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Abstract

During ischemic stroke, malfunction of excitatory amino acid transporters and

reduced synaptic clearance causes accumulation of Glutamate (Glu) and

excessive stimulation of postsynaptic neurons, which can lead to their degeneration

by excitotoxicity. The balance between cell death-promoting (neurotoxic) and

survival-promoting (neuroprotective) signaling cascades determines the fate of

neurons exposed to the excitotoxic insult. The evolutionary conserved Insulin/IGF

Signaling (IIS) cascade can participate in this balance, as it controls cell stress

resistance in nematodes and mammals. Blocking the IIS cascade allows the

transcription factor FoxO3/DAF-16 to accumulate in the nucleus and activate a

transcriptional program that protects cells from a range of insults. We study the

effect of IIS cascade on neurodegeneration in a C. elegans model of excitotoxicity,

where a mutation in a central Glu transporter (glt-3) in a sensitizing background

causes Glu-Receptor –dependent neuronal necrosis. We expand our studies on

the role of the IIS cascade in determining susceptibility to excitotoxic necrosis by

either blocking IIS at the level of PI3K/AGE-1 or stimulating it by removing the

inhibitory effect of ZFP-1 on the expression of PDK-1. We further show that the

components of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex, known to

regulate PIP2 production and the IIS cascade, modulate nematode excitotoxicity:

mutations that are expected to reduce the complex’s ability to produce PIP2 and
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inhibit the IIS cascade protect from excitotoxicity, while overstimulation of PIP2

production enhances neurodegeneration. Our observations therefore affirm the

importance of the IIS cascade in determining the susceptibility to necrotic

neurodegeneration in nematode excitotoxicity, and demonstrate the ability of

Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex to modulate neuroprotection.

Introduction

Stroke/brain ischemia is the fourth leading cause of death in the US [1]. Current

therapeutic interventions have very limited success, and pharmacological trials

based on previous understanding of the neurodegenerative process ended with

disappointment [2–5]. In brain ischemia, waves of destruction propagate from the

acute center of injury to cause cell death by necrosis and apoptosis, while in the

penumbra (the area surrounding the ischemic core), neurons that are initially

‘‘stunned’’ might later die or recover [6–9]. The molecular mechanisms that lead

to these different fates are not fully understood, but the strongest and largest body

of evidence suggests that synaptic accumulation of Glutamate (Glu) and excessive

postsynaptic stimulation is a central mediator of toxicity [10]. During ischemia,

the clearance of Glu by secondary-active Glu transporters (GluTs) declines [11–

14], causing synaptic Glu accumulation, overstimulation of ionotropic Glu

Receptors (GluRs), and a large influx of Ca2+ that might lead to neurodegen-

eration in a process termed excitotoxicity [4, 15–18]. Surprisingly, accumulating

evidence indicates that GluR activation contributes to both cell death and

neuroprotection [2, 4], but our understanding of both Glu-induced and Glu-

independent mechanisms of neuroprotection remains incomplete. We are

therefore interested in identifying neuroprotective mechanisms that might

regulate the susceptibility of neurons to excitotoxicity.

The evolutionary conserved Insulin/IGF Signaling (IIS) cascade was identified

in C. elegans as controlling both animal longevity and cell stress resistance

[19–21]. This cascade includes the nematode Insulin/IGF-1 receptor DAF-2 [22],

the PI3-kinase AGE-1 [23], the PIP3- dependent kinase PDK-1 [24], and the

protein kinase AKT-1 [25], which controls the phosphorylation of the FoxO3-like

transcription factor DAF-16 [26]. Active IIS cascade sequesters DAF-16 in the

cytoplasm, while reduced IIS activity allows unphosphorylated DAF-16 to

equilibrate to the nucleus, where it controls gene expression [27–29]. Mutations

that block this pathway confer cell resistance to insults like oxidative stress [30],

hypoxia [31], and human-disease-related proteotoxins [32–37]. Parallel studies in

mammals show that although in some cases FoxO induces apoptosis [38], the

IIS pathway confers resistance to non-apoptotic insults [37, 39]. We are

therefore interested in the potential of the IIS cascade to mediate cell stress

resistance in the excitotoxic scenario, and regulate susceptibility to excitotoxic

neurodegeneration.

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity
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Cell stress resistance control by IIS is only one of the many signaling pathways

conserved from nematodes to humans. Conservation of function extends also to

the use of Glu and the molecular building blocks that mediate its function as an

excitatory neurotransmitter in the nervous system [40]. We have recently

established a model of neurodegeneration in the nematode using a knockout

(KO) of the critical GluT gene glt-3 [41] in the sensitizing background nuIs5 [42]

(expressing hyperactive Gas and GFP in command interneurons under the glr-1

promoter). This combination causes extensive neuronal necrosis that is dependent

on Ca2+-permeable GluRs, defining it as nematode excitotoxicity [43]. Neuronal

necrotic corpses appear gradually during development (in correlation with the

maturation of Glu signaling in the worm), and peak at the L3 larval stage before

they are removed by engulfment. We further used our model of excitotoxicity in

C. elegans to identify the IIS cascade as a factor that can modulate the extent of

neurodegeneration in both nematodes and mammalian neuronal cultures [44].

We observed that FoxO3/DAF-16 provides neuroprotection from excitotoxicity in

glt-3;nuIs5 worms: both a mutation in PI3K/AGE-1 that blocks IIS from expelling

FoxO3/DAF-16 from the nucleus, and a drug that translocates FoxO3/DAF-16

into the nucleus reduced the extent of neuronal necrosis in nematode

excitotoxicity.

We now look for upstream regulators of IIS in the modulation of excitotoxicity.

We are especially intrigued by the function of a complex of proteins that include

the Guanine Exchange Factor (GEF) Cytohesin/GRP-1, the small G-protein Arf,

and the PIP2-synthesizing enzyme PIP5K/PPK-1. A number of studies in

mammals and flies link the Cytohesin/Arf/PIP5K complex to insulin signaling-

dependent liver metabolism, membrane transport, and cell growth, demon-

strating its functions in providing PIP2 as a substrate for PI3K/AGE-1 and

therefore as a stimulator of the IIS cascade [45–48]. Indeed, blocking Cytohesin

causes a reduction in Akt activation and accumulation of FoxO in the nucleus

of both mammalian liver cells and fly S2 cells [45, 46]. We find the Cytohesin/

Arf/PIP5K complex to be particularly relevant to our study of excitotoxicity

because its components have also been associated with the Post Synaptic

Density (PSD) that orchestrates intracellular signaling complexes associated

with GluRs. These include a Cytohesin-binding scaffolding protein [49–51]

that also binds the PSD-organizing protein PSD-95 [52] and metabotropic

GluRs [53, 54], and Arf1’s association with the GluR-binding protein PICK1

[55]. A few studies address Cytohesin/Arf/PIP5K complex function in C.

elegans, showing that Cytohesin/GRP-1 and Arf can control asymmetric cell

division [56–58], and that PIP5K/PPK-1 functions in neurons to produce PIP2

and maintain neuronal development and integrity [59]. In the present study we

use both IIS inhibition and stimulation to affirm that suppressing the IIS

cascade in glt-3;nuIs5 animals is neuroprotective in nematode excitotoxicity,

and we establish that the IIS-regulating Cytohesin/Arf/PIP5K complex

modulates this neuroprotective effect.
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Materials and Methods

Strains

C. elegans strains were generate and maintained using standard methods. Strains

used in this study include: Nematode Excitotoxicity [43]: ZB1102: Dglt-3 (bz34)

IV; nuIs5 [Pglr-1::gfp-1;Pglr-1::Gas(Q227L) V; lin 15(+)]; zfp-1 KO [60, 61]: RB774:

Dzfp-1 (ok554) III; grp-1 KO [57, 62]: otIs114 Is [Plim-6::gfp; rol-6(d)] I; otIs220 Is

[Pgcy-5::mCherry; rol-6(d)] IV; grp-1 (tm1956) III (we preserved only the grp-1

mutation during the cross with the excitotoxicity strain); arf-1.2 KO [57, 63]:

VC567: Darf-1.2 (ok796) III; ppk-1 Over Expression [59]: EG3361 (lin-15(n765ts)

X oxIs12 [Punc-47::GFP, lin-15+] X, gqIs25 [Prab-3::ppk-1, lin-15(+)] I. (oxIs12 [Punc-47::

GFP, lin-15+] X was eliminated during the cross with our excitotoxicity strain,

while gqIs25 was preserved). ced-4 [64]: MT2551 ced-4(n1162) dpy-17(e164)III.

Some strains were obtained from The Caenorhabditis Genetics Center (CGC, the

University of Minnesota) and the Japanese National Bioresource Project (NBRP,

Tokyo Women’s Medical University School of Medicine). For genotyping,

deletions were followed by PCR, and nuIs5 was followed by the presence of

Pglr-1::GFP. ced-4 was followed initially by the linked dpy phenotype and then

confirmed by sequencing the n1162 allele. To identify animals carrying the

Prab-3::PPK-1 over expressing construct we performed a PCR amplification of a

fragment that detects this fusion construct, using a 59 primer from the rab-3

promoter region and a 39 primer from the ppk-1 genomic sequence. These primers

give a ,400 bp product observed only in gqIs25[Prab-3::PPK-1] animals.

Neurodegeneration quantification

Levels of excitotoxic neurodegeneration were quantified as described by Mano &

Driscoll [43] and in line with standard methods used in studies of other forms of

necrotic neurodegeneration in C. elegans [65, 66]. All neurodegeneration studies

were performed on strains that contain the excitotoxicity-producing combination

of glt-3;nuIs5 (without or with additional mutations). Animals were mounted

with an agar chunk on a cover slip and observed using an inverted DIC

microscope (without anesthesia). The animals on the chunk were screened,

individual animals were classified for their developmental stage, and the number

of degenerating neurons for each animal was recorded. Necrotic neurodegenera-

tion is seen as swollen neurons that look like vacuolated structures (occasionally

verified to correspond to nuIs5/Pglr-1::gfp-expressing cells). Similarly to the

stochastic nature of neuronal necrosis seen with other triggers of necrotic

neurodegeneration in C. elegans (and unlike the more constant developmental

apoptotic cell death), the number of degenerating neurons in the control group is

not stereotypically repeated in exact values (an effect that is further compounded

by the fact that not all of the ,30 glr-1 -expressing ‘‘at-risk’’ neurons ultimately

die by adulthood). Instead, cell death shows a very typical dynamics, as it peaks at

L3 with the maturation of Glu signaling in the worm, and then goes down as cell

corpses are engulfed and removed. The level of neurodegeneration in our

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity
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excitotoxicity model can vary in response to growth conditions, and keeping the

strain running by repeated re-chunking over very long periods can suppress its

levels. Therefore, special care was given to the use of recently isolated or

outcrossed strains, the use of freshly grown (non-stressed) animals in multiple

sessions, and in each session, comparison of test strains to control animals

exposed to identical growth conditions (thus controlling for variations between

experiments, similarly to standard practice in nematode lifespan experiments).

Each bar in figures 1–7 corresponds to at least 30 animals, with over 90 animals

usually scored at L3. As per standards in the nematode necrotic neurodegenera-

tion field, error bars represent SE. Statistical significance of difference between

strains is measured using z score, and is indicated on the graph whenever the

difference is significant. Whenever possible, the basic excitotoxicity strain (glt-

3;nuIs5) used as reference in each experiment was re-isolated from the new cross,

to enhance the similarity with the new strain being tested. Critical new strains

were obtained in two independent crosses and neurodegeneration was scored to

verify the effect in independent strains.

LY294002 treatment

LY294002 (LC Laboratories) drug was dissolved in 100% ethanol to produce a

stock solution of 25 mM. 20 microliter of ethanol without (control) or with

LY294002 were added to 12 well plates with MYOB agar+OP50 bacteria [67] to

produce final concentration of 0.2 mM. After ethanol was absorbed, the worms

were added to these culture plates. After 3 days, the level of neurodegeneration in

head neurons was determined. Worms were kept on fresh drug/control by

chunking them to fresh plates with the appropriate condition (ethanol only or

ethanol+LY294002) and were used for additional sessions of neurodegeneration

scoring. Since ethanol has an inhibitory effect of the basic level of excitability in C.

elegans [68], extra caution was taken to verify the validity of the LY294002 effect

under these conditions. These sets of experiments were run several times, with

large number of animals counted in each one. Figure 1 shows one of these

experiments, with the other ones giving very similar results and an identical trend.

Results

A widely used method of chemical inhibition of the IIS pathway

confers neuroprotection from excitotoxic neurodegeneration in C.
elegans

A number of studies in mammalian cells suggest that blocking the IIS cascade and

AKT activation enhances neuronal apoptosis in excitotoxicity [4, 69–73], while

our previous studies in both nematodes and mouse neuronal cultures suggest that

blocking the IIS cascade reduces excitotoxic necrosis [44]. Most of the

mammalian studies attributing a neuroprotective/anti-apoptotic effect to Akt

stimulation used the PI3K inhibitor LY294002 to inhibit IIS and Akt activation, a

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 5 / 17



drug that also shows IIS-blocking effects in C. elegans [74]. To address this

possible controversy and further verify that blocking the IIS pathway in

nematodes results in reduced excitotoxic necrosis we monitored the effect of the

LY294002 on nematode excitotoxicity in glt-3(bz34);nuIs5 animals (Figure 1).

Exposing glt-3;nuIs5 animals to the ethanol used to dissolve this drug (without

applying the drug itself) causes a moderate reduction in the number of necrotic

corpses in head neurons compared to non-treated animals (in line with the

reported effects of ethanol exposure on neuronal excitability in nematodes [68]).

However, the overall pattern of necrosis during development in these sham-

treated animals remains similar to that of non-treated glt-3;nuIs5 animals.

Importantly, the application of LY294002 caused a significant reduction in

excitotoxic necrosis compared to sham treated animals, reducing neurodegen-

eration from an average of 3 degenerating head neurons per animal without the

drug to 2 head neurons per animal in the presence of LY294002. These

observations reaffirm that a variety of treatments that reduce the activity of the IIS

cascade activity are neuroprotective in nematode excitotoxicity.

Genetic stimulation of the IIS cascade by zfp-1 mutation increases

susceptibility to nematode excitotoxicity

A particularly strong approach in genetic analysis of signaling cascades is to

demonstrate that over-activation of the cascade leads to an opposite phenotype

than its inhibition. To solidify our understanding of the role of the IIS cascade in

nematode excitotoxicity we therefore studied the effect of its over-activity. The

transcription regulator and AF10 homolog ZFP-1 [61, 75, 76] provides a

particularly interesting opportunity, since it exerts strong regulation over the IIS

Figure 1. LY294002, an inhibitor of PI3K/AGE-1, confers neuroprotection in nematode excitotoxicity.
Sham (ethanol only) treated or LY294002 (ethanol + drug) treated animals were scored for neuronal necrosis
throughout development. Neurodegeneration scoring is described in Materials & Methods. In all histograms,
error bar represent SE. ***: p,0.01.

doi:10.1371/journal.pone.0113060.g001
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cascade. Transcription of the zfp-1 gene is moderately stimulated by FoxO3/DAF-

16 [77, 78]. More importantly for our analysis, ZFP-1 itself is a strong inhibitor of

the IIS cascade: ZFP-1 acts (together with DOT-1) to reduce histone modification

at specific genes and prevent their transcription during stress response [75]. A

prime target of ZFP-1-mediated transcriptional suppression is the gene encoding

the IIS protein PDK-1 (which normally functions to activate AKT in response to

PI3K/AGE-1 stimulation). Therefore, under stress conditions ZFP-1 normally

inhibits PDK-1 expression, leading to increased DAF-16 –mediated stress

resistance. In zfp-1 mutant animals PDK-1 expression goes uninhibited, the IIS

cascade is overactive, and DAF-16-mediated stress resistance is reduced [78]. We

therefore tested the effect of zfp-1 mutation on the susceptibility to excitotoxic

stress. We find that the zfp-1(ok554) mutation indeed causes increased

susceptibility to excitotoxicity, increasing the average number of necrotic neurons

in the L3 stage from 4 to 6 (Figure 2). We therefore affirm that active IIS increases

susceptibility to neurodegeneration while treatments that activate FoxO3/DAF-16

protects from neuronal necrosis in nematode excitotoxicity.

Mutations in Cytohesin/GRP-1 and ARF-1.2, expected to reduce IIS

signaling, confer neuroprotection from excitotoxicity

We next investigated the role of the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1

complex, known to regulate PIP2 production and the IIS cascade, in nematode

excitotoxicity. We used genetic analysis, combining the excitotoxicity genetic

background (glt-3;nuIs5) with mutations that affect this complex. This approach

is usually more productive in C. elegans than pharmacological intervention (which

Figure 2. KO of zfp-1, an inhibitor of PDK-1 transcription, exacerbates nematode excitotoxicity.
**: p,0.05; ***: p,0.01.

doi:10.1371/journal.pone.0113060.g002
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many time is ineffective in the worm) or RNAi (which many times is ineffective in

nematode neurons), though it has its drawbacks. For example, there are a few Arf

homologs in the worm, but only some can be studied by genetic elimination, since

their KO strain is lethal (as is ppk-1 KO). However, we managed to study the KO

of two key components [57, 58, 63]: the GEF Cytohesin/GRP-1 and the small G-

protein ARF-1.2. Since both Cytohesin/GRP-1 and Arf stimulate the activity of the

PIP-2 synthesizing enzyme PIP5K/PPK-1, their KO is expected to reduce PIP5K/

PPK-1 activity, reduce the supply of PIP2 to the IIS cascade and inhibit its activity,

leading to an increase in cell stress resistance. Indeed, in both cases, KO of either

grp-1 (using the tm1956 allele) (Figure 3) or arf-1.2 (using the ok796 allele)

(Figure 4) suppressed neurodegeneration in nematode excitotoxicity.

Modulation of excitotoxic neurodegeneration by GRP-1 is exerted

through the IIS pathway

To verify that the ability of GRP-1 elimination to reduce excitotoxic

neurodegeneration is mediated through the IIS cascade we blocked the IIS cascade

in glt-3;nuIs5 animals using LY294002, and compared animals that have WT grp-1

to animals carrying a grp-1 KO. Neurodegeneration levels in grp-1;glt-3;nuIs5 animals

exposed to LY294002 was very similar to that of glt-3;nuIs5 animals exposed to

LY294002 (Figure 5). These observations suggest that GRP-1 mediates its action on

Figure 3. KO of grp-1, a GEF that stimulates Arf and PIP5K/PPK-1 to increase production of PIP2 substrate for the IIS cascade, provides
neuroprotection. Left: a histogram showing a decrease in neurodegeneration upon KO of grp-1 (a second independent cross gave very similar distribution,
not shown) **: p,0.05; ***: p,0.01. Right: Nomarski/DIC images of neurodegeneration in head neurons. Anterior left, dorsal top, the nerve ring area is
shown (located between the two bulbs of the pharynx), red arrows indicate degenerating neurons. A typical level of neurodegeneration in our excitotoxicity
strain was depicted previously [43]. We note that the extent of neurodegeneration varies among individual animals of the same genotype. Here, the upper
image depicts an individual L3 animal from our excitotoxicity strain with an unusually high level of neurodegeneration. The extensive neurodegeneration
seen in such untypical animals is evened out in the large number of animals used for each bar in our histograms (usually .90 animals in the most
informative stages), bringing average neurodegeneration levels in our excitotoxicity strain (glt-3;nuIs5) to ,4.5 dying head neurons/L3 animal. The bottom
image depicts a typical grp-1;glt-3;nuIs5 L3 animal, a strain that typically shows 2–3 dying head neurons/L3 animal.

doi:10.1371/journal.pone.0113060.g003
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excitotoxic neurodegeneration through the IIS cascade, and inhibiting the cascade

with both a grp-1 mutation and LY294002 has no additional neuroprotective effect.

Over expression of the PIP5K/PPK-1, known to cause excessive

production of PIP2, exacerbates excitotoxic neurodegeneration

To circumvent the challenge of the lethality of ppk-1 KO mutant and to induce a

hyperactivation of the Cytohesin/GRP-1 – PIP5K/PPK-1 complex (and the IIS

Figure 5. Epistasis analysis suggests that grp-1 works in the same pathway as age-1. grp-1 was
inactivated using a KO strain. age-1 was inhibited using the drug LY294002. If these two factors worked in
separate pathways, their ability to suppress neurodegeneration would be (at least partially) additive, a concept
not supported by our observations. The levels of neurodegeneration seen in our original excitotoxicity strain
(under ethanol conditions needed to be used in this experiment) is equally different from the reduced
neurodegeneration seen with inhibition of grp-1, age-1, or both (***: p,0.01).

doi:10.1371/journal.pone.0113060.g005

Figure 4. KO of arf-1.2 provides neuroprotection. **: p,0.05; ***: p,0.01.

doi:10.1371/journal.pone.0113060.g004
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cascade) we used a strain that exhibits over-expression and excessive activity of

PPK-1. Weinkove et al. found that over-expressing PPK-1 from the powerful pan-

neuronal rab-3 promoter causes excessive production of PIP2, and that mature

neurons are especially susceptible to PPK-1 overexpression [59]. If PPK-1 supplies

the PIP2 substrate for the IIS cascade, then overexpression of PPK-1 should

overstimulate the IIS cascade and cause excessive neurodegeneration. Indeed,

when we introduced the Prab-3::PPK-1 construct to glt-3;nuIs5 animals we saw an

increase in the level of necrotic neurodegeneration (Figure 6). The necrotic effect

of PPK-1 hyperactivation is seen a bit later in development than our usual peak at

L3, appearing instead when the Prab-3:PPK-1 construct produces its full effect [59].

Together with the data on GRP-1 and ARF-1.2, these observations suggest that the

IIS-stimulating complex of Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 serves to

increase susceptibility to excitotoxicity in the nematode.

Nematode excitotoxicity is not affected by a mutation in ced-4

To increase the validity of our conclusion that the Cytohesin/GRP-1, Arf, and

PIP5K/PPK-1 complex regulates the IIS cascade to determine the level of

susceptibility to excitotoxicity, we also tested other possible explanations for the

neuroprotective effect of grp-1 mutation. One alternative explanation is that the

IIS cascade directly regulates the level of expression of GluRs. Our initial

observations using a synaptically localized GLR-1 or behavioral assays do not

provide support for a strikingly large change in GLR-1 expression level, though

these studied are not yet conclusive (data not shown).

Another alternative explanation for the effect of grp-1 on the level of excitotoxic

neurodegeneration is based on the involvement of grp-1 in apoptosis, as seen in

some post-embryonic lineages in the nematode [58]. If apoptosis mediates or

Figure 6. Over Expression of PPK-1, known to lead to over-production of PIP2, exacerbates necrotic
neurodegeneration. **: p,0.05; ***: p,0.01.

doi:10.1371/journal.pone.0113060.g006

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 10 / 17



participates in some of the cell death we see in excitotoxic neurodegeneration in

the nematode, a mutation in an apoptosis regulator such as grp-1 could reduce the

extent of cell death. To test the possible involvement of apoptosis as a mediator of

neurodegeneration in our excitotoxicity model we blocked apoptosis using the

ced-4(n1162) mutation [64]. However, similarly to the lack of involvement of

apoptosis in mec-4(d) –induced necrosis [79], the mutation in ced-4 did not affect

the level of excitotoxic neurodegeneration (Figure 7). We therefore conclude that

canonical apoptosis does not play a significant role in the condition that we study,

and therefore cannot explain the ability of Cytohesin/GRP-1 mutation to inhibit

neurodegeneration in nematode excitotoxicity.

Discussion

Activation of the IIS cascade increases susceptibility to nematode

excitotoxicity

The role of the IIS cascade in excitotoxic neurodegeneration seems to be

controversial. A large number of mammalian studies conclude that AKT

activation is neuroprotective, while FoxO3 activation increases apoptotic

neurodegeneration in a variety of conditions including excitotoxicity [4, 69–73].

In contrast, other studies in nematodes and mammals point to a strong

neuroprotective function for IIS cascade inhibition and DAF-16/FoxO3 activa-

tion. Our data on nematode excitotoxicity (and previously also in mammalian

primary cultures [44]) support the neuroprotective view for DAF-16/FoxO3

activation. We now reaffirm our previous observation by using LY294002, the

same drug that was used in the mammalian studies, showing that it causes

neuroprotection (Figure 1). We also hyperactivated the IIS cascade using the zfp-1

Figure 7. Blocking canonical apoptosis using a ced-4 mutation does not suppress cell death in
nematode excitotoxicity.

doi:10.1371/journal.pone.0113060.g007
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mutation and observed excessive necrosis (Figure 2). We are therefore convinced

that an active IIS cascade increases susceptibility to excitotoxic necrosis in C.

elegans, and its inhibition leads to neuroprotection. We do not have a full

explanation to the difference in opinions in the field, other than difference in

experimental setup and the characterization of cell death. Indeed, one clear

difference between our study and previous ones is that we focus very specifically

on necrotic cell death in excitotoxicity, while many other studies might involve

several death mechanisms or focus on apoptotic cell death. The condition that we

study does not seem to involved apoptosis (Figure 7). The ability of FoxO

activation to lead to diverse consequences, depending in the exact combination of

cellular factors, is well documented [38, 80]. We therefore suggest the simplified

scenario of nematode excitotoxicity, where apoptosis is not involved, allows us to

clearly dissect a neuroprotective effect for FoxO/DAF-16, an effect that

participates also in (at least some of-) the more complex scenarios that take place

in mammalian excitotoxicity (as seen in our previous study [44]). In the future,

this might help us illuminate conserved neuroprotection-specific processes in

excitotoxicity downstream of FoxO/DAF-16.

The IIS-stimulating complex of GRP-1 & PPK-1 serves to regulate

excitotoxicity

Our data puts the spotlight on the IIS-regulating Cytohesin/GRP-1, Arf, and

PIP5K/PPK-1 complex and its role in regulating susceptibility to excitotoxicity in

C. elegans. Using epistasis we demonstrate that grp-1 works in the same pathway

as age-1 to regulate neurodegeneration levels. We further show that this effect is

unlikely to involve grp-1’s regulation of apoptosis (seen in some neuronal

lineages), as apoptosis seems not to be involved in nematode excitotoxicity. It is

possible that other IIS cascade-regulated processes might also be influenced by

this complex. However, as the focus of our research is excitotoxicity, our data does

not address those other functions of the IIS cascade. Together with our previous

data on the nuclear translocation of DAF-16 as a means to induce neuroprotec-

tion, our studies are therefore in line with a model where the Cytohesin/GRP-1,

Arf, and PIP5K/PPK-1 complex controls the transcriptional output of the IIS

cascade to regulate susceptibility to excitotoxicity (Figure 8).

The GRP-1 & PPK-1 might serve as a link that allows GluR to

control neuroprotection and susceptibility to excitotoxicity

Our initial interest in the Cytohesin/GRP-1, Arf, and PIP5K/PPK-1 complex was

based on the studies that indicate its physical association with the PSD and with

GluRs. Currently the subcellular localization of this complex is unknown (other

than the observation by Weinkove et al. [59] that PPK-1 is expressed throughout

the cell membrane of all neurons, and could therefore overlap with expression of

GluRs in post-synaptic areas of the neurites). It also remains to be seen if GluRs

provide any input to IIS signaling via the Cytohesin/GRP-1, Arf, and PIP5K/PPK-
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1 complex. It should be noted that ample evidence exists in mammals for a

functional interaction between GluRs and insulin signaling [81–84]. Some of these

studies describe a rapid effect of insulin receptors on GluR distribution [85–88].

Interestingly, a seminal study shows that a phosphatase that degrades PIP3 is

associated with the PSD and serves to suppress excitotoxic neurodegeneration

[89], a scenario that is in line with our model. For the time being we do not know

if some of the neuroprotective or neurotoxic effects of Glu are mediated by GluR-

IIS cross talk that regulates neuroprotection by FoxO/DAF-16. Therefore it is not

clear if the level of IIS signaling is a ‘‘pre-existing condition’’ that determine

susceptibility to neurodegeneration, or if it can be actively modified by Glu

signaling, providing an important venue for Glu to control both neurodegen-

eration and cell survival.
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phosphorylated FoxO/DAF-16 accumulates in the nucleus and activates a transcriptional program that results
in neuroprotection from the excitotoxic insult.

doi:10.1371/journal.pone.0113060.g008

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 13 / 17



Author Contributions
Conceived and designed the experiments: NT JDR RGK IM. Performed the

experiments: NT JDR MD. Analyzed the data: NT JDR IM. Wrote the paper: NT

IM.

References

1. Hoyert DL, Xu JQ (2012) Deaths: Preliminary data for 2011. Hyattsville, MD: U.S. Department of Health
and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.

2. Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and
traumatic brain injury? Lancet Neurol 1: 383–386.

3. Hoyte L, Barber PA, Buchan AM, Hill MD (2004) The rise and fall of NMDA antagonists for ischemic
stroke. Curr Mol Med 4: 131–136.

4. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: Identifying novel targets for
neuroprotection. Progress in Neurobiology 115.

5. Tymianski M (2014) Stroke in 2013: Disappointments and advances in acute stroke intervention. Nat
Rev Neurol 10: 66–68.

6. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view.
Trends Neurosci 22: 391–397.

7. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms.
Nature 399: A7–14.

8. Back T, Hemmen T, Schuler OG (2004) Lesion evolution in cerebral ischemia. J Neurol 251: 388–397.

9. Moskowitz MA, Lo EH, Iadecola C (2010) The Science of Stroke: Mechanisms in Search of
Treatments. Neuron 67: 181–198.

10. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.
Annu Rev Neurosci 13: 171–182.

11. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by
reversed uptake. Nature 403: 316–321.

12. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105.

13. Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping
synaptic transmission. Nat Rev Neurosci 8: 935–947.

14. Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, et al. (2008) Glutamate forward and reverse
transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 60:
609–619.

15. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain
damage. Ann Neurol 19: 105–111.

16. Choi DW (1992) Excitotoxic Cell Death. J Neurobiol 23: 1261–1276.

17. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling:
implications for neurodegenerative disorders. Nat Rev Neurosci 11: 682–696.

18. Tymianski M (2011) Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat
Neurosci 14: 1369–1373.

19. Kenyon CJ (2010) The genetics of ageing. Nature 464: 504–512.

20. Murphy CT, Hu PJ (2013) Insulin/insulin-like growth factor signaling in C. elegans. WormBook.
Available: www.wormbook.org.

21. Shore DE, Ruvkun G (2013) A cytoprotective perspective on longevity regulation. Trends in cell biology
23: 409–420.

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 14 / 17

www.wormbook.org


22. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that
regulates longevity and diapause in Caenorhabditis elegans. Science 277: 942–946.

23. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member
regulating longevity and diapause in Caenorhabditis elegans. Nature 382: 536–539.

24. Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G (1999) A PDK1 homolog is necessary and
sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans.
Genes & Development 13: 1438–1452.

25. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals
from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12: 2488–2498.

26. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, et al. (1997) The Fork head transcription factor
DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994–999.

27. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein
DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28: 139–145.

28. Lee RY, Hench J, Ruvkun G (2001) Regulation of C. elegans DAF-16 and its human ortholog FKHRL1
by the daf-2 insulin-like signaling pathway. Curr Biol 11: 1950–1957.

29. Murphy CT (2006) The search for DAF-16/FOXO transcriptional targets: approaches and discoveries.
Exp Gerontol 41: 910–921.

30. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad
Sci U S A 90: 8905–8909.

31. Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF
receptor homolog DAF-2. Science 296: 2388–2391.

32. Morley JF, Brignull HR, Weyers JJ, Morimoto RI (2002) The threshold for polyglutamine-expansion
protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans.
Proc Natl Acad Sci U S A 16: 16.

33. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and
heat-shock factor. Science 300: 1142–1145.

34. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, et al. (2005) Resveratrol rescues
mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37: 349–350.

35. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing Activities Protect Against
Age-Onset Proteotoxicity. Science 313: 1604–1610.

36. Prahlad V, Morimoto RI (2009) Integrating the stress response: lessons for neurodegenerative
diseases from C. elegans. Trends Cell Biol 19: 52–61.

37. Dillin A, Cohen E (2011) Ageing and protein aggregation-mediated disorders: from invertebrates to
mammals. Philos Trans R Soc Lond B Biol Sci 366: 94–98.

38. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27: 2276–2288.

39. Partridge L (2010) The new biology of ageing. Philos Trans R Soc Lond B Biol Sci 365: 147–154.

40. Brockie PJ, Maricq AV (2006) Ionotropic glutamate receptors: genetics, behavior and
electrophysiology. In: Community TCeR, editor. WormBook. Available: www.wormbook.org.

41. Mano I, Straud S, Driscoll M (2007) Caenorhabditis elegans Glutamate Transporters Influence
Synaptic Function and Behavior at Sites Distant from the Synapse. J Biol Chem 282: 34412–34419.

42. Berger AJ, Hart AC, Kaplan JM (1998) Galphas-induced neurodegeneration in Caenorhabditis elegans.
J Neurosci 18: 2871–2880.

43. Mano I, Driscoll M (2009) C. elegansGlutamate Transporter Deletion Induces AMPA-Receptor/Adenylyl
Cyclase 9-Dependent Excitotoxicity. J Neurochem 108: 1373–1384.

44. Mojsilovic-Petrovic J, Nedelsky N, Boccitto M, Mano I, Georgiades SN, et al. (2009) FOXO3a is
broadly neuroprotective in vitro and in vivo against insults implicated in motor neuron diseases.
J Neurosci 29: 8236–8247.

45. Fuss B, Becker T, Zinke I, Hoch M (2006) The cytohesin Steppke is essential for insulin signalling in
Drosophila. Nature 444: 945–948.

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 15 / 17

www.wormbook.org


46. Hafner M, Schmitz A, Grune I, Srivatsan SG, Paul B, et al. (2006) Inhibition of cytohesins by SecinH3
leads to hepatic insulin resistance. Nature 444: 941–944.

47. Lim J, Zhou M, Veenstra TD, Morrison DK (2010) The CNK1 scaffold binds cytohesins and promotes
insulin pathway signaling. Genes Dev 24: 1496–1506.

48. Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane
transport, development and disease. Nat Rev Mol Cell Biol 12: 362–375.

49. Nevrivy DJ, Peterson VJ, Avram D, Ishmael JE, Hansen SG, et al. (2000) Interaction of GRASP, a
protein encoded by a novel retinoic acid-induced gene, with members of the cytohesin family of guanine
nucleotide exchange factors. J Biol Chem 275: 16827–16836.

50. Kitano J, Kimura K, Yamazaki Y, Soda T, Shigemoto R, et al. (2002) Tamalin, a PDZ domain-
containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and
the guanine nucleotide exchange factor cytohesins. J Neurosci 22: 1280–1289.

51. Attar M, Santy L (2013) The scaffolding protein GRASP/Tamalin directly binds to Dock180 as well as to
cytohesins facilitating GTPase crosstalk in epithelial cell migration. BMC Cell Biology 14: 9.

52. Kitano J, Yamazaki Y, Kimura K, Masukado T, Nakajima Y, et al. (2003) Tamalin is a scaffold protein
that interacts with multiple neuronal proteins in distinct modes of protein-protein association. J Biol Chem
278: 14762–14768.

53. Das SS, Banker GA (2006) The role of protein interaction motifs in regulating the polarity and clustering
of the metabotropic glutamate receptor mGluR1a. J Neurosci 26: 8115–8125.

54. Sugi T, Oyama T, Muto T, Nakanishi S, Morikawa K, et al. (2007) Crystal structures of autoinhibitory
PDZ domain of Tamalin: implications for metabotropic glutamate receptor trafficking regulation. EMBO J
26: 2192–2205.

55. Rocca Daniel L, Amici M, AntoniouA, Suarez ElenaB, Halemani N, et al. (2013) The Small GTPase Arf1
Modulates Arp2/3-Mediated Actin Polymerization via PICK1 to Regulate Synaptic Plasticity. Neuron 79: 293–
307.

56. Singhvi A, Teuliere J, Talavera K, Cordes S, Ou G, et al. (2011) The Arf GAP CNT-2 regulates the
apoptotic fate in C. elegans asymmetric neuroblast divisions. Curr Biol 21: 948–954.

57. Denning DP, Hatch V, Horvitz HR (2012) Programmed elimination of cells by caspase-independent cell
extrusion in C. elegans. Nature 488: 226–230.

58. Teuliere J, Cordes S, Singhvi A, Talavera K, Garriga G (2014) Asymmetric Neuroblast Divisions
Producing Apoptotic Cells Require the Cytohesin GRP-1 in Caenorhabditis elegans. Genetics.

59. Weinkove D, Bastiani M, Chessa TA, Joshi D, Hauth L, et al. (2008) Overexpression of PPK-1, the
Caenorhabditis elegans Type I PIP kinase, inhibits growth cone collapse in the developing nervous
system and causes axonal degeneration in adults. Dev Biol 313: 384–397.

60. Cui M, Kim EB, Han M (2006) Diverse chromatin remodeling genes antagonize the Rb-involved
SynMuv pathways in C. elegans. PLoS Genet 2: e74.

61. Grishok A, Hoersch S, Sharp PA (2008) RNA interference and retinoblastoma-related genes are
required for repression of endogenous siRNA targets in Caenorhabditis elegans. Proc Natl Acad
Sci U S A 105: 20386–20391.

62. Johnston RJ Jr, Copeland JW, Fasnacht M, Etchberger JF, Liu J, et al. (2006) An unusual Zn-finger/
FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development
133: 3317–3328.

63. Kimata T, Tanizawa Y, Can Y, Ikeda S, Kuhara A, et al. (2012) Synaptic polarity depends on
phosphatidylinositol signaling regulated by myo-inositol monophosphatase in Caenorhabditis elegans.
Genetics 191: 509–521.

64. Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode Caenorhabditis
elegans. Cell 44: 817–829.

65. Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes
that can mutate to induce neuronal degeneration. Nature 349: 588–593.

66. Xu K, Tavernarakis N, Driscoll M (2001) Necrotic cell death in C. elegans requires the function of
calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31: 957–971.

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 16 / 17



67. Church DL, Guan KL, Lambie EJ (1995) Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1
and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development
121: 2525–2535.

68. Davis SJ, Scott LL, Hu K, Pierce-Shimomura JT (2014) Conserved Single Residue in the BK
Potassium Channel Required for Activation by Alcohol and Intoxication in C. elegans. J Neurosci 34:
9562–9573.

69. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, et al. (1997) Regulation of neuronal survival by
the serine-threonine protein kinase Akt. Science 275: 661–665.

70. Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3beta signaling pathway
mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats.
J Cereb Blood Flow Metab 26: 1479–1489.

71. Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, et al. (2006) Preconditioning Doses
of NMDA Promote Neuroprotection by Enhancing Neuronal Excitability. J Neurosci 26: 4509–4518.

72. Miyawaki T, Ofengeim D, Noh K-M, Latuszek-Barrantes A, Hemmings BA, et al. (2009) The
endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci 12:
618–626.

73. Jo H, Mondal S, Tan D, Nagata E, Takizawa S, et al. (2012) Small molecule-induced cytosolic
activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci U S A 109:
10581–10586.

74. Babar P, Adamson C, Walker GA, Walker DW, Lithgow GJ (1999) PI3-kinase inhibition induces dauer
formation, thermotolerance and longevity in C. elegans. Neurobiol Aging 20: 513–519.

75. Cecere G, Hoersch S, Jensen Morten B, Dixit S, Grishok A (2013) The ZFP-1(AF10)/DOT-1 Complex
Opposes H2B Ubiquitination to Reduce Pol II Transcription. Molecular Cell 50: 894–907.

76. Kennedy LM, Grishok A (2014) Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-
Binding Factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics 197: 207–220.

77. Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, et al. (2006) Identification of direct DAF-16 targets
controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38: 251–257.

78. Mansisidor AR, Cecere G, Hoersch S, Jensen MB, Kawli T, et al. (2011) A Conserved PHD Finger
Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans. PLoS Genet 7:
e1002299.

79. Chung S, Gumienny TL, Hengartner MO, Driscoll M (2000) A common set of engulfment genes
mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat Cell Biol 2: 931–937.

80. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance.
Nat Rev Mol Cell Biol 14: 83–97.

81. Wang YT, Linden DJ (2000) Expression of cerebellar long-term depression requires postsynaptic
clathrin-mediated endocytosis. Neuron 25: 635–647.

82. Man HY, Lin JW, Ju WH, Ahmadian G, Liu L, et al. (2000) Regulation of AMPA receptor-mediated
synaptic transmission by clathrin- dependent receptor internalization. Neuron 25: 649–662.

83. Carroll RC, Beattie EC, von Zastrow M, Malenka RC (2001) Role of AMPA receptor endocytosis in
synaptic plasticity. Nat Rev Neurosci 2: 315–324.

84. ItoM (2002) Themolecular organization of cerebellar long-term depression. Nat RevNeurosci 3: 896–902.

85. Lin JW, Ju W, Foster K, Lee SH, Ahmadian G, et al. (2000) Distinct molecular mechanisms and
divergent endocytotic pathways of AMPA receptor internalization. Nat Neurosci 3: 1282–1290.

86. Passafaro M, Piech V, Sheng M (2001) Subunit-specific temporal and spatial patterns of AMPA
receptor exocytosis in hippocampal neurons. Nat Neurosci 4: 917–926.

87. Man H-Y, Wang Q, Lu W-Y, Ju W, Ahmadian G, et al. (2003) Activation of PI3-Kinase Is Required for
AMPA Receptor Insertion during LTP of mEPSCs in Cultured Hippocampal Neurons. Neuron 38: 611–624.

88. Brennan-Minnella AM, Shen Y, Swanson RA (2013) Phosphoinositide 3-kinase couples NMDA
receptors to superoxide release in excitotoxic neuronal death. Cell Death Dis 4: e580.

89. Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, et al. (2010) The PtdIns(3,4)P2 phosphatase
INPP4A is a suppressor of excitotoxic neuronal death. Nature 465: 497–501.

IIS Regulators Cytohesin and PIP5K Modulate Nematode Excitotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0113060 November 25, 2014 17 / 17


	Figure 1
	Figure 2
	Figure 3
	Figure 5
	Figure 4
	Figure 6
	Figure 7
	Figure 8
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66
	Reference 67
	Reference 68
	Reference 69
	Reference 70
	Reference 71
	Reference 72
	Reference 73
	Reference 74
	Reference 75
	Reference 76
	Reference 77
	Reference 78
	Reference 79
	Reference 80
	Reference 81
	Reference 82
	Reference 83
	Reference 84
	Reference 85
	Reference 86
	Reference 87
	Reference 88
	Reference 89

