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Abstract
Infectious diseases and nosocomial infections may play a significant role in healthcare issues associated with biomedi-
cal materials and devices. Many current polymer materials employed are inadequate for resisting microbial growth. The 
increase in microbial antibiotic resistance is also a factor in problematic biomedical implants. In this work, the difficulty 
in diagnosing biomedical device-related infections is reviewed and how this leads to an increase in microbial antibiotic 
resistance. A conceptualization of device-related infection pathogenesis and current and future treatments is made. Within 
this conceptualization, we focus specifically on biofilm formation and the role of host immune and antimicrobial therapies. 
Using this framework, we describe how current and developing preventative strategies target infectious disease. In light 
of the significant increase in antimicrobial resistance, we also emphasize the need for parallel development of improved 
treatment strategies. We also review potential production methods for manufacturing specific nanostructured materials with 
antimicrobial functionality for implantable devices. Specific examples of both preventative and novel treatments and how 
they align with the improved care with biomedical devices are described.
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Introduction

Over half of the nearly two million medical care-associated 
infections can be attributed to indwelling biomedical devices 
[1]. This accounts for around 25% of all health care-associ-
ated infections increases mortality and raises morbidity sub-
stantially [2]. Not only the infection but also the rising rates 
of multidrug-resistant bacteria due to widespread antibiotic 
use increase the need for multimodality approaches to reduce 
the infections that require their use [3]. Recent industrial 
and academic research efforts have focused on the develop-
ment of nanostructured materials and other novel materials 
for use in biomedical devices, including medical prostheses, 
implantable biosensors, and drug delivery devices. Nano-
structured materials are defined as materials that contain 
clusters, crystallites, molecules, or other structural elements 

with dimensions in the 1 nm–100 nm range [3]. Recent 
advances in the use of nanostructured materials for medical 
applications have resulted from two motivations. First, there 
is a natural evolution to nanoscale materials as novel pro-
cessing, characterization, and modeling techniques become 
available. Second, specific interactions between biological 
structures (e.g., enzymes and other proteins) and nanostruc-
tured materials may allow for devices with unusual function-
alities to be developed.

Infections in Medical Devices

The more common infections seen in the medical literature 
are from foreign materials placed in the brain, vascular cath-
eters, prosthetic cardiac and joint materials, tissue fillers, 
vascular grafts, breast implants, contact lenses, endotracheal 
tubes, and urinary catheters causing an array of health con-
cerns (Table 1) [4]. The formation of a favorable bed for 
infection is complex and it is more common in those patients 
with altered immune systems and the communication of the 
device with the environment [1, 5, 6].

Depending on the type of organism implicated in the 
infection and the specific device, removal is usually 
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recommended if feasible. However, eradication of infec-
tion has proven to be difficult due to the formation of 
biofilms. These biofilms start as varying interactions 
between host-derived proteins that aid in healing post-
procedure such as fibronectin, fibrinogen, and vitron-
ectin that encourages the colonization of the surface of 
implantable devices as observed with Staphylococcus epi-
dermidis [7, 8] Once attached, the organisms strengthen 
their bonds and proliferate and surround themselves 
with an extracellular polymeric substance (EPS) [9–11]. 
Microbes will detach from the surface and become active 
cells causing infections in other sites resulting in more 
inflammatory responses [12].

Biofilms create aggregation of organisms which are 
different from the usual planktonic resistance mecha-
nisms [13]. Not only does the presence of EPS alter pH, 
osmolarity, availability of nutrients, and protection from 
mechanical forces [14–16], but also blocks the penetra-
tion of antibiotics and host immunity [17, 18]. This is 
further compounded by the fact that slow growth within 
the biofilm may allow mutations and gene transfer that 
will contribute to antimicrobial resistance [19–21].

There are many strategies for treating device-related 
infections. Device removal is usually recommended 
because there are very few antibiotics that can penetrate 
biofilms, save some mild evidence for treatment of Methi-
cillin resistant Staphylococcus aureus with rifampin [22, 
23]. Generally, the antibiotic choice is pathogen-directed 
along with debridement or removal of the device per 
guidelines. This also depends on what antibiotic can be 
given as well as its bioavailability and tissue penetration. 
Many patients in whom the device cannot be removed will 
be given lifelong antibiotic suppression. In some cases, 
this leads to a slow death as the source may be a large 
vessel or of an endocardial source [24, 25].

Antimicrobial Resistance

Antibiotic microbial resistance (AMR) is a major concern 
despite the development of new antimicrobial agents [26]. 
While antibiotics are considered antimicrobial agents, they 
may serve as immune modulators as some affect the host 
immune response [27]. Bloodstream infections (BSIs) 
attributable to AMR including carbapenem-resistant 
Enterobacterales (CRE-BSIs) are a concern and a major 
cause of clinical mortality [28]. Patient infections caused 
by methicillin-resistant Staphylococcus aureus (MRSA) 
result in significant morbidity and mortality in community 
and clinical settings [26].

The physiological factors that contribute to AMR in 
biofilms are complex. A study on antibiotic treatment of 
Pseudomonas aeruginosa, a major cystic fibrosis patho-
gen, demonstrated that it created optimal conditions for 
the establishment of Mycobacterium abscessus infection 
[29]. The P. aeruginosa inhibited M. abscessus biofilm 
formation until antimicrobial therapy selectively target-
ing P. aeruginosa diminished this competitive interaction. 
Thereby M. abscessus flourished, demonstrating the need 
for careful antimicrobial agent administration.

The US lost progress combating antimicrobial resist-
ance in 2020 due, in large part, to effects of the COVID-19 
pandemic [30]. The US Center for Disease Control (CDC) 
identified significant increases in infections across many 
healthcare-associated pathogens, such as carbapenem-
resistant Acinetobacter, extended-spectrum beta-lacta-
mase-producing Enterobacterales, vancomycin-resistant 
Enterococcus, and drug-resistant Candida. In fact, AMR 
clinical infections and mortality both increased at least 
15% during the first year of the pandemic [30]. This con-
cern for AMR has led to the development of compounds 

Table 1  Corresponding device 
and anatomical infections

Device-related infections Tissue related infections to device

Ventricular derivations Cerebral empyema, encephalitis, abscess, 
otitis media, chronic sinusitis

Contact lenses Keratitis
Endotracheal tube, tracheostomy Ventilator associated pneumonia, tracheitis
Vascular central catheters Septic thrombophlebitis, Endocarditis
Prosthetic cardiac valves, pacemakers, and grafts Endocarditis, myocardial abscess, and pericar-

dial infections
Peripheral Vascular catheters Suppurative thrombophlebitis
Tissues fillers, Breast Implants Cellulitis, abscess
Gastrointestinal stents Biliary infections
Urinary catheters Kidney stones, urinary tract infections,
Orthopedic implants and prosthetic joints Osteomyelitis, septic arthritis, chronic wounds
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that can serve as antimicrobials for pathogens. This 
research has included the development of bioactive com-
pounds that work synergistically with polymyxin and dem-
onstrate the potential against AMR bacteria [31].

A major concern with medical and dental biomaterials 
is colonization with microbial biofilms that patients often 
cannot eliminate with their own immune response, requir-
ing antimicrobial therapy that can affect the inflammatory 
response [32]. Host damage, including the immune response 
to infection, is a concern for patient health. Antimicrobial 
therapy in consideration of the damage-response framework 
(DRF) may help tailor-specific therapy to a patient’s need to 
reduce inflammation[27].

Improved methods to detect AMR are being developed. 
For example, many US laboratories rely on commercial 
automated antimicrobial susceptibility tests including min-
imum inhibitory concentration (MICs), for Stenotropho-
monas maltophilia that causes lethal infections in immuno-
compromised patients [33]. The limitations of MIC results 
for S. maltophilia have been documented, so awareness of 
the limitations of such testing is taken into consideration 
for treatments.

Bacteriophages and Other Novel Therapies

Due to AMR, there is emerging need for more effective novel 
therapies. Recently, bacteriophage therapy has reemerged in 
the United States and had persisted in the world. In 2020, 
the National Institute of Allergy and Infectious Diseases 
(NIAD) and the Antibacterial Resistance Leadership Group 
(ARLG) created a taskforce regarding the use of phages in 
clinical practice [34]. This was in response to the growing 
issue of antimicrobial resistance. They summarized recently 
published data regarding treatment of organisms such as 
Mycobacteria abscessus, Pseudomonas aeruginosa, Burk-
holderia spp., Acinetobacter baumannii, Klebsiella pneumo-
niae, Staphylococcus epidermidis, Streptococcus agalactiae, 
Staphylococcus aureus, Cutibacterium acnes, and Entero-
coccus spp. in a variety of device and non-device-related 
infections [34]. Suh et al. also reported very few adverse 
effects associated with bacteriophage therapy. There has 
been concern that bacteriophages could confer resistance to 
bacteria, but when given with antibiotics, there is a synergis-
tic effect in lysis [35–38] and will cause bacteria to become 
more sensitive to other antibiotics[36, 39–41].

The bacteriophages exploit numerous mechanisms of the 
bacteria and their biofilm. They display a wide variety of 
different mechanisms in infection including the following: 
killing active bacteria via direct receptors and gaining access 
to the biofilm [42–46], some phages encode depolymerases 
which enable them to degrade biofilm[47–49], exploiting 
Quorum sensing receptors [50, 51], and inhibiting the ability 

of fimbria and pili [52]. However, the limitation of the usage 
of bacteriophages is isolating a specific phage against the 
bacteria, and this field is still new and requires case by case 
Food and Drug Administration approval through an Inves-
tigational New Drug application as well as Institutional 
Review Board Approval.

There are also bacteriophages that have been studied as 
coating for catheters [42, 43] as well as many antibiotic-
coated materials for more well-defined targeted therapies 
[53–55]. Bacteriophages have led to the development of 
other potential therapies of phage derived lytic proteins that 
are also known as antimicrobial peptides, which are cur-
rently in multiple phases of clinical trials [56, 57].

Biomedical Materials

New improved materials are being used for specific medi-
cal implanted devices to limit infection issues and improve 
patient outcomes. For example, nanostructured materials 
may play a significant role in controlled release of phar-
macologic agents for the treatment of cancer where immu-
nocompromised patients are of concern [58]. Systemic 
administration (distribution throughout the entire body) of 
many common chemotherapeutic agents is associated with 
significant side effects. For example, the side effects of the 
common chemotherapeutic agent doxorubicin hydrochloride 
include myelodysplastic syndrome, congestive heart failure, 
and mucositis. In addition, many protein- and DNA- based 
treatments that are being developed for treatment of cancer 
have relatively short in vivo activities. These chemothera-
peutic agents cannot be administered in oral form because 
they may be metabolized by the liver, intestine, kidneys, 
or lungs before reaching systemic circulation. Recent work 
has examined the delivery of chemotherapeutic agents at the 
site where they are needed; this route avoids diffusional and 
enzymatic barriers and provides complete and instantaneous 
absorption. Nanostructured materials may provide constant 
delivery of a pharmacologic agent to the site in the body 
where it is needed, providing appropriate treatment over an 
extended time while minimizing damage to healthy tissue 
that can enable infection [59].

Nanoporous polymer materials have been found to be 
inadequate for use in drug delivery. Many porous polymer 
materials are created using solvent-casting techniques [60]. 
These materials have poor mechanical properties and large 
pore size distributions, making precision difficult; for exam-
ple, pore size variation is as large as 30%. In addition, poly-
mer membranes contain 100–200 µm tortuous pores. Ion-
track etching has also been used to form membranes. This 
technique produces a much narrower pore size distribution 
than that observed in polymer membranes; for example, pore 
variation in membranes produced using ion-track etching 
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is within 10%. However, ion-track etched membranes have 
low porosities; pore concentrations under  109 pores/cm2 
are commonly observed. Porous silicon is another mate-
rial that has been considered for use in drug delivery due 
to its biocompatibility [61, 62]. This material may be pro-
duced by electrochemically corroding silicon in solutions 
containing hydrofluoric (HF) acid. The average diameter of 
the nanocrystalline porous silicon layers can be modified 
by altering the electrolyte composition, the electrochemi-
cal current, or the dopant chemistry. It should be noted that 
porous silicon films undergo degradation under physiologic 
conditions. Although several investigators have examined 
the use of porous silicon for drug delivery, it is unclear how 
patient variabilities in physiologic or health status may affect 
degradation of porous silicon or drug release rates [63].

Nanoporous alumina provides several advantages over 
other materials for use in controlled drug delivery and other 
medical applications. It has been shown that that anodiza-
tion, stripping of the oxide, and re-anodization produce an 
unusual material with nanoscale pores [64]. Nanoscale pores 
are randomly formed on the alumina surface at the begin-
ning of the anodization process. These pores self-organize 
into a hexagonal arrangement during their growth into the 
bulk material. This first oxide layer is removed using an 
aqueous solution of 1.8 wt% Cr (VI) oxide and 6 wt% phos-
phoric acid. A second anodization process is carried out on 
this template. The resulting material, known as “alumite,” 
contains long, columnar, ordered nanopores. These nano-
pores demonstrate long-range order. The structure can be 
described as close-packed cells in a hexagonal arrangement, 
with pores at the center of each cell. The pore size can be 
modified by the selection of appropriate processing tempera-
ture, electrical field strength, or electrolyte.

Advances in nanoporous alumina applications have dem-
onstrated their superiority over polymers for use in drug 
delivery. Alumina is a bioinert ceramic that is stable in phys-
iologic solutions. Finally, the anodization process provides 
precise control over pore size and pore distribution. How-
ever, there is a significant disadvantage to the use of nano-
porous alumina materials in medical applications. Although 
aluminum is a constituent of several medical alloys (e.g., 
Ti–6Al–4V, ASTM F136), it is currently unknown whether 
aluminum is a biocompatible material [65]. Nanoporous alu-
mina membrane coated with titanium oxide using atomic 
layer deposition has proved compatible for biomedical appli-
cations [66]. The biocompatibility and resilience of titanium 
oxide is well established [67]. Titanium oxide is routinely 
applied as a passivation layer in dental, orthopedic, and car-
diovascular implants [68–70]. Having a conformal coating of 
titanium oxide over the alumina membrane is of importance 
in order to minimize corrosion and improve cell compat-
ibility. Research has indicated that cells grown on titanium 
oxide surfaces contaminated by small amounts of alumina 

exhibit impaired activity; for example, contamination by 
alumina may lead to impaired mineralization of matrices by 
osteoblasts (bone cells) [68].

The self-limiting nature of the reaction between these pre-
cursors and the surface ensure that all exposed regions of a 
substrate, including areas that are only accessible via long, 
tortuous pathways, are coated uniformly and precisely. It 
is this ability to produce conformal coatings on non-planar 
substrates that make atomic layer deposition very useful for 
functionalizing nanoporous materials, including membranes 
and aerogels [66]. The conformal capability of atomic layer 
deposition is quite different from that of physical vapor 
deposition technologies such as evaporation and sputtering, 
which are limited by line-of-site constraints and can only 
coat the outer surface of a porous substrate. As such, atomic 
layer deposition is uniquely suited for depositing a confor-
mal nanometer-scale film with precise thickness onto the 
surface of a nanoporous membrane.

Atomic layer deposition technology has been developed 
in recent years for biomedical applications [71]. This tech-
nology has been commercialized for a range of applications 
biosensors. There is currently intense interest in developing 
atomic layer deposition methods to a range of new appli-
cations outside of the realm of microelectronics and bio-
sensors. Much of the ongoing work involves coating nano-
porous or nanostructured templates to impart the targeted 
surfaces with beneficial antimicrobial functionalities [66]. 
For example, nanoporous alumina membranes are a con-
venient platform for synthesizing nanotubes and nanowires 
using atomic layer deposition-based templating methods for 
biosensor development.

For nanoparticles to have optimal long-term antimicro-
bial activity, they are typically attached to solid surfaces in 
procedures designed to prepare heterogeneous composites 
for specific applications [71]. Combining materials can have 
a synergistic effect as it was demonstrated that  TiO2/ZnO 
nanoparticles supported in 4A zeolite could lead to resilient 
activity as antimicrobial agents [72]. In fact, multilayered 
composite coatings of  TiO2 nanotubes combined with ZnO 
and hydroxyapatite nanoparticles were applied for controlled 
Zn release for antimicrobial activity against Staphylococ-
cus aureus [73]. Biological compatibility of  TiO2 coatings 
by changing the surface chemical composition and nano-
topography has supported its use in biomedical  TiO2 appli-
cations [74]. However, application of nanomaterials includ-
ing  TiO2 is a concern due to the potential ecotoxicological 
effects. They have been found to inhibit the growth of algae 
[75] and fish [76]. Therefore, in manufacturing or use, care 
must be taken to assure the coatings or application must be 
resilient and durable. Earlier implant Ti alloy applications 
had possible toxic effects resulting from released vanadium 
(V) and aluminum (Al). For this reason, vanadium- and 
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aluminum-free alloys have been introduced for biomedical 
applications [77].

Nanostructured materials prepared using atomic layer 
deposition may be useful for delivering a pharmacologic 
agent at a precise rate to a specific location of the body. 
Ceramic materials are associated with less inflammation 
than polymeric materials that are currently used for local 
drug delivery. In addition, recent advances in nanoporous 
ceramics may provide greater control over release rate than 
polymers, since there are often difficulties when pharmaco-
logic agents and polymers are dissolved in a given solvent 
[78]. These materials may serve as the basis for “intelligent” 
drug delivery, which allows for controlled release of a phar-
macologic agent in response to electric field, magnetic field, 
pH, temperature, or light intensity. An intelligent system 
could release a gene or drug at a precise rate to the loca-
tion in the body where it is needed to limit infections and 
increase effectiveness. Nanoporous titanium coatings may 
also be useful for improving bone synthesis and associated 
tissue growth in orthopedic implants or in preventing infec-
tion [79, 80]. In summary, the analysis of risk factors and 
AMR agent and biomaterial efficacies has the potential to 
guide the management of these patients. However, future 
prospective cohort studies or randomized trials are urgently 
needed to validate and expand upon the findings of the cur-
rent review.

Conclusions

The number of implantable devices will only continue to 
expand as therapies become more widely available and 
applicable in an ever-growing population. The importance 
of lower the mortality and morbidity of these devices as 
well as their treatment is a race to reduce cost and increase 
the lifetime of the materials. There is still much to learn 
with regard to biomaterials, the host’s response to infec-
tion and material, and the microbial interactions with all of 
the above. A combined multi-modal approach in including 
targeted therapeutics seems to be the best approach. Hope-
fully, we will be able to develop materials and antimicrobial 
therapies that can maintain effective treatment for current 
and emerging infectious agents.
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