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We investigate the influence of the small-world topology on the composition of

information flow on networks. By appealing to the combinatorial Hodge theory,

we decompose information flow generated by random threshold networks on the

Watts-Strogatz model into three components: gradient, harmonic and curl flows. The

harmonic and curl flows represent globally circular and locally circular components,

respectively. The Watts-Strogatz model bridges the two extreme network topologies,

a lattice network and a random network, by a single parameter that is the probability

of random rewiring. The small-world topology is realized within a certain range between

them. By numerical simulation we found that as networks become more random the

ratio of harmonic flow to the total magnitude of information flow increases whereas

the ratio of curl flow decreases. Furthermore, both quantities are significantly enhanced

from the level when only network structure is considered for the network close to a

random network and a lattice network, respectively. Finally, the sum of these two ratios

takes its maximum value within the small-world region. These findings suggest that the

dynamical information counterpart of global integration and that of local segregation are

the harmonic flow and the curl flow, respectively, and that a part of the small-world region

is dominated by internal circulation of information flow.

Keywords: small-world network, random threshold network, transfer entropy, Hodge decomposition, functional

brain networks

1. INTRODUCTION

Recently, small-world topology of brain networks has been paid much attention in neuroscience.
It is found ubiquitously in both structural and functional neuronal networks from those of local
neuronal populations to large-scale brain areas (Bassett and Bullmore, 2006; Bullmore and Sporns,
2010; Poli et al., 2015). It has been suggested that the small-world topology is significant to brain
functions because it balances integration and segregation of information processing on brain
networks (Sporns and Zwi, 2004; Downes et al., 2012). Disruption of the small-world topology
is suggested to be related to brain disease (Fornito and Bullmore, 2015).

Small-world topology is characterized by two structural metrics of networks. One is the mean
path length and the other is the clustering coefficient. A network is called small-world when its
mean path length is small and its clustering coefficient is large (Watts and Strogatz, 1998). Note
that it is meaningful only for sparse networks since densely connected networks trivially satisfy the
two features of the small-world topology (Markov et al., 2013).

A small value of the mean path length could make communication between any pair of nodes
rapid and thus contribute to global integration of information. On the other hand, high clustering in
a sparse network indicates that it consists of local groups of nodes that are densely connected within
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each group. This could support segregated specialized
information processing. Thus, the small-world topology
seems to compromise apparently opposite aspects of information
processing on networks: integration and segregation. In other
words, small-world networks can be characterized as both locally
and globally efficient (Latora and Marchiori, 2001). However,
what is relevant to functioning of a system is not structure but
dynamical processes under the structural constraint (Barrat
et al., 2008). The influence of the small-world topology on
dynamical behaviors has been studied in the literature. For
example, coexistence of fast response and coherent oscillations
in the dynamics of networks of model neurons (Lago-Fernández
et al., 2000) and improvement of synchronizability of general
coupled identical oscillators (Barahona and Pecora, 2002)
are achieved in the small-world regime of the Watts-Strogatz
small-world network model (Watts and Strogatz, 1998).
However, the quantitative effect of the small-world topology on
information flow generated by dynamical processes on networks
is still obscure.

In this paper, we do not concern whether the small-world
topology is relevant to functioning of real-world brain networks.
Rather, we take it for granted and study its influence on
information flow generated by a dynamical process on the
Watts-Strogatz small-world network model (Watts and Strogatz,
1998). We consider random threshold networks that have been
used as a model of neural network dynamics (Kürten, 1988)
for their simplicity and low computational costs (Rohlf, 2008).
Information flow is quantified by the transfer entropy (Schreiber,
2000). For the analysis of information flow, we employ the
combinatorial Hodge theory (Jiang et al., 2011). Miura and Aoki
(2015a) used this technique to reveal global loop structure of
an evolving neural network model and Miura and Aoki (2015b)
showed that it can distinguish different learning rules. Fujiki
and Haruna (2014) applied the combinatorial Hodge theory
to study the influence of different degree distributions on the
composition of information flow generated by a dynamical
process on networks. The combinatorial Hodge theory enables
us to decompose any flow on a network into three mutually
orthogonal components: gradient, harmonic and curl flows. In
succeeding sections, we study how the balance between these
components in information flow changes as the parameter of
the Watts-Strogatz model is varied by numerical simulation and
discuss its implications.

2. MATERIALS AND METHODS

2.1. Random Threshold Networks on the
Small-World Model
We employed the conventionalWatts-Strogatz model (WSmodel)
(Watts and Strogatz, 1998). It is constructed as follows. First,
N nodes are arranged on a ring lattice and each node is
connected to its 2k nearest neighbors (k << N). For example,
if k = 2, a node is connected to 4 other nodes: its two nearest
neighbors and two second-nearest neighbors. Second, each edge
is randomly rewired with probability p (0 ≤ p ≤ 1). p = 0
and p = 1 correspond to the lattice network and completely
random networks (Erdös-Rényi random networks), respectively.

For a certain range of p between these two extremes, we get
so-called small-world networks with a small mean path length
and a high clustering coefficient. In order to run random
threshold networks on the WS model, we needed to assign a
direction to each link. For each link, one of the two directions
was chosen at random with equal probability. In this paper, we
set N = 400 and consider the two cases k = 3 and k = 4.
We also performed the same numerical simulation study except
N = 200 and obtained the qualitatively similar results as those
described below.

We simulated random threshold networks (RTNs) (Rohlf and
Bornholdt, 2002) on the WS model. In RTNs, each node is
assumed to take two states +1 and −1 corresponding to firing
and resting states of a neuronal population, respectively. The state
xi(t) of node i at time t is updated synchronously by the rule

xi(t + 1) = sgn





N
∑

j = 1

wijxj(t)+ hi



 , (1)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise. If there
is a directed link from node j to i, we set wij = ±1 with equal
probability. Otherwise, wij = 0. The threshold hi for each node i
is set to 0 in this paper.

The dynamics of RTNs can take three phases, ordered, critical
and chaotic, depending on the values of the parameters (Kürten,
1988; Rohlf and Bornholdt, 2002; Rohlf, 2008; Szejka et al., 2008).
For N = 400 and k = 3, 4, they exhibit weakly chaotic behaviors
for all 0 ≤ p ≤ 1, namely, reside in the chaotic phase close to
criticality, as we numerically verify below. These conditions were
adopted in order to mimic spontaneous background activity of
real-world neuronal networks (Chialvo, 2010).

In general, other things being equal, the dynamics tend to
become unstable for larger values of k. To the best of our
knowledge, no analytic condition for the boundary between the
ordered and the chaotic phases for RTNs on the WS model is
derived so far. However, the phase of RTNs can be numerically
assessed by the behavior of damage spreading. In the chaotic
phase, a damage applied to a node, namely, a flip of the state of
the node, propagates indefinitely as the state of the system evolves
and eventually a finite fraction of the whole nodes is influenced.
On the other hand, the damage dies away in the ordered phase.
At the critical phase, a flip propagates to exactly one succeeding
node on average. The size of the influence can be quantified as
follows (Gershenson, 2003). Let x(0) be a random initial state of
an RTN on the WS model. A node is chosen at random and its
state is flipped. Let y(0) be the resulting state of the whole system
which is 1 bit away from x(0).

d(x(t), y(t)) =
1

N

N
∑

i = 1

|xi(t)− yi(t)|

2
(2)

is the Hamming distance between the two states after t time
steps. Let

δt = d(x(t), y(t))− d(x(0), y(0)), (3)
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where d(x(0), y(0)) = 1/N and δ∗ = limt→∞ δt . δ∗ > 0
indicates that the dynamic is sensitive to initial conditions and
thus is an evidence for the chaotic phase. On the other hand,
δ∗ < 0 or δ∗ = 0 mean that the dynamic is insensitive or
neutral to perturbations and thus correspond to the ordered or
the critical phases, respectively. Note that the asymptotic size of
influence of perturbations is a well-known order parameter of
Boolean network dynamics (Derrida and Pomeau, 1986). The
quantity limt→∞ d(x(t), y(t)) approximates it in a finite size
system. Thus, the sign of δ∗ is a convenient way to numerically
assess the phase of Boolean network dynamics. This method has
been applied to random Boolean networks on the WS model
(Lizier et al., 2011) and here we have followed this approach.

Figure 1 shows time evolution of δt for k = 3 (a) and
k = 4 (b). The rewiring probability p is varied within the range
10−3 ≤ p ≤ 1. For each p, δt > 0 in the depicted range
of time and converges to a small positive value within a few
tens to hundreds time steps. The system with k = 4 is more
susceptible to perturbations than that with k = 3 and there is
an overall tendency that the size of eventual damage influence
becomes larger as p increases, namely, it becomes more remote
from criticality.

2.2. Quantification of Information Flow
We quantified information transfer along each causal link in
RTNs by the transfer entropy (Schreiber, 2000). Let us consider a
directed link from node j to node i. The quantity

Tj→i = H(Xi(t + 1)|Xi(t))−H(Xi(t + 1)|Xi(t),Xj(t)) (4)

is a measure of information transfer from node j to node i and is
called the transfer entropy. Here,

H(Xi(t + 1)|Xi(t)) = −
∑

xi(t + 1),xi(t)

p(xi(t + 1), xi(t))

× log2 p(xi(t + 1)|xi(t)) (5)

is the conditional entropy (Cover and Thomas, 1991) of the
future state xi(t + 1) of node i given its present state xi(t) which
represents the amount of average uncertainty to predict the i’s
future state from its present state. p(xi(t + 1), xi(t)) is the joint
probability that one observes a pair of states (xi(t+ 1), xi(t)) and
p(xi(t + 1)|xi(t)) is the conditional probability that the state of i
at time t + 1 is xi(t + 1) given its state at time t is xi(t). On the
other hand,

H(Xi(t + 1)|Xi(t),Xj(t)) = −
∑

xi(t + 1),xi(t),xj(t)

p(xi(t + 1), xi(t), xj(t))× log2 p(xi(t + 1)|xi(t), xj(t)). (6)

is the conditional entropy of the future state of node i given
its present state and j’s present state. The joint and conditional
probabilities involved in Equation (6) are defined similarly as
in Equation (5). Thus, the transfer entropy Tj→i (Equation 4)
can be interpreted as the reduction of average uncertainty when
one incorporates the knowledge about j’s present state into the
prediction of i’s future state from its own present state.

In this paper, Tj→i on a fixed network was numerically
estimated as follows. First, a network was generated from the
WS model with given parameter values and fixed. Second, for
each realization of RTN on the fixed network, 1000 time steps
after disregarding initial 100 transient steps from a random initial
condition were used to calculate Tj→i. Finally, Tj→i was averaged
over 100 realizations of RTNs on the fixed network. The average
of Tj→i is also denoted by Tj→i by abuse of notation. The length
of transient time steps was determined from the inspection of
Figure 1. δts almost converge after 100 time steps for all p.
This indicates that we can regard that the dynamics of RTNs
settle down to the stationary regime after 100 time steps and
the probability distributions involved in the formula of Tj→i are
well-defined.

Let us introduce a quantity eij as follows. eij = Ti→j if there is
a directed link from i to j, eij = −Tj→i if there is a directed link
from j to i and eij = 0 if there is no link between i and j. eij defines
a skew-symmetric matrix e = (eij). Namely, e satisfies eij = −eji

A B

FIGURE 1 | Time evolution of δt for (A) k = 3 and (B) k = 4. Each curve is the average over 100 random initial conditions for each realization of RTN, 100

realizations of RTNs on each network and 400 networks generated by the WS model with a specified value of p. p = 0.001000 (red), p = 0.003375 (green),

p = 0.011391 (blue), p = 0.038443 (magenta), p = 0.129746 (cyan), p = 0.437894 (orange), and p = 0.985261 (black). These values of p were chosen so that they

are arranged with an equal interval in the logarithmic scale because the small-world regime can be discriminated well in the logarithmic scale of p as we can see from

Figure 5. Concretely, p = p0 × 1.53n for p0 = 0.001000 and 0 ≤ n ≤ 6.
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for all 1 ≤ i, j ≤ N. We call e information flow. Here, we
have defined information flow as such because the combinatorial
Hodge decomposition can be applied to only skew-symmetric
matrices. (In general, if one has a matrix representing correlation,
coupling strength, etc. between nodes, first one can decompose it
into the sum of the symmetric part and the skew-symmetric part
and then apply the Hodge decomposition to the latter.)

In the literature, information theoretic quantities such as
transfer entropy are sometimes used for the purpose of causality
detection (Hlaváčková-Schindler et al., 2007). In this paper,
causality between two nodes is taken for granted. Tj→i quantifies
the magnitude of impact of j on i along the causal relationship
when there is a directed link from j to i. We emphasize that by
definition eij = 0 for pairs (i, j) that are not connected. Although
Tj→i could be positive for such pairs, they are ignored because
we here conceive information flow as influence of one node to
the other node along a causal link between them.

2.3. Combinatorial Hodge Decomposition
An edge flow on a network of size N is an N×N skew-symmetric
matrix e = (eij) satisfying eij = 0 for all pairs of nodes (i, j) that
are not connected. The information flow introduced in the last
subsection is an instance of edge flow.

An edge flow e = (eij) can be uniquely decomposed
into three orthogonal components via the combinatorial Hodge
decomposition theorem (Jiang et al., 2011): gradient g = (gij),
harmonic h = (hij) and curl c = (cij) flows. A gradient flow
g is an edge flow that can be written as the difference of a
potential function. Namely, there exists a real-valued function f
on the set of nodes such that gij = fj − fi for all pairs (i, j)
that are connected. A harmonic flow h is a non-gradient edge
flow that is also curl-free. Namely, h vanishes on every triangle
{i, j, k} (any pair of nodes from {i, j, k} is linked) in the sense that
hij + hjk + hki = 0. A curl flow c is defined by c = e − g − h
and thus is non-gradient and may have non-zero curls on some
triangles. One can say that the harmonic flow represents the
globally circulating component of a given edge flow, while the
curl flow corresponds to the local circulating one. We call the
sum of the harmonic and the curl flows loop flow and denote it
by l = h + c. Note that l represents the non-gradient flow and
is precisely equal to the divergence-free flow which is a result of
elementary linear algebra. Here, the divergence of an edge flow e
at node i is given by the sum of eij over all j connected to i. If the
divergence of e is zero at a node, the flow is conserved at the node,
namely, the sum of incoming flows and the sum of outgoing flows
are equal. It follows that vanishing of the divergence of nonzero
e at every node implies that it contains a loop along which each
element of e is positive.

The magnitude of an edge flow e can be measured by its
l2-norm ||e||2 =

∑

i,j e
2
ij. Adopting the l2-norm has a certain

advantage since we have the equality

||e||2 = ||g||2 + ||l||2 = ||g||2 + ||h||2 + ||c||2 (7)

due to the orthogonality of the decomposition. We can define
the relative strength of each component by γ = ||g||2/||e||2,
η = ||h||2/||e||2 and χ = ||c||2/||e||2 called gradient ratio,

harmonic ratio and curl ratio, respectively (Fujiki and Haruna,
2014). The sum of them is 1 by Equation (7). We also introduce
λ = ||l||2/||e||2 and call it loop ratio.

Each component constitutes a linear subspace of the finite-
dimensional vector space consisting of all edge flows. Thus, it
makes sense that we talk about the dimension of the subspace
consisting of all gradient flows, and so on. We define the relative
size of each subspace by the ratio of the dimension of the
subspace to the dimension of the space of all edge flows. Let Ŵ

be the relative size of the subspace of gradient flows, H that of
harmonic flows, X that of curl flows and 3 that of loop flows.
We call them structural gradient ratio, structural harmonic ratio,
structural curl ratio and structural loop ratio, respectively. Note
that these structural ratios are determined by the underlying
network alone, while ratios denoted by lower-case Greek letters
defined above depend on each edge flow. In particular, the latter
quantities are a function of dynamical processes on the network
for information flows. Note also that each structural ratio is equal
to the average relative strength of corresponding component of
edge flows of a fixed l2-norm chosen uniformly at random. Thus,
we can quantitatively evaluate whether a dynamical process on
a given network enhance or diminish intrinsic strength of each
component determined by network topology alone by comparing
the relative strength of that component for the information
flow generated by the dynamical process to the corresponding
structural ratio.

The gradient and curl components of a given edge flow
can be numerically computed by solving corresponding least
square optimization problems. Here, we obtained them by
computing the Moore-Penrose inverses of appropriate matrices
(Jiang et al., 2011). The computation of curl components involves
manipulation of matrices whose size is the number of triangles.
This requires high computational costs when the underlying
network is close to the lattice network. This is the reason why
we restricted our numerical simulations to networks with modest
sizes (N ≤ 400).

Figure 2 illustrates the combinatorial Hodge decomposition
of an information flow e obtained by the procedure described
in Section 2.2 on a network generated from the WS model with
N = 8, k = 2 and p = 0.1. For this example, we have
||e||2 = 0.411, ||g||2 = 0.028, ||h||2 = 0.122, ||c||2 = 0.261
and ||l||2 = 0.383. Thus, the relative strength of each component
is: γ = 0.069, η = 0.297, χ = 0.634 and λ = 0.931. On
the other hand, the structural ratios are: Ŵ = 7/16 = 0.4375,
H = 1/16 = 0.0625, X = 8/16 = 0.5 and 3 = 9/16 = 0.5625.

3. RESULTS

The information flow generated by RTNs on the WS model
was decomposed into the three components. In this section, all
quantities are averaged over 400 networks for each parameter set
of the WS model and error bars in figures represent the standard
deviations.

The magnitude of information flow ||e||2 divided by the
number of nodes N is shown in Figure 3 for k = 3 and
k = 4. The range of this quantity is confined within an
interval well apart from the zero in both cases. This indicates
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FIGURE 2 | An example of edge flow on a network generated from the WS model with N = 8, k = 2 and p = 0.1 and its combinatorial Hodge

decomposition into the three components. The value of each flow is rounded off to the four decimal places and multiplied by 102 for visibility.

FIGURE 3 | The magnitude of information flow divided by the number

of nodes N = 400 for k = 3 and k = 4.

that non-trivial information flows were generated for all values
of p. One might expect that the magnitude of information flow
becomes large as the randomness of the underlying network
is strengthened since we have observed that the dynamic
becomes more unstable as p increases in Figure 1. However,
we can see a minimum of ||e||2/N for both k = 3 and
k = 4 in Figure 3. It could result from the small-world
topology since the minimum points are contained in the small-
world region as we define below (see Figure 5). However, the
exact reason for this unexpected non-linear behavior is obscure
at present. In the following, we concentrate on the relative
strength of components of information flow and leave it as
future work.

In Figure 4, the relative strength of each component of
information flow is shown together with the corresponding
structural ratio. The gradient ratio γ is significantly smaller
than the structural gradient ratio Ŵ for all p in both k =

3 (Figure 4A) and k = 4 (Figure 4D). This indicates that
information flows generated by RTNs favor the loop component.
The value of Ŵ can be theoretically obtained. Indeed, the
dimension of the space of edge flows is just the number of

edges and is equal to kN. The dimension of the subspace of
gradient flows is the number of nodes minus the number of
connected components of the underlying network. However, the
latter can be assumed to be negligible compared to N in the
setting of our numerical simulations. Thus, Ŵ = N/(kN) +
O(1/N) ≈ 1/k which does not dependent on p. This agrees
well with the result of numerical simulations as shown in
Figures 4A,D.

Figures 4B,E show the harmonic ratio η and the structural
harmonic ratio H. Both increase as p increases, namely, the
underlying network becomes more random. When p is close to
1, η is significantly larger than H. On the other hand, the curl
ratio χ and the structural curl ratio X decrease as p increases.
For small values of p, χ is significantly larger than X as shown in
Figures 4C,F. Thus, the dominant part of the loop component is
enhanced by information flow generated by RTNs. Namely, when
the network is close to the lattice network, the curl component
is enhanced while the harmonic component is enhanced for
networks close to Erdös-Rényi random networks. We can give
simple theoretical estimations of X and H. Let us first consider
the lattice network (p = 0). In this case, H = 0 since any
loop of length greater than 3 can be expressed as a “sum” of
triangles. Hence, the dimension of the subspace of curl flows
is the dimension of the space of edge flows (kN) minus the
dimension of the subspace of gradient flows (N − 1). Thus,
X = (kN − (N − 1))/kN = (k − 1)/k + O(1/N) for p = 0.
Now, let us assume p > 0. The dimension of the subspace
of curl flows is the number of “linearly independent” triangles.
By the random rewiring process, these triangles in the lattice
network may be destroyed. The number of triangle decreases
with multiplication factor (1− p)3 up toO(1/N) terms in theWS
model (Barrat andWeigt, 2000). If we assume that the number of
“linearly independent” triangles linearly scales with the number
of triangles, then we predict X = (k − 1)(1 − p)3/k + O(1/N)
for p > 0. For H, we have H = 1 − Ŵ − X = (k − 1)(1 −

(1 − p)3)/k + O(1/N). These predictions agree well at least
for small p > 0 as we can see from Figures 4B,C,E,F. The
O(1/N) correction can be estimated for p = 1 which is visible
in the scale of Figure 4. When p = 1, the expected number
of triangles is 4k3/3 (Newman, 2010). Thus, our prediction
is X = 4k2/(3N) for p = 1. Since N = 400, we have
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A B C

D E F

FIGURE 4 | The relative strength of gradient γ (A,D), harmonic η (B,E) and curl χ (C,F) flows together with corresponding structural ratios are shown

for k = 3 (top row) and k = 4 (bottom row).

FIGURE 5 | The loop ratio λ is compared with a small-world index ω. (A) k = 3 and (B) k = 4.

X = 0.03 and X = 0.0533 · · · for k = 3 and k = 4,
respectively.

One can be aware of a small hollow in Figures 4A,D at an
intermediate value of p. Its counterpart λ(= 1 − γ = η + χ)
is enlarged in Figure 5. We also show a small-world index ω

(Telesford et al., 2011) together. Another small-world index was
suggested by Humphries and Gurney (2008) earlier. Here, we
adopted the former because it better discriminates the small-
world region. For a given network generated by the WS model,
it is defined by ω = Lr/L − C/Cc, where L is the mean path
length of the network, Lr is the average of the mean path length
of Erdös-Rényi networks with the same numbers of nodes and
links (p = 1), C is the clustering coefficient of the network
and Cc is the clustering coefficient of the lattice network with

the same k and N (p = 0). ω has a value within the range
−1 < ω < 1 and the network is judged to be small-world if ω

is close to 0. As ω varies toward −1, the network is more like a
lattice network. On the other hand, the network becomes more
like a random network as ω approaches 1. From Figure 5, we
can see that the loop ratio λ takes its maximum value within the
small-world region (If one would like to decide the boundary,
one could take −0.5 ≤ ω ≤ 0.5 as the small-world region as
suggested by Telesford et al., 2011). When k = 3 (Figure 5A),
the value of p such that λ is maximum slightly shifts toward
p = 1 from p satisfying ω = 0. We also obtained the similar
shift toward p = 1 for both k = 3, 4 when N = 200 but still the
maximum point of λ is contained in the small-world region (data
not shown).
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4. DISCUSSION

The aim of this paper is to reveal the influence of the small-
world topology on information flow generated by dynamical
processes on it. In this paper, we studied the composition of
information flow generated by RTNs on the Watts-Strogatz
small-world model. Information flows were decomposed into
three mutually orthogonal components by the combinatorial
Hodge theory: gradient, harmonic and curl flows. The result for
the structural ratios showed that networks close to the lattice
network have a larger capacity to support locally circulating curl
flows while those close to the Erdös-Rényi random networks
favor globally circulating harmonic flows. The result for the
relative strengths of harmonic and curl flows indicated that the
dominant component of loop flows at fixed p is enhanced in
information flows generated by RTNs (Figure 4). Furthermore,
the relative strength of loop flows which is the sum of those for
harmonic and curl flows takes its maximum value in the small-
world region (Figure 5). This result suggests that the small-world
topology promotes circulating information transfer generated by
dynamical processes on it.

In the literature, the small-world topology has often been
associated with a balance between integration and segregation
of information processing (Sporns and Zwi, 2004; Downes
et al., 2012). In terms of this point of view, our result in this
paper can be interpreted as follows. Harmonic flow represents
the globally circulating component of information flow and
thus related to global integration of information processing.
On the other hand, curl flow represents the locally circulating
component of information flow and thus related to local
segregation of information processing. The sum of relative
strengths of them λ takes its maximum value within the small-
world region. This result can be seen as a representation of
a balance between integration and segregation of information
processing achieved in the small-world region. Note that the
maximum point of λ tends to shift toward more random
side within the small-world region. Although our result is
based on synthetic data, it could shed a new light on the
interpretation of the result that several real-world brain networks
reside more random part of the small-world region far away
from the maximally small-world point (Muller et al., 2014).
Anyway, taking dynamical processes on networks into account
is important to assess functions supported by the network
topology.

The influence of the small-world topology on performance of
artificial neural networks has been studied so far. Kim (2004) and

Oshima and Odagaki (2007) showed that memory capacity of the
Hopfield neural network is enhanced as the network becomes
more random in the WS model. However, the neural network
of the nematode Caenorhabditis elegans (Varshney et al., 2011)
is organized as small-world and has lower memory capacity
than that of fully random networks (Kim, 2004; Oshima and
Odagaki, 2007). What is the reason for the fact that natural
selection does not select network topologies with an optimal
performance? They discussed that one factor is the wiring cost
to make long spatial connections which was not considered in
their numerical experiments. The reason why high clustering

diminishes memory capacity is still obscure. However, memory
capacity is just one of many functions of brain networks. In
particular, it is a global function of a network since patterns
are stored as distributed synaptic strengths within the whole
network. In contrast, our analysis took into account both global
and local functions although less concrete. We identified not
only the positive influence of small mean path length on the
composition of information flow but also that of high clustering
as shown in Figure 4.

In conclusion, our approach in this paper using the
combinatorial Hodge theory provides a new tool to analyze
information flow generated by dynamical processes on networks.
In addition to apply this method to studying effects of various
network structures such as degree correlations, network motifs
and community structure in mathematical models, applications
to real-world multivariate time series data that are becoming
available by progress in multi-site recording techniques are of
importance for future work to further assess the limit and
applicability of this approach.
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