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Generation of four-photon 
polarization entangled 
decoherence-free states  
with cross-Kerr nonlinearity
Meiyu Wang1, Fengli Yan1 & Ting Gao2

We propose a theoretical protocol for preparing four-photon polarization entangled decoherence-free 
states, which are immune to the collective noise. With the assistance of the cross-Kerr nonlinearities, 
a two-photon spatial entanglement gate, two controlled-NOT gates, a four-photon polarization 
entanglement gate are inserted into the circuit, where X homodyne measurements are aptly applied. 
Combined with some swap gates and simple linear optical elements, four-photon polarization 
entangled decoherence-free states which can be utilized to represent two logical qubits, |0〉L and |1〉L 
are achieved at the output ports of the circuit. This generation scheme may be implemented with 
current experimental techniques.

Entanglement1–3 plays an important role in quantum information processing, mainly including quantum computa-
tion4 and quantum communication. It is the information carrier in some interesting branches of quantum commu-
nication, such as quantum key distribution5, quantum secret sharing6–8, quantum secure direct communication9–11, 
teleportation12, quantum dense coding13,14, and so on. Most of the above applications require maximally entangled 
states or noiseless quantum channels. However, in a realistic situation, decoherence, induced by uncontrolled cou-
pling between a quantum system and the environment, is inevitable. When qubits are coupled to the environment, 
the quantum superposition and coherence are easily destructed, and as a result the maximally entangled state col-
lapses into a non-maximally entangled one or even a mixed state. This will degrade the fidelity and security of 
quantum communication. To overcome this flaw, some specific entangled states, which are called decoherence-free 
states15–17, are proposed. Decoherence-free states, no matter how strong the qubit-environment interaction, exhibit 
some symmetry, so the quantum states are invariant under this interaction. Therefore, the decoherence-free states 
are very useful for long-distance quantum information transmission and storage.

Due to the fact that photons have the merits of higher speed, lower decoherence, easier manipulation, and lower 
energy cost compared with more massive qubits, polarization photons are destined to have a central role in 
long-distance communication. Recently, the encoding in decoherence-free states of polarization photons to overcome 
collective decoherence attracts the extensively attention. An optical experiment has been reported to overcome collec-
tive noise by encoding quantum information into the decoherence-free state18. For two qubits, there is only one 
decoherence-free singlet state, i.e., −HV VH( )1

2
, where H and V denote horizontal and vertical linear polariza-

tions respectively. Therefore, it is not sufficient to fully protect the quantum information of an arbitrary logical qubit 
against collective noise. Another nontrivial example is the four-photon polarization entangled decoherence-free state

α βΦ = +0 1 , (1)L L0

with

= − −H V V H H V V H0 1
2
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The dimension of the above four-qubit decoherence-free state in Eq. (1) is 2, and thus it is sufficient to fully 
protect an arbitrary logical qubit against collective noise in contrast to the two-qubit state. With its interesting 
applications, Bourennane et al.19 have generated four-photon polarization entangled decoherence-free states via a 
spontaneous parametric down-conversion source. Recently, Zou et al.20 and Gong et al.21 proposed two different 
schemes to generate four-photon polarization entangled decoherence-free states based on linear optical elements 
and postselection strategy. Subsequently, Xia et al.22 presented a protocol for the controlled generation of the 
four-photon polarization entangled decoherence-free state with conventional photon detectors. In 2010, Wang 
et al.23 proposed a probabilistic linear-optics-based scheme for local conversion of four Einstein-Podolsky-Rosen 
photon pairs into four-photon polarization entangled decoherence-free states. In 2013, Xia et al.24 also put for-
ward a probabilistic protocol for preparation of four-photon polarization entangled decoherence-free states with 
the help of the cross-Kerr nonlinearity medium.

In this paper, we present an alternative scheme to generate the four-photon polarization entangled 
decoherence-free states with the assistance of the cross-Kerr nonlinearities. The states representing the logical 
qubits |0〉​L and |1〉​L can be achieved at different output ports of two beam splitters, combined with the output 
ports of the photon 3 and the photon 4. The rest of the paper is organized as follows. In Sec. II, we show how to 
generate these two logical qubits in the four-photon polarization entangled decoherence-free states based on the 
weak cross-Kerr nonlinearities. The discussion and conclusion are presented in Sec. III.

Generations of four-qubit entangled decoherence-free states
For the sake of the clearness, let us first introduce the cross-Kerr nonlinearity, which was first used by Chuang and 
Yamamoto to realize the simple optical quantum computation25. The interaction Hamiltonian has the form 

κ= −ˆ ˆ ˆH n nk s p , where n̂s n̂( )p  is the photon-number operators of the signal (probe) mode, and κ is the strength 
of the nonlinearity. If the signal field contains n photons and the probe field is in an initial coherent state with 
amplitude α, the cross-Kerr nonlinearity interaction causes the combined signal-probe system to evolve as 
follows:

 α α α= =κ θ− ˆ ˆ ˆn n ne e e , (4)
H t

s p
tn n

s p s
n

p
i / i ik s p

where θ =​ κt with t being the interaction time. It is easy to observe that the Fock state is unaffected by the interac-
tion but the coherent state picks up a phase shift nθ directly proportional to the number of photons n in the signal 
mode. One can exactly obtain the information of photons in the Fock state but not destroy them by detecting 
the probe mode with a general homodyne-heterodyne measurement. The cross-Kerr nonlinearity between pho-
tons offers an ideal playground for quantum state engineering, and a number of applications have been studied, 
such as constructing nondestructive quantum nondemoliton detectors (QND)26,27, deterministic entanglement 
distillation28, logic-qubit entanglement29,30, generation of multi-photon entangled states and decoherence-free 
states24,31–36.

In what follows, we explain the detailed procedures for generating the four-photon polarization entangled 
docoherence-free states abided by the following processes, which is also illustrated in Fig. 1.

Assume the four single photons are initially prepared in the state  | 〉 ⊗ | 〉 ⊗ | 〉+H H H(1 2
1
2

) ⊗ ( + )V H V3
1
2 4, and let them enter into the circuit shown in Fig. 1 from the input ports. The first step is 

to create the spatial entanglement of the photons 1 and 2. Passing through beam splitters, BS1 and BS2, which have 
the following function between two input modes (a,b) and two output modes (c,d): → +† † †a c d( )/ 2 , 
→ −† † †b c d( )/ 2 , the photons (1, 2) enter into the paths (S11, S12) and the paths (S21, S22) respectively. 

Accompanying with the coherent state, the photons (1, 2) enter into Kerr media. Then, the state of photons (1, 2) 
with the coherent state |α〉​ evolves as
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Performing an X homodyne measurement on the coherent state with α real, there are two measurement out-
comes corresponding to scenarios of phase shift (0, ±​θ). For the convenience of analysis, we expand the state in 
terms of the eigenstates of the X operator:
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where the coefficients37 are
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Explicitly, if zero phase shift occurs, the spatial entangled state of the photons (1, 2) is created and can be 
written as

ψ = + .H H H H1
2

( )
(8)S S S S12,zero 11 21 12 22

Otherwise, another measurement outcome (nonzero phase shift) is obtained, a phase shift operation 2φ1(x) 
should be performed on the photon 2 passing through the path S21 to erase the phase difference between two 
terms of H HS S11 22

 and H HS S12 21
. By omitting a global phase φ1(x), the photons (1, 2) are in the following 

spatial entangled state

ψ = + .H H H H1
2

( )
(9)S S S S12,nonzero 11 22 12 21

Without considering other conditions, there is a small probability of error to distinguish the state in Eq. (8) 
and the state in Eq. (9) from each other due to the overlap of the measurement functions f(x, α) and f(x, α cos θ), 
which is given by = − 



( )P 1 erf x

error
1
2 2 2

d , xd =​ 2α(1 −​ cos θ). It is less than 10−5 when the distance xd ~ αθ2 >​ 926.
For simplifying description in the later processes, we take an example as the representative of two different 

scenarios of phase shift. If zero phase shift is witnessed by the X homodyne measurement, half wave plates, 
HWP22.5°s, are inserted into the paths S11, S22 at first, which function as Hadamard transformation operations to 
transform the state of the photons (1, 2) from H S11

 and H S22
 to +H V( )S

1
2 11

 and +H V( )S
1
2 22

. Then 
two controlled-NOT (CNOT) gates are performed on two paths (S11, S21) (photon 1 as control photon and photon 
2 as target photon), and paths (S22, S12) (photon 2 as control photon and photon 1 as target photon) respectively. 
The CNOT gate is important in the experimental realization. Knill et al.38 firstly proposed a probabilistic CNOT 
gate on two photonic qubits by using linear optical elements and postselection. The cross-Kerr nonlinearity has 
also been used to implement the CNOT gate26,39,40. After two CNOT gates, the four-photon system will evolve into
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Figure 1.  Illustration plot for generating four-photon polarization entangled decoherence-free state with 
the help of the cross-Kerr nonlinearities. The symbol BS denotes the beam splitter which has equal probability 
(50:50) of transmission and reflection. HWP22.5, HWP45, and HWP denote half-wave plates which realize the 
Hadamard transformation operation, single photon σx operation, and single photon σz operation respectively. 
In the construction of the circuit, after two Controlled-Not gates, a polarization entanglement gate and two 
swap gates need to be performed, which can be seen in Figs 2 and 3 respectively. Before four photons leave the 
circuit, the four potential paths of the photon (1, 2) are coherently combined by BS3 and BS4 for obtaining the 
different four-photon polarization entanglement decoherence-free states.
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A polarization entanglement gate illustrated in Fig. 2 is put into the paths (S11, S12, S21, S22, S3, S4) of the pho-
tons (1, 2, 3, 4) to entangle them with the polarization degree of freedom. Affected by cross-Kerr nonlinearities, 
the horizontal polarization mode of photons (1, 2) via the paths S11, S12, S21, S22 will accumulate the phase shift 
θ, −​θ respectively while the vertical polarization mode of photons (3, 4) will accumulate the phase shift θ, −​θ 
respectively on the coherent state |α〉​. As the consequence of the nonlinear interaction between photons and the 
coherent state, the state of the whole system can be expressed as
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After the photons leave Kerr media, the X homodyne measurement is performed on the coherent state. If 
zero phase shift occurs, no phase modulation is necessary. Otherwise, if nonzero phase shift of the coherent state 
presents on the measurement setup, a phase shift 2φ(x) operation should be performed on the photon 3 in the 
path S31. Moreover, a HWP45° should be inserted into the path S3 to perform σx operation on the photon 3. So the 
four-photon state can be denoted as

XX

S11

S12

S21

S22

S4

S3

PBS

Polarization entanglement gate

Figure 2.  Illustration plot for depicting a polarization entanglement gate. The polarization beam splitters 
(PBS) reflect the vertical polarization |V〉​ mode and transmit the horizontal polarization |H〉​ mode. Influenced 
by cross-Kerr nonlinearities, the photon 1 in the horizontal polarization state and the photon 3 in the vertical 
polarization state enable the coherent state |α〉​ to pick up the phase shift θ, while the photon 2 in the horizontal 
polarization state and the photon 4 in the vertical polarization state enable the coherent state |α〉​ to pick up the 
phase shift −​θ.
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Here, two swap gates need to be performed on two photons in the paths (S21, S3) and (S22, S4) respectively to 
swap them. A swap gate is an important two-qubit logic gate. In terms of the basis of {|00〉​, |01〉​, |10〉​, |11〉​}, the 
swap gate can be represented as the following matrix:


















.

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1 (13)

In practice, the swap gate transformation can be yielded by the Hong-Ou-Mandel interference41 in the 
Mach-Zehnder interferometer39,42, illustrated in Fig. 3. Two beam splitters constitute a Mach-Zehnder interfer-
ometer. Additionally, the phase shifter PS π denotes the phase shift π executed on the photon passing through the 
line it is inserted.

After two swap gate operations, the state denoted in Eq. (12) is changed to
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Then, a local unitary operation σy should be performed on photon 3 and 4, respectively, which can be realized 
by the combination of a HWP45° and a HWP. So the above state can be denoted as
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Due to the presence of BS3 and BS4, the photons (1, 2) leave the paths (S11, S12) and the paths (S21, S22) to the 
paths ′ ′S S( , )11 12  and the paths ′ ′S S( , )21 22  according to the following rules, → +′ ′

† † †a a a( )S S S
1
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, 
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. Correspondingly, at the output ports, 
the state of four photons expressed as Eq. (15) is transformed to
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Figure 3.  Illustration plot for depicting the swap gate. The symbol PS π denotes the phase shift π executed on 
the photon passing through the line it is inserted. A beam splitter has the following function between two input 
modes (a,b) and two output modes (c,d): → +† † †a c d( )1

2
, → −† † †b d c( )1

2
.
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From the above equation, we can see that by detecting the outputs of the four photons, the logical qubit |0〉​L 
can be obtained with the total prabability of 25% at the output ports of ′ ′S S S S( )11 22 3 4  or ′ ′S S S S( )12 21 3 4 . As for the 
logical qubit |1〉​L, it can be obtained with the total prabability of 75% at the output ports of ′ ′S S S S( )11 21 3 4  or 
′ ′S S S S( )12 22 3 4 .
As for another scenario, if we obtain the spatial entangled state denoted as Eq. (9), with a similar process, we 

can also obtain the four-photon polarization entangled decoherence-free states. It is worth noting that the state 
denoted as Eq. (9) is the same as Eq. (8) when a swap gate is inserted into the path S21 and S22, so far, the prepara-
tion of four-photon polarization entangled decoherence-free states if fullfilled.

Discussion and Conclusion
We now give a brief discussion about the experimental feasibility of protocol with the current experimental tech-
nology. First of all, in the input ports, single-photon resources are used. The complete technology of these single 
photons is yet to be established43–46. Currently single-photon sources in signal modes can be achieved from the 
collinear type II spontaneous parametric down conversion47. As down conversion experiments are intrinsically 
probabilistic due to the statistical creation property of the photon pairs, the scheme will be in a sense probabilistic 
too in view of the usage of single-photon sources. Thus, more efficient ones are demanded for our setup. Second, 
in the present scheme, two CNOT gates are performed, which can be realized following the refs 26,38–40. However, 
these methods are at the best, nearly deterministic, so our scheme could be nearly deterministic. Third, in our 
protocol, we exploit the cross-Kerr nonlinearities medium in the spatial entanglement process and performing the 
polarization entanglement gate. It should be noted that in actual experiments, many factors will affect the perfect 
performance of cross-Kerr nonlinearities, such as dispersion, self-phase modulation, molecular vibrations in Kerr 
media, etc. Shapiro et al.48 analyzed the cross-Kerr nonlinear interaction and showed that single-mode cross-Kerr 
nonlinearities is not available for quantum information processing. Recently, Gea-Banacloche49 pointed out that 
the large phase shifts via the giant Kerr effect with single-photon wave packets is impossible at present. A proper 
physics systems providing larger strength of cross-Kerr nonlinearity should be atomic ensemble, and the funda-
mental problem with the cross-Kerr nonlinearity in atomic ensemble was discussed by Gea-Banacloche49, and 
He and Scherer50. Finally, the experiment feasibility of the present protocols also depends on the veracity of the X 
homodyne measurement. For the X homodyne measurement, we only consider the error chiefly coming from the 
overlap adjacent curves because of the fact that the coherent states of the probe beam with different phase shifts 
are not completely orthogonal. In fact, it is only one type of detection error in homodyne, other errors, such as the 
noises in detection, the reduced fidelity to the process in Eq. (4) due to multi-mode effect and decoherence, etc., 
also exist in a realistic implementation. Exploiting the appropriate measurement methods, the disadvantageous 
influence can be overcome or alleviated and the error probability will be decreased. In 2010, Wittmann et al.51 
investigated quantum measurement strategies capable of discriminating two coherent states using a homodyne 
detector and a photon number resolving (PNR) detector. In order to lower the error probability, the postselection 
strategy is applied to the measurement data of homodyne detector as well as a PNR detector. They indicated that 
the performance of the new displacement controlled PNR is better than homodyne receiver.

To summarize, we have proposed a theoretical protocol for preparing four-photon polarization entangled 
decoherence-free states with the assistance of the cross-Kerr nonlinearity. In our protocol, combined with some 
swap gates and simple linear optical elements, a two-photon spatial entanglement gate, two CNOT gates, a 
four-photon polarization entanglement gate are applied. We hope our work will afford facilities for other practical 
implementations of quantum information processing based on optics.
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