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Abstract: Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomy-
ocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI
cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels
are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of
ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenviron-
ment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent
hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
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1. Introduction

In 2020, heart disease accounted for the highest cause of death in the US, constituting
20.57% of total deaths [1]. Myocardial infarction (MI) develops from the necrosis of car-
diomyocytes following ischemic episodes, primarily due to coronary occlusion resulting
from the atherosclerotic restriction of blood flow and oxygen supply to the heart. Following
MI, the myocardium is replaced with noncontractile collagen deposits affecting structural
integrity and cardiac output [2]. Modern treatments focus on minimizing the chances of
repeat attacks mainly through pharmacological interventions such as the administration of
anticoagulants, antihypertensive, and thrombolytic medications. Furthermore, the patients
undergo surgical interventions such as angioplasty, coronary artery bypass, and electronic
implants [3]. Unfortunately, a clinically successful method for myocardial regeneration and
remodeling following MI injury is currently unavailable. In severe cases wherein cardiac
function has been severely impaired, patients must undergo heart transplants.

Cardiomyocytes (CM) are post-mitotic and lack proliferation after maturation. The
density of CM within an individual reaches a peak 1 month after birth; thereon, the cells
undergo hypertrophic growth as they increase in size [4]. The persistence of immune
responses following MI aggravates the cardiac pathology leading to the apoptosis/necrosis
of CM and the disorganization of the extracellular matrix (ECM), ultimately leading to
ventricular remodeling and cardiac failure. Importantly, a permanent loss of ~1 billion
CM has been approximated from 50 g of cardiac tissue following MI, and the paucity
of inherent regenerative mechanisms offers additional challenges in cardiac healing [5].
Thus, the loss of heart tissue fails to regenerate the cardiac tissues needed for optimal
function efficiently. Current therapeutic approaches focus on myocardial regeneration [4].
Interestingly, intelligent hydrogel-based biomaterials gained prior attention as scaffolds for
cardiac regeneration owing to their responsiveness to the alterations in cardiac physiology,
superior biocompatibility, and exceptional biomimetic nature. This article focuses on the
comprehensive and critical review of intelligent hydrogels in myocardial tissue engineering.

2. Intelligent Hydrogels and Cardiac Tissue Engineering

Hydrogels are water-enriched polymeric biomaterials used as scaffolds that mimic the
extracellular matrix and are employed in various tissue engineering applications [6]. Inter-
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estingly, the hydrogels can be tuned by altering the functional groups of the parent poly-
meric backbone, resulting in structural rearrangements depending on the physiochemical
alterations in the surrounding medium and forming intelligent/smart/stimuli-responsive
hydrogels. Intelligent hydrogels alter their physiochemical structure in response to envi-
ronmental factors such as temperature, pH, hypoxia, ischemia, and the presence of reactive
oxygen species (ROS) [7]. Moreover, intelligent hydrogels possess a multitude of applica-
tions in regenerative cardiology, from controlled drug release to direct implantation onto the
left ventricle (LV) for post-MI cardiac tissue repair [8]. Furthermore, intelligent hydrogels
have considerable potential for cardiac tissue repair due to the complexity of post-ischemic
environments. For instance, the hydrogel-based delivery of angiogenic factors such as
basic fibroblast growth factor (bFGF) and angiopoietin-1 (Ang-1) promotes angiogenesis
and significantly improves cardiac healing [9]. Electro-responsive and ion-responsive
matrices have been utilized and directly implanted onto post-ischemic left ventricles of
animal models as patches to provide conductive and structural support to the area [10].
Generally, the base polymer utilized determines the responsive function of the hydrogel
matrix in vivo [11]. At the target site, intelligent hydrogels react appropriately in response
to their environment [11]. The major approaches and the commonly used polymers for
designing intelligent hydrogels for cardiac applications are displayed in Figures 1 and 2,
respectively, and Table 1.
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3. Temperature-Responsive Hydrogels

Temperature-responsive hydrogels reversibly change conformations in response to
alterations in the temperature in the vicinity. Basically, at lower critical solution temperature
(LCST), thermo-responsive hydrogels undergo a reversible transition of soluble-liquid
to insoluble-gel phase, and at temperatures above the LCST causes a transition from
hydrophilic to hydrophobic, leading to the expulsion of water and volumetric reduction [12].
The applications of thermosensitive hydrogels include wound healing, tumor treatment,
tissue regeneration via cell delivery, and on-demand drug delivery [13–20]. Temperature-
responsive hydrogels based on the amphiphilic polymer, poly(N-isopropylacrylamide)
(PNIPAAm), have an LCST of about 37 ◦C, and the polymerization occurs at temperatures
above the LCST, forming a hydrophobic shrunken configuration [12]. This is due to the
expulsion of water molecules, decreased hydrogen bonding with the amide group, and
increasing intramolecular hydrogen bonding [21]. Owing to the temperature sensitivity,
capability to solidify at body temperature, and modifiable biocompatibility, PNIPAAm has
been widely used for applications in cardiac tissue engineering [22].

In addition, many other synthetic polymers, such as poly(ethylene glycol) (PEG), have
shown promising biomedical applications due to their biocompatible, water-soluble, and
non-immunogenic properties [23–26]. Copolymers such as PLGA-PEG-PLGA (poly-(DL-
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lactic acid co-glycolic acid) are formulated to increase the gel’s stability and drug-delivering
capabilities [26].

Pluronics® F-127 is a synthetic polymer made up of units of ethylene oxide (PEO)
and propylene oxide (PPO) with appreciable bio-adhesiveness and biocompatibility [27].
Pluronics® F-127 has shown promising results in toxin neutralization, drug delivery, and
cell delivery [28–31]. The hydrogel transitions from liquid to gel at the critical gelation
temperature of 37 ◦C, at which micelles molecules self-assemble into a hard sphere crystal-
lization structure through interactions of the hydrophilic chains of the copolymers [27,32].
Initial studies regarding Pluronics® demonstrated weak mechanical strength, poor dura-
bility, and rapid drug release; however, recent applications of Pluronics® in ocular drug
delivery showed the gel’s ability for sustained drug release [33].

In addition, poly(N-vinylcaprolactam) (PVCL) possesses LCST in the physiological
range, where the temperature sensitivity is determined by the concentration and molecular
weight. Moreover, the excellent physiochemical properties and biocompatibility reflect its
biomedical applications [34]. Interestingly, Renata et al. [35] demonstrated the successful
tissue engineering potential of PVCL-based hydrogels, which show promising potential for
cardiac regeneration. Similarly, poly(N,N-dimethylaminoethyl methacrylate methacrylate)
(PDMAEMA)-based hydrogels have been attempted in biomedical systems, especially as
controlled drug delivery vehicles owing to their temperature and pH sensitivity [36]. Impor-
tantly, the structure–property driven sol–gel transition of PDMAEMA shows promise for
these supramolecular sol–gel reversible hydrogels in diverse biomedical applications [37].
Unfortunately, the literature regarding the application of PVCL and PDMAEMA-based
hydrogels in cardiac regeneration is limited; however, the superior biophysical properties
and responsiveness propose the cardiac applications of these biomaterials, which warrants
further research.

Moreover, the thermo-responsive hydrogels have been made into an injectable form for
minimally invasive delivery [38–41]. Importantly, the temperature-responsive hydrogels
allow the injection of the components at the liquid phase via a catheter, which solidifies into
a gel under physiologic conditions (37 ◦C). This is specifically useful for localized injections,
such as in the setting of an MI, as it provides mechanical support for cardiac muscles [42].
Targeted thermo-responsible hydrogel therapy, along with drug pro-angiogenic mediators,
leads to ameliorating cardiac remodeling and accelerating cardiac regeneration.

4. pH-Responsive Hydrogel

pH-sensitive hydrogels are composed of a polymer backbone with a weakly basic
or acidic group that ionizes depending on the pH. Generally, the transitions from gel to
liquid of pH-sensitive hydrogels are attributed to the ionization of carboxylic acid moieties
of the polymeric backbone in basic environments [43,44]. pH-sensitive hydrogels have
proven to be promising in pathological niches such as cancer, infection, and ischemia, as
demonstrated in disease-controlled drug release, owing to pH changes in pathological
environments. Rasool et al. [45] explored pH-sensitive hydrogels for the oral delivery of
insulin using vinyltriethoxysilane to crosslink a kappa carrageenan biopolymer with acrylic
acid, forming a pH-sensitive hydrogel capable of mucoadhesion in the small intestine. The
hydrogel accelerated insulin secretion at pH = 6.8 compared to pH = 1.2 [45]. Interestingly,
infarcted myocardial tissue exhibits lower pH (pH of 6–7) than healthy cardiac tissue [23],
suggesting the potential opportunities for designing pH-responsive hydrogel systems for
the targeted delivery of stem cells, drugs, and regenerative mediators.

5. Ion-Responsive Hydrogels

Ion-sensitive hydrogels demonstrate electrical/conductive properties in response to
the ionic environment of the surrounding medium. Mostly, ion-sensitive hydrogels are
synthesized in the liquid phase [10]. Ion-responsive gels transition from a liquid to a gel
in an electric field and exhibit a potential gradient [46]. The magnitude of this swelling
is dependent on the degree of crosslinking of the hydrogel, the density of charge in the
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hydrogel, the magnitude of applied voltage, and the electric properties of the surrounding
medium. While in solution, the hydrogel has fixed charges on the polymer backbone,
whereas, under an electric field, the charged ions and counterions interact to form a
network and gel.

Polysaccharides such as cellulose, starch, chitosan, and gelatin are ideal candidates
due to their ionic nature and biocompatibility [47]. Chitosan is a cationic polysaccharide
that adheres to tissue surfaces, such as skin and mucosa, owing to the negative charge
densities of the tissues [47]. In addition, ion-sensitive hydrogels are beneficial for drug ad-
ministration in the gastrointestinal tract, where both the pH and ionic environment impact
drug release. Importantly, cationic polysaccharides are ideal for the absorption and delivery
of negatively charged drugs and proteins such as insulin [12]. Wei et al. [48] demonstrated
a polysaccharide-based hydrogel by the copolymerization of salecan (a polysaccharide
from Agrobacterium) and poly(3-(methacryloylamino)propyl-trimethylammonium chloride)
(PMAPTAC) (acrylic acid-based polymer used in developing superabsorbent hydrogel ma-
trixes) for drug delivery applications. Interestingly, the hydrogel exhibited excellent positive
charge density, apart from the promising physiochemical properties and biocompatibility,
facilitating the loading and tunable release kinetics of small molecules and macromolecular
drugs depending on the ionic composition of the surrounding medium [48].

Polyacrylic acid (PAA) is another polymer that displays strong electrical conductivity,
which is ideal for ionic polymers due to its numerous carboxyl functional groups [10].
Song et al. [10] combined PAA with oxidized alginate and gelatin to form a macro-porous
ionic conductive hydrogel (POG) matrix for cardiac applications. POG displayed uni-
form conductivity and elasticity as well as self-healing abilities following MI in a rat
model with promising cardiac applications [10]. However, the cardiac cells (following
MI) lose the ability to contract due to tissue remodeling resulting in significant impair-
ment in the conductivity and thus challenging the performance of electroconductive or
ion-responsive hydrogels.

Table 1. Overview of the commonly used stimuli-responsive hydrogels.

Type of Smart Hydrogel Molecular Compound Function of Hydrogel Advantages Limitations References

Temperature -Responsive Poly(NIPAAm-co-HEMA-
co-MAPLA)

Provides mechanical support to
left ventricular wall via

thickening and decreasing
mechanical stress

Biodegradable through
modification of copolymers,
effective site-specific drug

delivery, decrease in systemic
side effects, evade toxic

solvents, high solvent swelling

Decreased pH via
acidic degradation,

lacks biocompatibility
[44,49,50]

Temperature-Responsive PLGA-PEG-PLGA
Liquid between the temperatures
of 2 ◦C and 15 ◦C and transitions

into a gel at body temperature

Biocompatible, water-soluble,
and non-immunogenic,
gradual drug release for
both hydrophobic and

hydrophilic drugs

Hydrophobic/hydrophilic
imbalance could lead
to no phase change,

narrow gel transition
temperature window

[23–33,38–46]

Temperature -Responsive Pluronics®
At concentration of 20 wt%, exist

in liquid form <25 ◦C and
transitions to a gel at 37 ◦C

Sustained drug release,
good bioadhesiveness,
good biocompatibility

Poor gel durability, weak
mechanical strength [27,28,30–32,41]

Temperature- Responsive
and pH-responsive p [NIPAAm-co-PAA-co-BA]

Exists in liquid form at room
temperature with a pH of 7.4 but

transitions into a gel at 37 ◦C
with a pH of 6.8. Able to deliver

drug motifs such as bFGF

Gel dissolution and
elimination once target is back

at normal physiology pH

Increased
inflammatory response [51]

Electroconductive PVV-PANI, PAA, PAMB
Enhanced neural and

glial differentiation with
electrical stimulation

Drug loading capacity,
high bioactivity and

cytocompatibility,
increased tensile strength

and compression

Enhanced cell growth
leading to cell death, loss of

conductivity, inability to
control arrhythmia

[52–55]

Ion-responsive Salecan + PMAPTA, POG

Binding with negatively
charged drugs and stable drug

release. Display uniform
conductivity and elasticity.

Drug loading capacity,
biocompatible,

injectable liquid form,
controlled biodegradation

Drug release impacted by
pH changes, differing

affinities to drug binding,
and release dependent on

charge strength

[10,47,48]

Hypoxia-responsive RAFT, ALOA, PLGA
Increase cell retention,
greater oxygen partial
pressure capabilities

Excellent biocompatibility,
no substantial increase

in inflammation
Can trigger ROS burst [56–61]

ROS-responsive CSCl-GSH, TEMPO,
NO-RIG, HBPAK, PEDGA

Antioxidant properties
effective in facilitating tissue

recovery, ROS scavenging,
and reduce inflammation

Successfully diminished
ROS microenvironment and

alleviated hypoxia

Limited retention
time to optimize

ROS-scavenging capability
[56–58,61–64]
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6. Hypoxia-Responsive Hydrogels

The increased hypoxic insults trigger abnormal ROS production resulting in the loss
of membrane integrity, accelerating the apoptosis of CM. Strategies have been attempted to
mitigate hypoxia and promote cell survival, including the development of thermosensitive
hydrogels with oxygen-releasing microspheres [65]. For instance, Fan et al. [65] synthe-
sized a high-oxygen preservation hydrogel through the free radical polymerization of
N-isopropylacrylamide (NIPAAm), (Hydroxyethyl)methacrylate (HEMA), and a macromer
acrylate-oligolactide (AOLA) at molar ratios of 86:10:4, respectively. The oxygen-releasing
microspheres were fabricated with a core–shell structure made of poly lactic-co-glycolic
acid (PLGA) and a polyvinylpyrrolidone–hydrogen peroxide (PVP/H2O2) complex. The
PVP/H2O2 complex generates oxygen and water by catalase enzymes loaded within the
hydrogel and an increase in water content through the catalase reaction, facilitating the
degradation of the hydrogel by the hydrolysis of the oligolactide [52]. Interestingly, a
seminal study by Alemdar et al. [66] demonstrated an oxygen-releasing hydrogel based
on calcium peroxide and photocrosslinked gelatin methacryloyl (GelMa), which was very
effective in extreme hypoxic environments. The hydrogel supported the survival and per-
formance of cardiac cells relieving the metabolic stress suggesting its potential application
in cardiac regeneration.

In addition to improving oxygen delivery to the targeted tissue, Shiekh et al. [62]
synthesized an oxygen-releasing antioxidant polymeric cryogel scaffold (PUAO-CPO) for
sustained oxygen release, simultaneously attenuating ROS and oxidative stress. Further-
more, the attenuation of ROS and the inhibition of oxidative stress-induced cell death were
alleviated using an antioxidant polyurethane polymer (PUAO) with superior antioxidant
capabilities [62]. Furthermore, the addition of a solid calcium peroxide (CPO) in the hy-
drogel system promotes a longer duration of oxygen release, maintaining the appropriate
redox balance [54,62]. CPO reacts with water to release hydrogen peroxide (H2O2), which
in turn undergoes a catalase reaction to release oxygen [62]; however, the oxygen release
requires tight control, as the accelerated release of oxygen induces damage to the surviving
cells due to hyperoxia. Interestingly, this issue has been addressed using a hydrophobic
antioxidant polymeric scaffold, PUAO, which was capable of prolonging and controlling
the release of oxygen [62].

Zhao et al. [55] discovered that CPO undergoes a thermal decomposition reaction,
initially generating calcium hydroxide and hydrogen peroxide, subsequently producing
water and oxygen. However, the calcium hydroxide disturbs the acid–base balance and
inhibits cell regeneration, and this challenge was successfully overcome by introducing
Vitamin C to neutralize the alkaline environment and prevent the excessive production
of ROS [55]. In another approach, CPO was incorporated into a dynamic horseradish
peroxidase (HRP) crosslinked hydrogel matrix to ensure a gradual production of H2O2 [60].
According to Thi et al. [60], the HRP/H2O2 catalyzed gelation system results in the inacti-
vation of HRP due to the direct addition of H2O2. Hypoxia, being a critical pathological
indicator of myocardial ischemic injury and MI, oxygen-releasing hydrogels in response
to hypoxic events are crucial for successful cardiac regenerative approaches, warranting
further research.

7. ROS-Responsive Hydrogels

ROS within physiological limits have beneficial effects, whereas the uncontrolled
production of ROS leads to oxidative stress and the progression of inflammation, which
triggers irreversible injury to the myocardium [67]. MI results in the fluctuation of the
cardiac microenvironment due to excessive reactive oxygen species (ROS) and hypoxia,
impeding regenerative capabilities. Interestingly, ROS-responsive biomaterials with antiox-
idant properties have been synthesized to ameliorate excess ROS signaling [68].

ROS-scavenging biomaterials have been employed to detect and eliminate excessive
ROS. Post-MI microenvironments containing ROS, including superoxide anions, H2O2, and
hydroxyl radicals, have been targeted for therapeutic interventions [69,70]. Glutathione
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(GSH), an antioxidant tripeptide, functions as a major protective barrier against ROS [69].
However, the poor thermal stability of GSH hinders its antioxidant effects. To address
this issue, the carboxylic acid group of glycine of GSH has been covalently coupled to the
amino group of the polysaccharide chitosan chloride (CSCl), forming an amide linkage [68].
The CSCl-GSH chain weakens the hydrogen bonds and provides hydrogen donor groups
to scavenge ROS and react with hydroxyl radicals via the H-abstraction reaction [69].
Furthermore, the stable macromolecule radicals have been formed with amino groups of
CSCl-GSH and stable free-radical ions with the sulfhydryl group by electron transfer [70].

The ROS-scavenging hydrogels improved cardiac function by extending the retention
time for successful scavenging. Zhu et al. [56] demonstrated a thermally responsive
hydrogel containing an ROS-scavenging pendant TEMPO group by integrating an NIPAAm
hydrogel with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Within the TEMPO
group, the covalently attached nitroxide radicals were proven to be effective in prolonging
the ROS-scavenging abilities, as evidenced by magnetic resonance imaging (MRI) [56].
The stable nitroxides resulted in the inhibition of peroxynitrite-mediated nitration, the
prevention of Fenton signaling, the catalyzation of superoxide radicals, and the facilitation
of H2O2 metabolism [56].

In addition to oxygen-generating and ROS-scavenging hydrogels, other hydrogels fo-
cus PMNT-PEG-PMNT on targeting cardioprotective therapies, such as reducing infarction
size [71,72]. The delivery of adipose-derived mesenchymal stem cells (ADSCs) via chitosan
hydrogel to repair MI showed improvement in the engraftment size of stem cells [73].
Further research has used synthesized gels with stem cell carriers in combination with an-
tioxidative properties developed using fullerenol nanoparticles and alginate hydrogel [57].
Hao et al. [57] engineered a fullerenol/alginate hydrogel via ionic crosslinking that inhibits
the c-Jun N-terminal kinase (JNK) pathways and activates p38 and extracellular signal-
regulated kinase (ERK) signaling under oxidant stress. The upregulation of the ERK-MAPK
(mitogen-activated protein kinase) in the presence of fullerenol promotes the development
of CM and cardiomyogenic differentiation by activating vascular endothelial growth factor
(VEGF), insulin-like growth factor-1 (IGF-1), and the p38 MAPK pathway [57]. Mechanisti-
cally, the ROS adheres to the electron-deficient position of the nanoparticle allowing the
adjacent position to induce ROS destruction and suppress pro-oxidant responses in the
cell [57].

Moreover, excessive ROS within the cardiac microenvironment plays a role in in-
hibiting cardioprotective molecules, such as nitric oxide (NO). NO and L-citrulline are
generated via the catalyzation of intracellular L-Arginine (L-Arg) by an oxygen-dependent-
five-electron transfer reaction [58]. L-Arg acts as a precursor and regulates the production
of NO; however, the rapid metabolism of L-Arg and its non-specific administration hin-
der its potential in NO delivery to targeted sites. NO is known to neutralize superoxide
radicals; however, the short half-life and low bioavailability create hurdles [58,74]. When
metabolized by ROS, a toxic nitric oxide metabolite peroxynitrite anion is generated, which
induces nitrosative stress [58]. To counteract the production of peroxynitrite, a controllable
NO-releasing redox injectable hydrogel (NO-RIG) was developed by Vong et al. [58], and
the hydrogel (PMNT-PEG-PMNT) controlled the overproduction of ROS. PMNT-PEG-
PMNT in a complex with polyanion poly(acylic acid acrylate) (PAAc) contains a triblock
copolymer side chain that utilizes nitroxide radicals to scavenge and remove ROS while
maintaining NO levels [61,75]. Within the PMNT, the TEMPO side chain reacts with a
carbon-centered and peroxy radical, inhibiting the conversion into hydroxyl radical [76].
Additionally, studies showed lower toxicity in comparison to conventional polymers and
the suppression of superoxide levels [61].

Changes within the microenvironment, particularly the overproduction of ROS and hy-
poxic conditions, have been shown to be detrimental to cardiac repair functions demanding
a dual function hydrogel. The hydrogel targets both ROS-scavenging and O2-generating
properties as the hyperbranched polymers (HBPAK) detect the elevated levels of ROS,
and the catalase reaction generates O2 from H2O2 [77]. The methods include the synthesis
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of ROS-cleavable and consumable hyperbranched polymers (HBPAK) with polyethylene
glycol diacrylate (PEGDA) and thioketal linkages sensitive to O2- and H2O2 using Michael’s
addition reaction [77].

8. Evidence from Translational Models

The implementation of various intelligent hydrogel modalities (based on the polymeric
components mentioned above) into animal models has demonstrated their efficacy in
enhancing cardiac contractility, ventricular dilation, and angiogenesis. Despite these
improvements post-MI with non-intelligent hydrogels, their intelligent counterparts have
shown superior results in small and large animal studies with a focus on the restoration of
cardiac function; these results are discussed below (Figure 3).
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Figure 3. Successful implementation and effects of intelligent hydrogels in animal and human studies.
Small animal models included in this article are rodents and rabbits. Large animal models include
sheep, dogs, and pigs. Outcome measures of contractility include LV (left ventricle) wall thickness,
LVEF (left ventricle ejection fraction), dP/dt (change in LV pressure gradient over time), and FAC%
(fractional area change percentage). Measures of ventricular dilation are LVEDV (left ventricular
end-diastolic volume) and LVESV (left ventricular end-systolic volume). Changes in blood supply
metrics are angiogenesis, arteriogenesis, microvessel density, and blood flow. Quantifiers of healing
include fibrotic tissue/fibrosis, scar size, and scar thickness, as well as ANP (atrial natriuretic peptide)
and BNP (B-type natriuretic peptide). * Human studies are limited to simple, natural non-stimuli
responsive hydrogels.

The establishment of an ideal pre-clinical model is inevitable for the successful trans-
lation to the clinical arena. Mostly, the rodent models underwent MI by the permanent
ligation of the left anterior descending artery (LAD) branch of the coronary artery, where
the LAD reflection was followed by proximal ligation using monofilament sutures (6-0 or
7-0 polypropylene suture) [78–80]. Successful MI was confirmed via ECG, the confirmation
of regional cyanosis, and myocardial dysfunction. These open chest models require tho-



Gels 2022, 8, 576 9 of 17

racostomy and the closure of the incision, followed by medical treatments [79]. Similarly,
in the rabbit models, thoracotomy and permanent LAD ligation were reported where the
MI was confirmed by ST-elevation in ECG leads II, III, and aVF, the upregulation of blood
biomarkers, and impaired cardiac function [81]. Additionally, the swine and ovine models
reported a similar approach by the ligation of the second diagonal coronary artery [82–84].
Interestingly, catheter-based minimally invasive approaches have been successfully at-
tempted in large animals. Our recent report [85] demonstrated a minimally invasive
closed-chest MI-swine model, which simulated the clinical MI and displayed decreased
ejection fraction compared, abnormal ECG patterns reflecting the myocardial ischemia and
infarction, increased levels of biomarkers including Troponin I, LDH and CCK than the
baseline control and histological alterations, including ECM disorganization, hypertrophy,
inflammation, and angiogenesis confirming the MI [85]. The key findings demonstrating
the application of intelligent hydrogels are discussed in the following sections.

9. Degradation-Dependent Hydrogels

Rane et al. [86] demonstrated that synthetic non-biodegradable hydrogels, such as PEG,
are insufficient for improving LV remodeling and maintaining cardiac function through
wall thickening. The rat-MI models displayed increased LV wall thickness, decreased LVEF
(left ventricle ejection fraction), and increased LVEDV (left ventricle end-diastolic volume)
and LVESV (left ventricle end-systolic volume) 7-weeks post-injection, displaying the limi-
tations of the PEG-based hydrogel, suggesting the effectiveness of degradation-dependent
hydrogels in LV healing. Additionally, the alginate hydrogels were found to be superior to
synthetic, non-biodegradable products by increasing scar thickness and preventing systolic
and diastolic dysfunction in rodent MI models. Furthermore, its ability to be evacuated and
excreted highlights its superior function compared to non-biodegradable injectates [87].
Even though the biodegradation of hydrogels is important for the successful performance
of cardiac tissue engineering/regeneration, response-dependent degradation of hydrogels
driving the regenerative responses is currently unavailable, warranting further investi-
gations. Such hydrogel systems, which are regulated by physiological alterations in the
cardiac micro-niche, possess immense translational significance, offering possibilities for
exploiting the enzymes associated with ECM homeostasis, including matrix metallopro-
teinases (MMPs), as the sensors for controlled biodegradation. In addition, the hybrid
approach of combining natural and synthetic polymers has been successful in preventing
burst degradation and maintaining the mechanical integrity of hydrogels in compliance
with native cardiac tissue [88–90].

Matrigel, a collagen-based hydrogel, improved LVEF (left ventricular ejection frac-
tion), LV peak rate of pressure, and LV pressure decline, maintained LV wall thickness,
and increased capillary density in the infarct BZ (border zone), demonstrating improved
contractility and recovery after ejection as well as improved angiogenesis post-MI in ro-
dents [91].

Similarly, Yoon et al. [92] demonstrated decreased infarct area and increased LV
wall thickness, the number of arterioles and capillaries, EF, arteriole elastance, and dP/dt
(change in LV pressure gradient over time) with concomitantly decreased apoptosis 4 weeks
post-injection of hyaluronic acid hydrogels into MI-rats. Singelyn et al. [93] demonstrated
that a myocardial matrix-derived hydrogel activated the endogenous cardiomyocytes
within the infarct zone (IZ) and maintained cardiac function (increased EF while decreasing
EDV and ESV 4 weeks post-injection) without arrhythmias in MI-rat models. Furthermore,
the study findings supported the feasibility of trans-endocardial catheter injection of the
hydrogel in porcine models. Hence, this suggests that largely non-invasive procedures posi-
tion the hydrogel into the endocardium, reducing patient discomfort and long-term scarring.
Hyaluronic acid-based hydrogels remain the most successful among large animal studies.
Ifkovits et al. [82] compared two different polymers (high and low MeHA—methacrylated
hyaluronic acid monomer) to a hyaluronic acid-based hydrogel, where the high-MeHA hy-
drogel revealed a favorable decrease in the infarct area, ESV, and EDV along with enhanced
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cardiac output (CO) and EF in ovine models. Similar comparative studies confirmed the
reproducibility of these results, further establishing that high-MeHA hydrogels are ideal
for cardiac applications [94]. Liu et al. [95] demonstrated a drastic increase in contractility
(LVEF) and angiogenesis (microvessel density and blood flow) following the injection
of a gelatin-based hydrogel loaded with bFGF and BDNF (brain-derived neurotrophic
factor). Hyaluronic acid-based hydrogel, HeMA (hydroxyethyl-methacrylate), revealed
long-term success in MI-swine by preserving infarct size, increasing infarct stiffness, and
enhancing LV contractility, even after the degradation of the hydrogel [96]. Additionally,
Leor et al. [97] demonstrated the reversal of LV dilation without affecting LV contractility.
Similarly, fibrin–alginate composite hydrogels were able to decrease infarct expansion
while inadvertently decreasing LV wall thickness [98]. Hyaluronic acid-based intelligent
hydrogels pose immense translational potential in cardiac regeneration.

10. Hypoxia-Responsive Hydrogels

Hypoxia-responsive hydrogels such as AOLA, HEMA, MAPEGPFC, and reversible
addition-fragmentation chain transfer (RAFT) copolymers have revealed increased MSC
(mesenchymal stem cell) survival for 14 days after induced ischemia without causing
substantial inflammation or affecting fibroblast viability [53], suggesting their potential to
enhance cardiomyocyte survival. Similarly, ROS-scavenging hydrogels, such as TEMPO,
improved LV geometry, angiogenesis, and apoptosis in rat models. Zhu et al. [56] demon-
strated the TEMPO ROS-scavenging capabilities as evident from decreased lipid peroxida-
tion, reduced apoptosis in the IZ and BZ, decreased inflammation and LV dilation with
concomitantly increased LV wall thickness and microvessel density. However, TEMPO
failed to display significant effects on LV contractility.

11. Electroconductive Hydrogels

Electroconductive hydrogels have shown promising benefits to LV contractility, geom-
etry, and electrical impulse propagation. Zhang et al. [52] demonstrated that poly-3-amino-
4-methoxybenzoic acid grafted onto gelatin (PAMB-G), an electroconductive hydrogel,
increased FAC% (fractional area change percentage), LVEF, scar thickness, and viable
myocardial tissue within the infarct zone decreasing the scar size, ventricular dilation
in rat models; however, vascularization has not been improved. Furthermore, the ionic-
responsive POG-derivative hydrogels, such as (OA)/gelatin (Geln)/polyacrylic acid (PAA),
have yielded increased LVEF, LV thickness, and angiogenesis while decreasing EDV, ESV,
and fibrosis by 50% in rat models. Nonetheless, these POG derivatives have yet to show any
effect on scar size or thickness [10]. A recent seminal study demonstrated the accelerated
repair of infarct zone in rat and minipig models using an injectable shape-memory con-
ductive hydrogel synthesized using methacrylated elastin, gelatin, and carbon nanotubes.
The increased fractional shortening and the ejection fraction with a concomitant reduc-
tion in the infarcted area revealed the functional recovery of myocardium in both small
and large animal models, suggesting the translational significance of this ion-responsive
hydrogel [99].

12. Thermo-Sensitive Hydrogels

An injectable intelligent thermo-sensitive poly(NIPAAm-co-AAc-co-HEMAPTMC)-
based hydrogel system improved the LV cardiac geometry, function, and vascularization
by thickening the LV walls, decreased EDV, increased FAC% and capillary density with a
concomitant reduction in cytotoxicity [100]. For this reason, thermo-sensitive hydrogels
have become the most studied intelligent hydrogels as an improved application. Im-
portantly, the conjugation of growth factors to a hydrogel system has been a superior
approach to the application of individual hydrogels. Wu et al. [78] demonstrated that the
temperature-sensitive aliphatic polyester hydrogel PVL-b-PEG-b-PVL conjugated with vas-
cular endothelial growth factor (VEGF), attenuated adverse cardiac remodeling, preserved
scar thickness, and improved ventricular function, and increased blood vessel density as
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compared to the hydrogel or VEGF alone using MI-rat model. Other thermo-sensitive
conjugates of a chitosan hydrogel and embryonic stem cells (ESCs) showed a similar ef-
fect by improving cardiac function post-MI in rodent models more than its constituents
alone [101]. Among the conjugated growth factors, basic fibroblast growth factor (bFGF)
elicited appreciable effects on cardiac function, cell viability, and capillary density when
conjugated to chitosan and p(NIPAAm-co-PAA-co-BA), a pH- and temperature-sensitive
hydrogel respectively [44,102,103]. Moreover, the conjugation of bFGF with p(NIPAAm-co-
PAA-co-BA) increased regional blood flow and allowed for spatial-temporal control over
bFGF delivery during hydrogel viability [44].

Similar studies on MI-rabbit models using Dex-PCL-HEMA/PNIPAAm hydrogel
demonstrated an increase in EF while preserving LV size [104]. However, the Dex-PCL-
HEMA/PNIPAAm hydrogel failed to restore the infarct size, cardiac remodeling, scar
thickness, EDD, and ESD) [81]. Similarly, Jiang et al. [105] demonstrated the successful
injection of an alpha-CD/MPEG-PCL-MPEG hydrogel, a thermosensitive smart hydrogel,
in MI-rabbit models, which attenuated scar expansion, increased LVEF, and decreased ESV
and EDV even at 1-week post-MI. In a seminal study, Matsumura et al. [51] demonstrated
that the use of a thermo-sensitive polymerized hydrogel, poly(NIPAAm-co-HEMA-co-
MAPLA), decreased scarring (decreased collagen in IZ and BZ), while simultaneously
increasing LV wall thickness, vascular maturation, microvessel density, LVEF, FAC%, and
cardiac index (CI). Furthermore, follow-up studies have since shown that the used hydrogel
shows no cytotoxicity until the complete degradation 3–6 months post-injection [106].

13. ROS-Responsive Hydrogels

Despite the success in rat models, ROS-scavenging polymers, such as NIPAAm-PEG,
failed to replicate the same results in sheep models and restore contractility. Contrastingly,
Spaulding et al. demonstrated that NIPAAm-PEG increased superoxide scavenging and
increased LV wall thickness without any significant influence on ventricular dilation or
contractility [107].

14. Angiogenesis Promoting Hydrogels

Unfortunately, many hydrogel conjugates that have proven most successful in rodent
studies were unable to prevent and reduce LV hypertrophy following MI; however, they
significantly improved contractility and angiogenesis [108,109]. Lin et al. [108] demon-
strated that conjugates involving VEGF increase angiogenesis and arteriogenesis, which
was shown to be a significant determinant of decreased infarct size and increased contractil-
ity in rodents. Similarly, Chang et al. [103] reported an improved max dP/dt and min dP/dt,
increased angiogenesis with a decreased scar size and fibrosis, using a HA (hyaluronic acid)
hydrogel with human cord blood mononuclear cells (CB-MNCs) in porcine models.

To date, the most significant improvements in large animal studies by hydrogel
injection post-MI have been novel conjugates that were able to incorporate micro-RNA
(miRNA) into a pH-responsive PEG-derived hydrogel to enhance contractility, angiogenesis,
and arteriogenesis [110]. The injection of miRNA-conjugated (miR21-5p) PEG-hydrogels
decreased scar size, IZ, BZ, LVESD, LVEDV, and the expression of atrial natriuretic peptide
(ANP) and brain natriuretic peptide (BNP), while increasing LVSV (left ventricular stroke
volume) to levels pre-MI in porcine models [84]. However, without the conjugation to an
intelligent hydrogel, uncontrolled miRNA caused sudden cardiac deaths in most studies.
Hence, the use of the conjugate, as displayed by Li et al. [110], is of uttermost importance
to achieve long-term improvements in patient care post-MI. This study demonstrated an
increased LVEF by 10% in 28 days of post-MI in addition to improvements in cardiac
function, healing, fibrosis (scar size and thickness, FAC%, LVEDV, LVESV, arteriogenesis,
angiogenesis, dP/dt, IZ, BZ), and inflammatory mediators [110].
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15. Conclusions

Myocardial infarctions continue to represent an immense detriment; however, in-
telligent hydrogels offer solutions allowing safe, effective, and non-invasive treatment
modalities. Recent developments in intelligent hydrogels offer the highest likelihood
of successful cardiac restoration by improving cardiac contractility, angiogenesis, and
structural integrity. Nonetheless, such proposed effects are yet to be demonstrated in
translational models. To date, human studies on hydrogel injection post-MI have been
limited to natural ECM or alginate-based hydrogels without the ability to adapt to their
environment [111,112]. Even though the recent advancements in the chemistry and fab-
rication of intelligent hydrogels are encouraging, the success of intelligent hydrogels in
translational models, particularly in restoring cardiac function, is yet to be achieved. Hence,
future research relying on improving intelligent hydrogel viability, performance, safety,
and clinical feasibility warrants further detailed investigations. Moreover, a thorough
understanding and manipulation of the biochemistry of cardiac pathology is the key to de-
veloping successful, intelligent systems. Nonetheless, the intelligent hydrogel system offers
immense translational opportunities as next-generation templates for cardiac regeneration.
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