell 
count 

Neutrophil 
count 

Lymphocyte 
count 

Haemoglobin Blood platelet 
count 

Albumin C-reactive 
protein 

Interleukin 
6 

Reference ranges (3.5–10.5 × 109/ 
L) 

(2.0–7.5 × 109 
/L) 

(1.5–4.5 × 109 
/L) 

(138–172 g/ 
L) 

(150–400 × 109 
/L) 

(40–55 g/ 
L) 

mg/L (<8) (0–7 pg/mL) 

Patient-1 * 5.57 2.94 2.37 134 268 43.3 5 1.78 
Patient-2 * 5.69 3.16 1.61 120 225 46.9 2.7 2.03 
Patient-3 * 5.83 4.18 1.19 135 345 46.5 0.4 1.55 
Patient-4 * 6.5 3.82 1.99 128 159 38.4 3.9 3.27 
Patient-5 * 5.53 1.94 2.82 140 189 41 2 6.84 
Patient-6 * 5.71 59.2 1.59 152 166 42.6 1.6 3.83 
Patient-7 * 5.97 4.24 1.35 107 216 40.5 2.6 2.97 
Patient-8 * 4.97 2.89 1.44 149 174 45.3 2.6 1.5 
Patient-9 9.441 2.9706 2.098 137.06 175.44 54.672 5.245 3.096 
Patient-10 4.196 6.9314 3.147 139.73 344.688 51.456 3.147 1.032 
Patient-11 9.441 5.9412 4.196 152.19 331.272 43.952 3.147 1.032 
Patient-12 6.294 5.9412 4.196 127.27 293.088 51.456 6.294 5.16 
Patient-13 10.49 6.9314 3.147 142.4 307.536 52.528 4.196 1.032 
Patient-14 8.392 3.9608 3.147 132.61 202.272 47.168 7.343 1.032 
Patient-15 7.343 4.951 3.147 127.27 340.56 55.744 3.147 1.032 
Patient-16 6.294 4.951 2.098 140.62 223.944 42.88 3.147 2.064 
Patient-17 10.49 5.9412 2.098 134.39 211.56 58.96 6.294 2.064 
Patient-18 9.441 6.9314 3.147 141.51 315.792 42.88 3.147 7.224 
Patient-19 4.196 4.951 3.147 124.6 309.6 47.168 4.196 6.192 
Patient-20 6.294 1.9804 3.147 133.5 195.048 51.456 1.049 5.16 
Patient-21 5.245 5.9412 3.147 141.51 214.656 53.6 2.098 4.128 
Patient-22 6.294 4.951 4.196 127.27 177.504 55.744 2.098 2.064 
Patient-23 4.196 6.9314 4.196 131.72 272.448 55.744 3.147 3.096 
Patient-24 9.441 2.9706 2.098 122.82 196.08 53.6 7.343 2.064 
Patient-25 8.392 5.9412 2.098 146.85 373.584 55.744 6.294 5.16 
Patient-26 4.196 1.9804 4.196 137.95 173.376 55.744 6.294 2.064 
Patient-27 4.196 5.9412 2.098 141.51 328.176 47.168 5.245 4.128 
Patient-28 7.343 3.9608 3.147 124.6 392.16 52.528 1.049 3.096 
Patient-29 9.441 6.9314 3.147 137.95 365.328 58.96 6.294 1.032 
Patient-30 4.196 6.9314 3.147 146.85 357.072 48.24 5.245 4.128 
Patient-31 7.343 2.9706 3.147 131.72 184.728 47.168 6.294 1.032 
Patient-32 8.392 5.9412 4.196 141.51 362.232 49.312 4.196 6.192 
Patient-33 5.245 1.9804 3.147 122.82 195.048 42.88 5.245 1.032 
Patient-34 9.441 1.9804 2.098 123.71 293.088 48.24 4.196 1.032 
Patient-35 6.294 3.9608 4.196 151.3 306.504 42.88 5.245 5.16 
Patient-36 10.49 1.9804 3.147 152.19 398.352 43.952 6.294 2.064 
Patient-37 7.343 5.9412 4.196 144.18 376.68 42.88 3.147 2.064 
Patient-38 7.343 6.9314 2.098 145.07 334.368 58.96 7.343 7.224 
Patient-39 6.294 3.9608 2.098 146.85 404.544 54.672 4.196 1.032 
Patient-40 6.294 4.951 2.098 129.05 288.96 52.528 2.098 2.064 
Patient-41 10.49 6.9314 3.147 126.38 367.392 49.312 5.245 7.224 
Patient-42 4.196 5.9412 3.147 143.29 180.6 54.672 2.098 6.192 
Patient-43 4.196 3.9608 2.098 145.96 203.304 58.96 3.147 2.064 
Patient-44 9.441 4.951 2.098 141.51 278.64 54.672 2.098 6.192 
Patient-45 7.343 2.9706 2.098 123.71 299.28 48.24 7.343 3.096 
Patient-46 10.49 5.9412 4.196 145.07 198.144 55.744 1.049 5.16 
Patient-47 9.441 6.9314 2.098 143.29 286.896 54.672 5.245 6.192 
Patient-48 7.343 2.9706 4.196 150.41 312.696 58.96 3.147 1.032 
Patient-49 8.392 6.9314 2.098 126.38 266.256 56.816 1.049 5.16 
Patient-50 5.245 4.951 2.098 143.29 177.504 52.528 6.294 1.032 
Patient-51 6.294 3.9608 4.196 123.71 359.136 45.024 6.294 3.096 
Patient-52 6.294 1.9804 2.098 149.52 261.096 51.456 6.294 7.224 
Patient-53 5.245 5.9412 4.196 149.52 362.232 46.096 7.343 1.032 
Patient-54 8.392 6.9314 3.147 153.08 238.392 48.24 4.196 4.128 
Patient-55 4.196 6.9314 2.098 136.17 327.144 47.168 5.245 4.128 
Patient-56 8.392 3.9608 3.147 125.49 402.48 55.744 6.294 6.192  
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In this process, “the weights for each attribute are calculated ac-
cording to the Entropy method, a set of weights w = w1, w2, w3 ,⋯,wj,

⋯, wn from the decision-maker is accommodated to the normalised 
decision matrix; the resulting matrix can be calculated by multiplying 
each column of the normalised decision matrix R with its associated 
weight wj” . The set of the weights is equal to1, as illustrated in Eq. (8). 

∑m

j=1
wj = 1 (8) 

This step will produce a new matrix V, where V is as follows: 

V =

⎡

⎢
⎢
⎣

v11 v12 ⋯ v1n
v21 v22 ⋯ v2n
⋮ ⋮ ⋱ ⋮

vm1 vm2 ⋯ vmn

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

w1r11 w2r12 ⋯ wnr1n
w1r21 w2r22 ⋯ wnr2n

⋮ ⋮ ⋮ ⋮
w1rm1 w2rm2 ⋯ wnrmn

⎤

⎥
⎥
⎦ (9) 

Step 3: Locate the ideal and negative ideal solutions 
In this process, the two alternatives, namely, “A* (ideal alternative) 

and A- (negative ideal alternative)”, are determined by the Eq.s(10) and 
(11), respectively: 

A* =

{((

max
i

vij|j ∈ J
)

,

(

min
i

vij|j ∈ J−

)

|i = 1, 2,…m
)}

=
{

v∗1, v∗2,…, v∗j ⋯v∗n
} (10)  

A− =

{((

min
i

vij|j ∈ J
)

,

(

max
i

vij|j ∈ J−

)

|i = 1, 2,…m
)}

=
{

v−1 , v
−
2 ,…, v−j ⋯v−n

} (11)  

where" J is “a subset of {i = 1, 2,…,m}, which presents the benefit 
attribute (i.e. offering an increasing utility with its higher values), and 
J− is the complement set of J, the opposite could also be added for the 
cost attribute as denoted by Jc” . 

Step 4: Compute the separation measurement depend on the 
Euclidean distance. 

Table 5 
Prioritisation DM.  

Multi-Laboratory Characteristics 
Criteria C1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 
Patients 

Patient-1 C1 / P1 C2 / P1 C3/P1 C4 / P1 C5 / P1 C6 / P1 C7/ P1 C8 / P1 
Patient-2 C1 / P2 C2 / P2 C3/P2 C4 / P2 C5 / P2 C6 / P2 C7 / P2 C8 / P2 
Patient-3 C1 / P3 C2 / P3 C3/P3 C4 / P3 C5 / P3 C6 / P3 C7 / P3 C8 / P3 
. . . . . . . . . 
. . . . . . . . . 
Patient-56 C1 / P56 C2 / P56 C3 / P56 C4 / P56 C5 / P56 C6 / P56 C7 / P56 C8 / P56 

“C1= White blood cell count, C2= Neutrophil count, C3= Lymphocyte count, C4= Haemoglobin, C5= Blood platelet count, C6=
Albumin, C7= C-reactive protein, C8= Interleukin 6, P = Patient”. 

Fig. 3. Flowchart of integrated Entropy-TOPSIS methods.  
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A separation measurement is performed by calculating the distance 
between each alternative in V and the ideal vector A* with the Euclidean 
distance which is assumed by Eq.(12) as follows: 

Si∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v∗j

)2
√
√
√
√ , i = (1, 2,…m) (12) 

For each alternative in ‘V from the negative ideal A-’, the separation 
measurement is given by Eq. (13) as follows: 

Si− =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
vij − v−j

)2
√
√
√
√ , i = (1, 2,…m) (13) 

At the end of step 4, the values S_(i*) and S_(i-) for each alternative 
were calculated. The two values characterise the distance between each 
alternative and both the ideal and negative ideal. 

Step 5: Compute the closeness to the ideal solution. 
The closeness of A_i to the ideal solution A* is defined as described in 

Eq. (14): 

Ci∗ = Si− /(Si− + Si∗ ), 0 < Ci∗ < 1, i = (1, 2,…m) (14)  

“C_ (i*) = 1, if and only if (A_i = A*). Similarly, C(i*) = 0, if and only if 
(A_i = A-).”. 

Step 6: Optimise patients according to their closeness to the ideal 
solution. 

“The set of patients〖 A〗_i can now be optimised in the descending 
order of 〖C〗_ (i*); the highest value indicates the optimal 
performance”. 

3.4. Phase 4: objective validation 

The results are validated by employing the objective validation in 
accordance with previously described methods presented in [78,79]. 
The following steps were conducted to ensure that the results were 
statistically ranked:  

1 Final prioritisation results are categorised into four equal groups. 
Each group contains on fourteen patients. However, the number of 
the alternative number within each group does not affect the vali-
dation result [80,81].  

2 The mean ± standard deviation (M ± STD) of each group is obtained 
on the basis of the normalisation of the patient datasets. The 1st 
group is statistically proven to be the highest amongst all other 
groups. The 2nd group should prove to be lower than or equal to 
those of the 1st group. The 3rd group must be lower than those of the 
1st and 2nd groups or equal to those of the 2nd group. The 4th group 
should be lower than those of the 1st, 2nd and 3rd groups or equal to 
those of the 3rd group [82]. 

Eq. (15) indicates the mean (x) that represents the average as the sum 
of all the observed results from the sample divided by the total number 
(n): 

x =
1
n
∑n

i=1
xi, (15) 

Eq. (16) presents the measurement of the standard deviation to 
quantify the variation amount or dispersion of a set of data values. 

s =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N

i=1
(xi − x)2

√
√
√
√ (16)  

4. Results and discussion 

This section outlines the results of the prioritisation framework. First 

of all, the results of objective criteria weights of the eight multi- 
laboratory characteristics based on the Entropy method is presented. 
Then after, TOPSIS are adopted to provide the final rank for patients 
considering the weights of multi-criteria for laboratory characteristics. 
Furthermore, the results of the objective validation are presented. 
Finally, the discussion of the results based on the integrated AHP- 
TOPSIS methods is presented. The sequences of results described as 
follows. 

4.1. Weighting result of laboratory characteristics based on Entropy 

After applied all steps illustrated in Section “Entropy for Setting 
Objective Weights”, the sequence results and the final laboratory char-
acteristics weights are listed in Table 6. The weight chart is presented in 
Fig. 4. 

4.2. TOPSIS prioritisation results 

In this stage, TOPSIS is used to prioritisation patients with COVID-19 
and can characterise the most appropriate option. In addition, the En-
tropy method will derive the overall weights. The set of patients are 
ranked in descending order starting from the critical health condition 
ending with the mild condition. The prioritisation process for the 56 
patients reported in this section. The final results of integrated Entropy- 
TOPSIS are illustrated in Table 7 based on objective weight by Entropy 
method. The first eight patients are the asymptomatic carriers and 
marked with (*) to be further discussed. 

As shown in the Table 7, the patients’ final score are assigned for 
each according to TOPSIS method. The highest score indicates that the 
patient in worst health condition. On the contrary, the lowest score 
indicated that this patient is the best health condition among others. The 
patients gain their orders based on descending phenomena [77]. 
Further, the results will be discussed in terms of claim points in section 
(4.5). 

4.3. Validation results 

In this section, and as explained in phase 4, the objective validation 
can be constructed by dividing the prioritisation results into four equal 
groups. Each group comprised 14 patients. Mean ± STD is calculated for 
each group based on the normalisation scores generated by the TOPSIS 
process to ensure that the prioritised patients undergo systematic 
ranking. The prioritisation results presented in Table 7 above are 
visualised in graphical formats (Fig. 5) after categorised into four groups 
based on descending patients’ scores to further discuss their 
comparisons. 

Initial observation of the ranking results of the four patient groups 
show that the patient groups are systematically distributed as the 
ranking results of the 2nd group start from the end of the ranking results 
of the 1st group and so on for other groups. As shown in Fig. 6, the 
statistical analysis was performed among the groups, and Eq.s (15) and 
(16) are applied to obtain the M ± STD. In the 1st group, the value is M =
0.20 ± 0.017. The 1st group was the highest-scoring among the four 
groups. The 2nd and 3rd groups had the same values of M = 0.018 ±
0.003 and had lower scores than the 1st group but higher scores than the 
4th group. The 4th group had a value of M = 0.016 ± 0.002 and 
considered the lowest scores among the four groups. Thus, the statistical 
results indicate that the ranking results underwent systematic ranking. 

4.4. Discussion and claim points 

From the medical perspective, the selected laboratory criteria have 
been commonly circulated in diagnostic virology and have generated 
few false-positive results [83]. The chance to recognise the health situ-
ation for infected patients with COVID-19 dependent on included eight 
criteria are considered highly significant [83,7]. The criteria weights are 
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constructed by utilising real patients’ data by Entropy for the first time 
in this study as shown in Table 6. To acquire using the aim higher 
process to implement a prioritisation of patients in COVID-19, we pre-
sent a new simulation dataset by an expert based on a standard medical 
reference ranges as shown in Table 4. The generation process of such 

patients’ laboratory data included several runs intended to surpass 
limitations founded in the literature about the limited data samples of 
patients with COVID-19. At this point, the reporting results of the pa-
tients’ prioritisation can meet our research question by the TOPSIS 
method especially for the cases of patients (1) to (8) (Asymptomatic 

Table 6 
Multi-laboratory criteria and weights according to entropy.  

Multi-laboratory Criteria C1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 

Entropy 0.00117 0.00086 0.00099 0.00131 0.00110 0.00129 0.00143 0.00043 
Degree of Diversity 0.99883 0.99914 0.99901 0.99869 0.99890 0.99871 0.99857 0.99957 
Final Weights 0.12499 0.12503 0.12501 0.12497 0.12500 0.12497 0.12496 0.12508  

Fig. 4. Multi-laboratory characteristics weights chart based on Entropy.  

Table 7 
Patients Prioritisation results based on integrated Entropy-TOPSIS.  

Patients C_(i*) 
Final Score 

Prioritisation order Patients C_(i*) 
Final Score 

Prioritisation orders 

Patient.1* 0.11576353 55 Patient.29 0.18974366 35 
Patient.2* 0.1566184 47 Patient.30 0.18813267 37 
Patient.3* 0.22474058 19 Patient.31 0.21778208 22 
Patient.4* 0.14284989 52 Patient.32 0.11366058 56 
Patient.5* 0.22652304 17 Patient.33 0.19366277 33 
Patient.6* 0.80139593 1 Patient.34 0.24772896 10 
Patient.7* 0.15106112 48 Patient.35 0.20135777 31 
Patient-8* 0.1316362 53 Patient.36 0.18079573 42 
Patient.9 0.17348503 44 Patient.37 0.18082765 40 
Patient.10 0.25244966 9 Patient.38 0.17047042 46 
Patient.11 0.18080876 41 Patient.39 0.22404457 20 
Patient.12 0.25842548 5 Patient.40 0.21198729 24 
Patient.13 0.24421914 12 Patient.41 0.24169691 13 
Patient.14 0.23267098 16 Patient.42 0.14509157 50 
Patient.15 0.25791067 6 Patient.43 0.20241879 30 
Patient.16 0.18318402 38 Patient.44 0.25718751 7 
Patient.17 0.18164462 39 Patient.45 0.20116892 32 
Patient.18 0.14366012 51 Patient.46 0.22327042 21 
Patient.19 0.19245807 34 Patient.47 0.27143174 2 
Patient.20 0.20735241 28 Patient.48 0.21150921 25 
Patient.21 0.27041505 3 Patient.49 0.18849281 36 
Patient.22 0.20981639 26 Patient.50 0.21729405 23 
Patient.23 0.17246897 45 Patient.51 0.20559879 29 
Patient.24 0.23783985 15 Patient.52 0.20858765 27 
Patient.25 0.25383109 8 Patient.53 0.22601953 18 
Patient.26 0.14894843 49 Patient.54 0.25965293 4 
Patient.27 0.17511999 43 Patient.55 0.24675968 11 
Patient.28 0.23956294 14 Patient.56 0.12628451 54  
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Carriers) which gain different orders as shown in Table 7. However, the 
short claim points below may verify the significance and advantages of 
the prioritisation technique and possibly affect the decision satisfaction 
of clinical staff about asymptomatic carriers in real life.  

• Detection based prioritisation for asymptomatic carriers: according 
to the medical analysis reported in [4], the eight patients had no 
symptoms and most of their laboratory measures had normal and 
others were slightly high therefore they represent a new challenge to 
hospitals and medical staff as mentioned [4]. Besides, similar prob-
lems also reported in numerous studies as in [19,7]. The presented 
methodology carried out the prioritisation of patients with different 
health conditions and can identify a score for each case. In these 

contexts, the detection and differentiation process for such asymp-
tomatic carriers among other infected patients is accomplished.  

• Estimation of health conditions management using MCDM: on one 
hand, TOPSIS is prioritising patients in descending order, the 
maximum C_(i*) value will be the most critical health condition 
among others and vice versa. On the other hand, Patient 6 is one of 
the asymptomatic carriers of COVID-19 and gains order 1 with a 
highest score value (0.80139593) and this gives conclusive evidence 
that he has the worst healthy situation. After analysing his laboratory 
characteristics data by medical expert, we noticed that his measure 
in C2 is (59.2), while the reference rage of such criteria is (2.0–7.5 ×
109 /L) which considered a very critical situation that put him in the 
first prioritisation order. For this reason, the reported mild 

Fig. 5. Results of four groups of patients. (A)1stgroup.(B) 2ndgroup.(C) 3rdgroup.(D)4thgroup.  

Fig. 6. Bar Charts for Mean Results for Four Groups of Patients.  
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classification for asymptomatic carriers has been refuted by our re-
sults. After reviewed the historical medication of several asymp-
tomatic carriers in published articles, they were returned to the 
hospital after they discharge because of their deteriorating health. 
On the contrary, Patients 2, 7, 4, and 8 gain the minimum C_ (i*) 
value and come within last orders because of their laboratory char-
acteristics data were normal. Furthermore, the experts give their 
subjective judgment for the overall ranking results especially for the 
first ten and last ten patients’ orders and satisfy the health conditions 
based on ranks. For this, a patient management path must incorpo-
rate the presented framework to consider the above significant im-
plications of our prioritisation results. 

• Effects of the selected Laboratory characteristics for hospital-
isation: the recovery of COVID-19 might take a long period of time; 
the course of some patients had persisted more than 90 days from the 
onset of the first symptom. According to our results, the detection of 
the health condition justifies the importance of handling laboratory 
characteristics measurements more than symptoms for hospital-
isation characteristics. The presented framework can support the 
specialists in this filed after create a repository to include the his-
torical patients’ data of the 8 laboratory criteria, then, the emergency 
level for each patient condition can be detected and recognised.  

• Support Clinical rule towards patients’ discharge: Although the RT- 
PCR test is highly recommended to detect the infected patients to-
wards discharge decision from the hospital, a high proportion of 
false-negative of RT-PCR test results might be occurred due to several 
reasons such as the source/method of samples collected, sample 
transportation, test operation…etc. [84,85]. Thus, the discharge of 
patients cannot be considered only by RT-PCR positive tests. In this 
context, the functionality of the presented DM is integrated the 
laboratory measurements for reporting the patient health condition. 
So, the discharge decision must incorporate the prioritisation orders 
where the health condition could be recognised by our new 
technique. 

Our proposed methodology can differentiate mild, serious or critical 
condition of infected patients and place them in a queue based on in-
tegrated decision-making. The increasing number of infected patients 
with this virus confuses the global medical policy on how to detect and 
prioritise all health conditions. The integrated entropy–TOPSIS can be 
effectively utilised to overcome these challenges. Specialists and inter-
ested parties in this field can benefit from the proposed method. 
Including additional criteria or changing the weights by using another 
MCDM method can be accomplished by following the conceptual 
framework. 

5. Conclusion 

This paper presents a new framework that addresses the challenges 
of prioritisation for COVID-19-infected patients based on multi- 
laboratory criteria based on integrated MCDM. The most effective 
criteria for such domain are investigated for the first time by using two 
approaches, and the weight for each criterion is assigned by objective 
MCDM (i.e. entropy). Patient prioritisation is achieved using a new 
dataset (real and simulation) established with TOPSIS, and the obtained 
results undergo systematic ranking through defined objective valida-
tion. The proposed methodology has the resilience to adaptive or 
extended/additional criteria and even changes the subjective judgment 
from the medical experts by following the same phases described in this 
study. The claim points of the results are discussed to transfer knowledge 
between multi-dimension domains (i.e. artificial intelligence and med-
ical). This study has the following limitations. The data of asymptomatic 
carriers are limited to eight patients, and the simulation patient’s data 
are only from 48 patients due to consensus challenges among experts. In 
future works, the dataset sample could be increased to show the effec-
tiveness of the priority process in deep analysis. Other MCDM methods 

for setting the weights and ranking patients can also be employed to 
establish a conclusion and construct a COVID-19 triage method. In these 
contexts, the machine learning algorithm can be utilised as a supervised 
learning method to predict the severity of COVID-19 infections 
depending on laboratory data and rapid diagnosis for the selection of 
appropriate treatment protocols. The most preferable algorithm with 
high accuracy should be selected. 
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