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The explosive growth of high-throughput experimental methods and resulting data yields both opportunity and challenge for
selecting the correct drug to treat both a specific patient and their individual disease. Ideally, it would be useful and efficient if
computational approaches could be applied to help achieve optimal drug-patient-disease matching but current efforts have met with
limited success. Current approaches have primarily utilized the measureable effect of a specific drug on target tissue or cell lines to
identify the potential biological effect of such treatment. While these efforts have met with some level of success, there exists much
opportunity for improvement. This specifically follows the observation that, for many diseases in light of actual patient response,
there is increasing need for treatment with combinations of drugs rather than single drug therapies. Only a few previous studies
have yielded computational approaches for predicting the synergy of drug combinations by analyzing high-throughput molecular
datasets. However, these computational approaches focused on the characteristics of the drug itself, without fully accounting for
disease factors. Here, we propose an algorithm to specifically predict synergistic effects of drug combinations on various diseases, by
integrating the data characteristics of disease-related gene expression profiles with drug-treated gene expression profiles. We have
demonstrated utility through its application to transcriptome data, including microarray and RNASeq data, and the drug-disease
prediction results were validated using existing publications and drug databases. It is also applicable to other quantitative profiling
data such as proteomics data. We also provide an interactive web interface to allow our Prediction of Drug-Disease method to
be readily applied to user data. While our studies represent a preliminary exploration of this critical problem, we believe that the
algorithm can provide the basis for further refinement towards addressing a large clinical need.

difficulty in identifying potential driver or passenger genes.
Therefore, the traditional “one drug-one target” therapeutic

As we know, many diseases are not resolved by treatment
with one single drug, for example, most cancers and diabetes.
At time of diagnosis and staging, many aberrant genes can
be observed, either involving mutation or modification or
exhibiting altered levels of expression, yielding perturbations
to signaling pathways. This is the reality of complex dis-
eases, which complicates their treatment particularly in the

approach often shows limited efficacy because of inappropri-
ate targeting, development of adverse events, and potential
resistance [1]. As a result, it has become necessary to develop
combination drug therapies [2].

Combined drug therapy typically involves administering
two or more drugs simultaneously or sequentially. Within
the past two decades, combination therapies have been
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used successfully in clinical experiments and have attracted
tremendous attention as promising treatments for complex
disorders, especially those with multifactorial pathogenic
mechanisms [3]. For example, the combination treatment of
fluticasone and propionate provides better asthma control
than increasing the dose of either single drug alone, while
simultaneously reducing the frequency of exacerbations [4].
It is noted that an increasing number of combination drugs
are being marketed as commercial products with a fixed
dosage of each component and with approval of the Food and
Drug Administration (FDA) in the past 5 years, especially for
those complex diseases such as type II diabetes, HIV infec-
tions, and cancer. In the particular area of cancer therapy,
the first combination was granted in January 2014 by FDA to
treat melanoma with BRAF V600E or V600K mutations [2].
Currently, approximately 50 combination therapies, without
fixed component dosage, have been referred by FDA to treat
different cancer subtypes.

Pharmacologically, a drug combination may produce
synergistic, additive, antagonistic, or even suppressive effect
if the combined effect is greater than, equal to, or less than
the sum of each individual drug [5]. Synergistic effects are
typically the most desirable because of enhanced efficacy,
potential for decreasing dosage with equal or increased
level of efficacy, or delayed development of drug resistance
[6]. Therefore, identification of synergistic agents presents a
significant opportunity to better deal with complex diseases,
even though it is a highly challenging task [7]. The synergy of
drugs can be assayed by testing the inhibition of tumor cell
growth by individual drugs and their combinations in vitro,
followed by a mathematical formulation by Loewe additivity
or Bliss independence [1, 8]. However, it is not practical
to test the synergistic effect of all possible combinations
of drugs through experiments due to the large number of
drugs approved by FDA. The development of computational
methods for predicting effects of drug combination can
play an essential role in developing systematic screening of
combinatorial treatment regiments [9].

Previous studies have proposed a handful of compu-
tational approaches to analyze high-throughput molecular
datasets for predicting the synergy of drug combinations.
Recently, Zhao et al. introduced a model to predict the
efficacies of drug combinations by integrating molecular and
pharmacological data. But its dependence on the feature
pattern, specifically enriched in approved drug combinations,
severely limited its potential application [10]. Similarly, Wu
et al. proposed a network-analysis-based model that utilized
gene expression profiles, following individual treatments, to
predict gene expression changes induced by drug combina-
tions, which were then used to estimate the effectiveness of
the combinations [7]. Another model, named the enhanced
Petri-Net model, provided informative insight into the mech-
anisms of drug actions, which was established to recognize
the synergism of drug combinations [11]. But its requirement
of a gene expression profile for every drug pair limited its
application.

However, these computational approaches only consider
the characteristics of the drug itself, without taking into
account an equivalent characterization of the disease. The
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effectiveness of the drug may be applicable for the specified
cell line, but not applicable for the actual disease as it
presents in patients. To account for this, here we propose
an algorithm to specifically predict synergistic effects of
drug combinations on various diseases, by integrating the
data characteristics of disease-related gene expression profiles
with drug-treated gene expression profiles. We have demon-
strated utility through its application to transcriptome data,
including microarray and RNASeq data, and the drug-disease
prediction results were validated using existing publications
and drug databases. It is also applicable to other quantitative
profiling data such as proteomics data. We also provide an
interactive web interface (https://www.scbit.org/PEDD/) to
allow our Prediction of Drug-Disease method to be readily
applied to user data.

2. Methods

In this research, we developed a disease-drug prediction
algorithm using transcriptome data. We describe both data
aggregation and our algorithm in detail, below.

2.1. Data Aggregation. First, gene expression data of drug
treated samples and disease-related gene expression dataset
are identified and qualified from literature and public domain
databases.

2.1.1. Gene Expression Data following Drug Treatment.
GSE51068 dataset (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgitacc=GSE51068) was downloaded from the GEO
database, which contained gene expression data of 282 drug-
treated samples. We selected high-throughput expression
profiling of OCI-Ly3 cell line treated with 14 different known
drugs at 2 different concentrations and profiled at 6, 12, and
24 hours after treatment. For our initial study, profiling after
6-hour treatment was chosen. Summary information about
the 14 known drugs was shown in Table S1.

2.1.2. Disease-Related Gene Expression Data. We have devel-
oped our method so that it can be applied not only to
microarray data, but also to RNAseq data. Thus, two data
types were identified and collected.

We established the following requirements for microarray
data in this study: the experimental group involves human
disease samples; the control group is nondisease samples;
and the number of experimental samples is greater than
50. Six microarray datasets (GSE9476, GSE33615, GSE22529,
GSE26049, GSE19429, and GSE47552) were selected from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/), includ-
ing 9 blood cell and bone marrow related malignancies and
diseases (Table S2).

Additional disease-related gene expression data involves
RNAseq data. Here, four cancer types were chosen including
breast cancer, liver cancer, lung adenocarcinoma, and lung
squamous cell carcinoma. We extracted these cancer-related
RNAseq data from UCSC Xena, which is provided by TCGA
(https://xenabrowser.net/datapages/?host=https://tcga.xena-
hubs.net).
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FIGURE 1: The algorithm flow.

2.2. Algorithm Design and Implementation. Our goal is to
predict the effects of drugs on various diseases when used
in combination. The detailed algorithm implementation is
defined in the steps (Figure 1).

Step 1. Differentially expressed genes (DEGs) were identi-
fied within the disease-related gene expression dataset. For
microarray data, the “limma” package in R was used to
identify DEGs, with a Benjamini-Hochberg adjusted p value
of 0.01. For RNASeq data, the “limma” package in R was also
used to identify DEGs, with a Benjamini-Hochberg adjusted
p value of 0.05. Additionally, the threshold fold change in
gene expression in the experimental group that was selected
was at least twice higher or lower than the gene expression in
control group for microarray and RNASeq data.

Step 2. DEGs were identified for the 14 drugs. A T test was
performed to get the observed test statistics for the genes in
the drug-treated group compared to control group. Then, the
observed test statistics were converted into z-scores:

=07 (P(1), M

where t; denotes the observed test statistics for the gene i and
®(-) is the cumulative distribution. If the z-score is greater
than 1.96, it indicates that the gene expression is upregulated
after drug treatment. If the z-score is lower than -1.96, it
indicates that the gene expression is downregulated after drug
treatment.

Step 3. DEGs were identified for the 91 combination drugs.
The 14 drugs will generate 91 unique drug combinations (C2,).
To compute the combined effect of two drugs on each gene, a

TaBLE 1: The matching coefficient.

. Drug
Disease
Up expressed gene  Down expressed gene
Up expressed gene -1 +1
Down expressed gene +1 -1

one-sided Pearson’s method was used to combine the z-scores
of two drugs:

pf:P<X2<—2x D 1n(1—q>(z,.j))>, )

j=1,2

where z;; (j = 1,2) denote the z-score of the gene i for any
two drugs.
Then, the combined z-score was calculated:

z =07 (p)). 3)

Step 4. DEGs of drug-related and disease-related were
matched by evaluating a specific constraint. Here, the p value
of the “drug-disease” relationship is calculated using the
following formula:

Joof T (@GN el )

VX, abs (1) fi € K}

where k represents the number of genes that can be matched
between the drug and the disease and I is the matching
coeficient (Table 1). If the gene is upregulated in the disease
and the gene is downregulated after drug treated, I is +1.
If the gene is downregulated in the disease and the gene is
upregulated after drug treated, I is +1. Otherwise, I is 1.
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FIGURE 2: The relationship between drug and disease using microarray data (a) and RNASeq data (b). Drugs are represented by triangles.
Diseases are represented by circles. The thickness of the linking edge is directly related to the magnitude of the score between drug and disease.

Step 5. An indicator score was calculated, by scoring the
matching results, to evaluate the effect of the drug on the
disease. The formula is as follows:

ot (Pk) x k
N

where k represents the number of genes that can be matched
between the drug and the disease. N is the total number of
DEGs in each disease. P is the value calculated in Step 4.

Score = ©)

>

2.3. Literature and Database Validation. For any two drugs
(A and B) and any specific disease, three scores can be
generated, indicating the relationship between drug A and
the disease, between drug B and the disease, and between
the A + B drug combination and the disease. Here, we chose
the highest score as the most effective. In addition, the score
must be greater than 0, suggesting that the drug has an
enhanced treatment effect on the disease. If the score of
drug combination is higher than that of any single drug, we
define the drug combination to be more effective. We chose
to exclude those drugs that were not in DrugBank. Finally,
results were validated through reviewing both published
literature and drug-related databases, including DrugBank
(https://www.drugbank.ca/releases/latest) [12], FDA (https://
www.fda.Gov/), DCDB (http://www.cls.zju.edu.cn/dcdb/)
(13], and the Pubmed (https://www.ncbinlm.nih.gov/pub-
med).

3. Results

3.1. Relation between Drug and Disease. As a result of our
analysis, relationships between drugs and diseases were
established and are shown in Figure 2(a) for microarray data.

We can see that the most closely related to acute adult T-
cell leukemia is the drug combination of camptothecin (CA)
and Mitomycin C (MC), followed by the drug combination
of camptothecin (CA) and Etoposide (EP) and combination
of Etoposide (EP) and Mitomycin C (MC). These drug
combinations were also closely related to chronic adult T-cell
leukemia, which may be due to their similar pathophysiologic
characteristics.

Similarly, relationships between drugs and other cancers
are shown in Figure 2(b) for RNASeq data. The drug com-
bination most closely related to breast cancer is that of Acla-
cinomycin A (AA) and Doxorubicin (DH), followed by the
drug combination of Doxorubicin (DH) and Etoposide (EP)
and then the combination of Etoposide (EP) and Rapamycin
(RP). The most closely related combination to liver cancer
involves Doxorubicin (DH) and Etoposide (EP), followed by
the drug combination of Aclacinomycin A (AA) and Dox-
orubicin (DH) and then the combination of Etoposide (EP)
and Rapamycin (RP). The drug combination most closely
related to lung adenocarcinoma is Aclacinomycin A (AA)
and Doxorubicin (DH), followed by the drug combination
of Doxorubicin (DH) and Etoposide (EP) and then the
combination of Doxorubicin (DH) and Rapamycin (RP). In
lung squamous cell carcinoma the most closely related drug
combination involves Etoposide (EP) and Rapamycin (RP),
followed by the drug combination of Doxorubicin (DH) and
Etoposide (EP) and then the combination of Doxorubicin
(DH) and Rapamycin (RP).

3.2. Further Validation. As a result of our filtering algorithm
(see Methods), a total of 105 relationships between drugs and
diseases were identified using microarray data, and a total of
67 relationships were identified using RNASeq data. Then,
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results were validated through review of published literature
and drug-related databases.

The reviewing identified 36 relationships (microarray)
and 41 relationships (RNASeq) in previous studies (Tables
S3 and S4). Moreover, there are also 39 synergistic drugs
and 18 synergistic drugs identified by previous studies, for
microarray and RNASeq data, respectively (Tables S5 and S6).

3.3. Web Interface. We have further implemented the pro-
posed approach as an interactive web tool, named “Pre-
dicting the Effect of the Drug on Disease (PEDD)”
(https://www.scbit.org/PEDD/). This web tool is intuitive and
can be easily applied to similar analyses using user-provided
drug-treated gene expression data and disease-related gene
expression data, to predict relationships between drugs and
diseases. We continue to refine the algorithm and to refine
the selection of datasets, for example, both experimental data
and disease subtypes, in ongoing studies.

4. Discussion

Due to the complexity of the disease, frequent lack of
response to targeted therapies, and the emergence of drug
resistance, interest in potential drug combination therapy
has increased [14]. Both computational methods and exper-
imental methods have been applied to screen synergis-
tic drugs. An optimal approach would be the potential
to use computational screening to broaden the study of
potential component drugs for combination therapy and
to better direct the application of experimental validation.
This approach can lead to more rapid and effective means
for screening and identifying candidate drug combinations.
Synergistic drug prediction models have been previously
studied. For example, Jin et al. built an enhanced Petri-net
(EPN) model to predict the synergistic effect of pairwise drug
combinations from genome-wide transcriptional expression
data, by applying Petri-nets to identify specific drug targeted
signaling networks [11]; Sun et al. constructed a model called
Ranking-system of Anticancer Synergy (RACS) based on
semisupervised learning which was used to rank drug pairs
according to their similarity to the labeled samples in a spec-
ified multifeature space [15]. However, these computational
approaches only considered the characteristics of the drug
itself, without taking into account potentially valuable disease
observations. The resulting effectiveness of these predictions
may be applicable for the cell line, but not readily extendable
for disease as it appears in humans. For these reasons, we
developed an algorithm to expand on these earlier works
and to predict the effects of drugs on various diseases,
by integrating gene expression data generated from disease
tissues and drug-treated cell lines.

The workflow is as follows. Firstly, up and down genes
were calculated with disease-related gene expression data.
Secondly, with the gene expression data of drug-treated cell
line, we calculated up and down genes for single drug and
combination drugs. Next, the disease-related up and down
genes were matched with drug-related up and down genes by
our matched principle. Moreover, according to the matched
result, scores were calculated which represented the effect

of drug on various diseases by our scoring method. The
implementation of our algorithm as an interactive web tool
makes the proposed approach easily accessible to all scientists
in general. Researchers can find potential drugs for diseases
according to the calculated scores.

In this study, our algorithm can give out the scores
of both drug combination and each of the single drug
for a disease; thus it is applicable not only to the drug
combination prediction, but also to the drug repositioning.
Also, according to the score rank, it may be defined that
the drug combination is more effective than single drugs if
it has the highest score. Besides, this algorithm is not only
applicable to transcriptomics data, but also applicable to other
quantitative profiling data, such as proteomics data.

The results showed that the effect of combination drugs
may be higher than the effect of the individual component
drugs in some diseases. For example, the effect of com-
bination of camptothecin and monastrol was predicted to
be greater than the effect of camptothecin or monastrol,
individually, in acute adult T-cell leukemia and chronic adult
T-cell leukemia. In contrast, the effect of combination drugs
may be lower than the effect of the individual component
drugs in some other diseases. For example, the effect of
combination of camptothecin and monastrol was predicted to
be reduced in efficacy in multiple myeloma and polycythemia
vera. In general, we believe that this analytic approach can
contribute to drug research and screening studies and use this
preliminary study to show its potential value.

However, in our algorithm, differential genes bear equal
weights while the change of some key genes may give
larger effect. For example, both gene sequence variations and
expression changes are important molecular phenotypes in
human disease, especially cancer. They should be assigned
differential weights. But, how to determine the key genes and
how to assign differential weights for them are very difficult,
as we only use the data of gene expression profile in this study.
In the future research, more in-depth study of this aspect
considering more factors should be carried out. For example,
we may use multilevel omics expression data and drug targets
to find the key genes and assign differential weights for them.
What is more, we also recognize that the disease classes, for
example, “breast cancer,” that have been used in this study
are likely subject to further stratification, for example, DCIS.
We are currently studying the application of this approach to
such refinements.

And with the rapid development of next-generation
sequencing (NGS) technology and the accumulation of his-
tological data [16], there have been many databases that
can be used to screen single drugs or synergistic drugs
such as FDA and DrugBank [12]. However, a compre-
hensive database about “drug-cancer relationships” has not
been established, which contains both the single drugs and
combination drugs related to cancer-related information.
We believe such database would be available in future, by
collecting the information from current public databases and
published literature. The database will provide an important
assessment criteria for the “drug-cancer” predictions and
provide important reference value for the strategy design of
antitumor combination therapy. While our studies represent
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a preliminary exploration of this critical direction, we believe
that the algorithm can provide the basis for further refine-
ment towards addressing a large clinical need in antitumor
combination therapy.
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