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Cell–cell interactions are important to numerous biological sys-
tems, including tissue microenvironments, the immune system,
and cancer. However, current methods for studying cell combina-
tions and interactions are limited in scalability, allowing just hun-
dreds to thousands of multicell assays per experiment; this limited
throughput makes it difficult to characterize interactions at biolog-
ically relevant scales. Here, we describe a paradigm in cell inter-
action profiling that allows accurate grouping of cells and
characterization of their interactions for tens to hundreds of thou-
sands of combinations. Our approach leverages high-throughput
droplet microfluidics to construct multicellular combinations in a
deterministic process that allows inclusion of programmed reagent
mixtures and beads. The combination droplets are compatible
with common manipulation and measurement techniques, includ-
ing imaging, barcode-based genomics, and sorting. We demon-
strate the approach by using it to enrich for chimeric antigen
receptor (CAR)-T cells that activate upon incubation with target
cells, a bottleneck in the therapeutic T cell engineering pipeline.
The speed and control of our approach should enable valuable cell
interaction studies.

droplet microfluidics j cell–cell interaction j single-cell analysis j functional
sorting j cell therapy

The immune system relies on a massive number of individual
cell–cell interaction events. These interactions are key to

distinguishing self from nonself and foundational to emerging
cancer immunotherapies such as immune checkpoint blockade,
adoptive T cell therapy, and cancer vaccines (1). Nevertheless,
despite the centrality of cell interactions in biology, few tech-
nologies are available for characterizing them at scale. Instead,
interactions are usually deciphered from bulk cultures based on
cytokine release, cytotoxicity, surface marker presentation, or
single-cell transcriptional profiling (2, 3). While useful for char-
acterizing synergistic behavior between cell types and overall
response, bulk data lacks the detail necessary for precisely map-
ping cellular interactions at the heart of many biological sys-
tems, especially the immune system (4).

Characterizing cell–cell interactions is thus a large and
unmapped frontier that has the potential to impact the treat-
ment of numerous health maladies, especially cancer and auto-
immunity (5). Although this has motivated new technologies,
isolating specific interactions at scale remains difficult. For
example, microfluidic approaches with droplets, microcham-
bers, and wells exploit picoliter volumes to quantitate secreted
cytokines and barcoding strategies to analyze DNA, messenger
RNA, and proteins (6, 7). By leveraging the inherent through-
put of these methods, tens of thousands of cells can be ana-
lyzed, providing rich data. However, these approaches do not
control cell loading, yielding mostly empty compartments. While
this inefficiency is acceptable for single-cell studies, cell–cell inter-
actions require combinations, which are impractical to generate
randomly. For example, with a common loading of ∼5%, high-

throughput approaches with 100,000 microcompartments capture
∼5,000 single cells but just ∼100 random cell–cell pairs. By imple-
menting controlled cell loading with microfluidic cell pairing (8),
printed droplets (9), or light-induced dielectrophoresis (10),
every compartment can contain the needed number of specific
cells, greatly increasing efficiency. These approaches perform
well within their intended usages and function to analyze thou-
sands of pairs. However, they were not designed with the inten-
tion of profiling the complexity of systems such as the immune
repertoire, which comprises millions of T cells (11). Thus, there
remains a need for technologies capable of rapidly generating
controlled cell combinations; such an approach would open the
way for characterizing cellular interactions at scale and be valu-
able for numerous studies across fields including cancer, immu-
nology, and microbiology (12–14).

In this paper, we describe a high-throughput technology for
cell interaction profiling. Our core innovation is the integration
of dielectrophoretic droplet sorting with deterministic merging
to build multicomponent droplets containing defined combina-
tions of reagents, beads, and cells. These made-to-order droplet
ensembles (MODEs) can currently be generated at >10 Hz and
subjected to detailed chemical, microscopic, and genomic
analysis, making them useful for cell interaction studies. To
demonstrate the utility of our approach, we profile chimeric
antigen receptor (CAR)-T and CD19-presenting cell interac-
tions using cytokine capture beads to quantitate activation via
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interferon-gamma (IFN-γ) secretion. Using this assay, we
enrich for CAR-T cells that activate upon incubation with can-
cer cells and identify the associated gene expression. The speed,
robustness, and simplicity of MODEs make large-scale cell
interaction studies more feasible and can potentially play an
important role in the study of the immune system.

Results
Droplet Assembly for Studying Cell–Cell Interactions. Droplet
microfluidics allows high-throughput characterization with
chemical, proteomic, and genomic readouts but struggles to
extend this utility beyond single-cell analysis. For example,
assaying effector–target interactions requires, at a minimum,
that two cells and assay components be combined in the same
droplet (Fig. 1 A, Upper), but relying on random encapsulation
to create such ordered groupings is prohibitively inefficient
(15). MODE assembly overcomes this inefficiency by building
multicomponent droplets in a stepwise, deterministic process
that is fast and flexible (Fig. 1 A, Lower). Aside from their
defined composition, MODE droplets are identical to ones
formed by other methods (16) and, accordingly, can be sub-
jected to common manipulations, such as incubation to allow
cell–cell interactions to occur (Fig. 1B), fluorescent analysis,
sorting, and sequencing to characterize interaction behavior
(Fig. 1C).

The key to the efficiency of MODE assembly is a mechanism
by which droplets of specific composition are combined into the
final desired multicomponent droplet. We accomplish this by
selecting and merging single-component droplets from a mixed
emulsion using dielectrophoretic sorting (Fig. 2A). Sorting has
several advantages for delivering droplets on demand, including
the ability to select from droplets of distinct composition that
would be incompatible in a single aqueous stream, such as misci-
ble reagents; the ability to use laser-induced fluorescence to
interrogate droplet contents for labels, beads, and cells and to
exclude ones with improper contents; and extreme speed,

capable of sorting up to 30 kHz (17). For the sorter to deliver
specific droplets on demand, their contents must thus be detect-
able by fluorescence, requiring dye labels (for reagents) or stain-
ing (for cells, beads). Thus, the first step in the MODE workflow
is to generate the mixed emulsion by labeling the discrete and
reagent components as needed, separately emulsifying each, and
combining the droplets. The mixed emulsion is then introduced
into the assembly device, where the droplets are scanned, sorted,
and combined according to the desired MODE composition
(Fig. 2 A and B). Optical scanning captures fluorescence signals
from the droplets (Fig. 2C), used by the sorter to decide whether
to deliver the given droplet to the MODE. If a droplet is to be
added, the sorter activates the field, applying a dielectrophoretic
force that deflects it (Fig. 2D) into the combiner (Fig. 2E). In
the combiner, a bipolar electrode generates a field that captures
sorted droplets, overcoming the shear-induced flow of the carrier
oil and halting the droplet. As additional droplets are added,
they collide and coalesce with previously trapped droplets due to
the electric field (Fig. 2 E, Lower). This cycle repeats until all
droplets are combined for the desired MODE, upon which the
trapping field is deactivated, and the finished MODE released
into the collection tube (Movie S1). The next MODE then
begins assembly.

Constraints in the size and constituency of MODEs are gov-
erned by chip architecture. For example, the geometry of the
droplet trap dictates its volume and limits the number of drop-
lets that can be added per MODE. The current chip is designed
to sort input droplets of 40 to 60 pL (42- to 49-μm diameter).
We tested the capacity of this trap design to combine droplets
and found that 300 pL MODEs, corresponding to six input
droplets, were reliably generated, with few MODEs successfully
incorporating more than eight input droplets (SI Appendix,
Fig. S1 A and B). These limitations on droplet input number
and output volume can be easily changed by adjusting chip
dimensions.

A unique and valuable property of MODE for generating
cell combinations is its superior speed, which is influenced by
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three factors: the time between required droplets, the time for a
sorted droplet to reach the combiner, and the time for an assem-
bled MODE to release. The time between required droplets is
tied to sorting speed and the proportion of that droplet type in
the single component emulsion, λ. To yield high proportions of
single-cell occupancy λ is typically kept below 15% during encap-
sulation. For a conservative sorting rate of ∼300 Hz and loading
of 5%, there is an average wait time of ∼70 ms between required
droplets. Because droplet delivery is order agnostic, adding addi-
tional components to the mixed emulsion, like different cell
types, beads, or reagents, reduces λ proportionally; for example,
a two-component emulsion loaded at 5% each has a net λ for
each component of 2.5% in the mixed emulsion, corresponding
to a wait time of ∼140 ms between required droplets. The time
for the sorted droplet to reach the trap is ∼25 ms, with ∼25 ms
for the MODE to release from the trap, yielding an overall
assembly speed for a two-component droplet of ∼5 Hz or
∼18,000 per hour. Speed can be increased by concentrating the
mixed emulsion to reduce wait time at the expense of increased
multiple cell and bead encapsulations that reduce the composi-
tion accuracy of the MODEs. Alternatively, speed increases pro-
portionally with sorting rate, affording a potential ∼100-fold
increase by implementing higher-throughput methods (30 KHz)
that require enhanced optics to scan the faster droplets (18) and
would allow production of over a million MODEs per hour.
Currently, we have achieved assembly rates of up to 12 Hz for
two-component MODEs, allowing the production of 100,000
MODES in just over 2 h.

Precision Droplet Assembly. To assess the effectiveness of our
approach, we use it to generate MODEs containing defined
numbers of fluorescent beads (Fig. 3A). Beginning with an
input emulsion of sparsely loaded beads (k ¼ 4%), we create
four output emulsions comprising 1,000 MODEs programmed
to contain different numbers of beads (1- to 2-Hz assembly).
We assess the distribution of beads per MODE by fluorescence
microscopy and determine content accuracies of 92 ± 2.1, 88 ±
1.0, 78 ± 3.1, and 75 ± 7.2% for droplets programmed with
two, three, four, or five beads, respectively, over two separate
runs (Fig. 3A). Efficiency reduces as beads are added due to
increased sampling of sorting events and trapping errors, which
become more frequent as MODE volume increases. Sorting
errors are similar to those found in previous droplet-sorting
studies (19), and failures stem from the misreading of droplet
contents because of the overloading of input droplets or mis-
sorts because of flow interference from dust or occasional
merged droplets in the mixed emulsion (20). Trapping errors
can include early MODE release, failure to release, and incom-
plete merging (SI Appendix, Fig. S1 A and B). Nevertheless,
pairwise loading efficiency is high, and even at five beads, the
device achieves ∼75% efficiency, which is over a billion times more
efficient than random loading from a sparse input suspension.

In a combinatorial assay comprising cells of different types,
MODE assembly must distribute the correct number of each
cell into the combined droplets, which requires that the differ-
ent cell types be distinguishable. To illustrate this capability, we
introduce a sparsely loaded emulsion (k ¼ 7:5%) of green,
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orange, and red fluorescently stained Raji cells and use the
combiner to build 3,000 MODEs containing exactly one of each
cell color (1.2-Hz assembly) (Fig. 3 B–D). We determine ∼82%
are correctly assembled, with ∼10% missing a cell and 8% con-
taining an extra cell (Fig. 3 E and F). Importantly, there are
negligible effects on cell viability throughout the process of
droplet assembly (SI Appendix, Fig. S2).To illustrate the scal-
ability of the approach, we perform an additional experiment in
which we generate 100,000 MODEs containing a red and blue
bead (input emulsion k ¼ 18%, 5.5-Hz assembly), achieving a
construction accuracy of 80% for exactly one of each color and
95% of droplets containing at least one of each color (SI
Appendix, Fig. S3). Pairwise combinations are useful for T cell
activation studies but, presently, can only be made in the low
thousands using costly instrumentation (21).

Characterizing CAR-T Activation at Scale. The principle of CAR-T
cell therapy is to modify the body’s natural T cells to express an
engineered receptor that specifically recognizes the cancer cells
upon which the T cells activate and generate an immune
response that can, in some instances, eradicate the disease (22).
An important part of CAR-T engineering is to identify CAR-Ts
that specifically and efficiently kill cancer cells. Bulk approaches
for accomplishing this, however, lack the single-cell resolution
required to identify CAR-Ts with desired properties and are
costly, requiring multiple rounds of testing and screening. By
contrast, MODE assembly provides a route to efficiently identify
these cells by individually measuring their activation when incu-
bated with cancer cells.

To identify activated cells, we first build MODEs containing a
fluorescence relocation assay for secreted interferon-γ (IFN-γ).
Detection beads coated with a capture antibody localize IFN-γ,

which is bound by a fluorescent secondary antibody to produce a
concentrated and sortable signal (Fig. 4A) (23, 24). We tested the
utility and throughput of this approach using artificially stimu-
lated peripheral blood mononuclear cells (PBMCs) (Fig. 4B).
Using MODE assembly, we construct 122,731 droplets containing
a phorbol 12-myristate 13-acetate (PMA)/ionomycin-activated
PBMC, achieving a complete assay accuracy of 82% (Fig. 4 C
and D) (input emulsion k ¼ 7:3%, 11.4-Hz assembly). Following
a 14-h incubation (Fig. 4E), the MODE emulsion was reinjected
into droplet sorting, revealing 17.9% hits within the emulsion
(Fig. 4F), which agrees with previous analyses of PBMC IFN-γ
secretion following PMA/ionomycin stimulation (25). We next
apply the approach to detect activation of a mixture of CD4+
and CD8+ αCD-19 CAR-Tcells, again stimulated with PMA/ion-
omycin. A total of 7,000 assembled MODEs (SI Appendix, Fig.
S4A) (input emulsion k ¼ 7:7%, 1.4-Hz assembly) were gener-
ated and incubated for 12 h to allow for T cell activation, IFN-γ
secretion, and pulldown onto the bead (SI Appendix, Fig. S4B).
MODEs were then interrogated with the droplet sorter to quan-
tify IFN-γ–positive droplets (SI Appendix, Fig. S4C). Of the inter-
rogated droplets, 34% were positive for IFN-γ. Given that IFN-γ
production is expected predominantly from CD8+ T cells, the
result falls within the range expected for typical CD4/CD8 ratios
and demonstrates the effectiveness of the assay (26, 27).

With the assay validated, we next apply it to enrich for CAR-
T cells capable of activating upon interaction with a cancer cell.
Enrichment of specific CAR-T cells is currently a bottleneck in
CAR-T engineering. We assemble 16,000 MODEs (input emul-
sion k ¼ 13%, 3.1-Hz assembly) containing a CAR-T cell, Raji
cell, IFN-γ bead, and assay reagents. Separately, as a negative
control, we prepare 10,000 MODEs with a homotypic pairing
of two CAR-T cells and assay reagents but no Raji cell. Upon
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incubation for 14 h, we identify activated cells in the CAR-T
plus Raji MODEs but not the homotypic controls (Fig. 5 A and
B). To enrich for activated cells, we sort the emulsion based on
a fixed fluorescence threshold (Fig. 5B) collecting the positive
and negative outputs in separate tubes. We recover the contents
of the samples via demulsification (28) and analyze the fluores-
cence intensities of the beads, identifying a 5.5-fold enrichment
for a positive signal relative to the unsorted input emulsion and
an 18.3-fold enrichment relative to the waste stream (Fig. 5C).

To uncover the molecular underpinnings of the activation
behavior, we repeated the MODE assay assembly (SI Appendix,
Fig. S5) and performed single-cell RNA sequencing of the col-
lected sort and waste samples. We first compare overall gene
expression between the two unfiltered populations. We find
that granzyme B (GZMB), a serine protease associated with
activated CD8+ cytotoxic T cells, was significantly up-regulated
in the sorted population (29). Moreover, after filtering data to
remove barcodes containing a low number of unique molecular
identifiers, we show that the percentage of CD8+ cells express-
ing GZMB is higher in the sorted versus the waste populations
(SI Appendix, Fig. S6). This small enrichment corresponds to
cells that were above our threshold of IFN-γ detection at the
time of sorting and high in GZMB expression during sequenc-
ing preparation. Variability in the ratio of IFN-γ to GZMB
expression is to be expected (30, 31). Using GZMB as a marker
of activation, we compare gene expression in cells expressing
GZMB (log2 count ≥ 2) in the sorted and waste populations to
cells in the waste population that showed no expression of
GZMB (i.e., background gene expression) (Fig. 5D). In the
sorted GZMB-expressing subpopulations, we observe several
markers of activation (SI Appendix, Table S1) (32–36).

Discussion
Studying cell–cell interactions at scale will impact our under-
standing of fundamental biological processes and disease,
especially involving the immune system. However, current tech-
nologies lack the speed and precision to generate combinations
with the throughput needed to characterize systems comprising
millions of genetically and phenotypically distinct cells. MODE
assembly can currently produce 100,000 cell interaction assays
in under 3 h, and with improvements in sorting and trapping
speeds, this rate can increase further. MODE assembly thus
provides an important step forward in cell interaction profiling,
breaking through longstanding barriers in the precision with
which specific cell types can be combined, the sophistication
with which the assay environment can be engineered and the
scale at which these multicellular assays can be performed. The
key innovation that enables these breakthrough capabilities is
deterministic cell assembly, rather than random grouping, to
build multicellular microenvironments, increasing efficiency by
hundreds for pairs and billions for quintets. Importantly, and as
we have shown, the assembled MODEs are otherwise identical
to common water-in-oil droplets and, thus, can leverage the
innovations of this field from the last two decades, including
the ability to characterize interaction behavior with powerful
readouts using optical, chemical, and barcode-based genomic
and proteomic methods and to manipulate and sort them for
large-scale cell interaction screens. While we have provided
a demonstration for human immune cell profiling, MODE
assembly should be applicable to other cell types, including
stem and cancer cells useful for generating hybridomas,
spheroids, and organoids. Furthermore, alternative assays to
cytokine secretion should be easily integrated into MODEs
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including cell-mediated cytotoxicity and antibody production/
specificity. Similar water-in-oil droplets are also compatible
with nonmammalian systems, including yeast, bacteria, and
archaea, and thus, MODE assembly should be useful for study-
ing microbial consortia important to the microbiome and func-
tion of biocircuits and molecular biosynthesis.

Materials and Methods
Input droplets for MODE assembly are first generated using a flow-focusing
droplet generator. Each component is individually emulsified, and the emul-
sions are mixed in a single syringe. Emulsions and oil are loaded into syringes,
attached to the microfluidic chip using small bore polyethylene tubing (PE-2,
Scientific Commodities, Inc.), and mounted on syringe pumps (New Era). Sort
and waste channels are attached to the microfluidics using small bore poly-
ether ether ketone tubing (IDEX). A custom LabView application (JKI) is used
to initialize and carry out an assembly run. Droplet fluorescence data are
acquired by a field programmable gate array (FPGA; National Instruments).
All droplets are identified by the peak and width of fluorescent droplet dyes
included in every droplet. Fluorescent peaks occurring within the window of

droplet detection distinguish the contents of a given droplet. Cells are
prestained with green and deep-red dyes (CellTracker, Thermo Fisher). Fluo-
rescent beads used in experiments were purchased with blue and red dye sig-
natures (Spherotech). Sorting gates are set within the application to identify
droplets of interest and the number of each droplet type required per MODE,
and the total number of MODEs to be built are specified. The FPGA controls
signals sent to two electrodes via high-voltage amplifiers (2,220; Trek). The
sorting electrode is triggered when droplets missing from an assembling
MODE are identified. The trap electrode signal is turned off once all compo-
nents of theMODE have been sorted andmerged. The outputMODE emulsion
is either directly collected within imaging chambers for packed droplet imag-
ing, or it is collected within a larger emulsion of empty droplets for incubation.

Data Availability. Sequencing data have been deposited in NCBI Gene Expres-
sion Omnibus (accession no. GSE193197). All other study data are included in
the article and/or supporting information.

ACKNOWLEDGMENTS. Funding was provided by Defense Advanced Research
Projects Agency Contract no. D17PC00405 (R.H.C.) and NIH Grants
1R43HG010592 (M.S.) and 1R43HG010128 (R.H.C.).

1. A. D. Waldman, J. M. Fritz, M. J. Lenardo, A guide to cancer immunotherapy: From T
cell basic science to clinical practice.Nat. Rev. Immunol. 20, 651–668 (2020).

2. J. A. Fraietta et al., Determinants of response and resistance to CD19 chimeric antigen
receptor (CAR) T cell therapy of chronic lymphocytic leukemia.Nat. Med. 24, 563–571
(2018).

3. M. Parkhurst et al., Isolation of T-cell receptors specifically reactive with mutated
tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137
expression. Clin. Cancer Res. 23, 2491–2505 (2017).

4. P. K. Chattopadhyay, T. M. Gierahn, M. Roederer, J. C. Love, Single-cell technologies
for monitoring immune systems.Nat. Immunol. 15, 128–135 (2014).

5. A. Yoshizaki et al., Regulatory B cells control T-cell autoimmunity through IL-21-
dependent cognate interactions.Nature 491, 264–268 (2012).

6. Z. Chen, J. J. Chen, R. Fan, Single-cell protein secretion detection and profiling.Annu.
Rev. Anal. Chem. (Palo Alto, Calif.) 12, 431–449 (2019).

7. K. Matuła, F. Rivello, W. T. S. Huck, Single-cell analysis using droplet microfluidics.
Adv. Biosyst. 4, e1900188 (2020).

8. B. Dura et al., Profiling lymphocyte interactions at the single-cell level bymicrofluidic
cell pairing.Nat. Commun. 6, 5940 (2015).

9. R. H. Cole et al., Printed droplet microfluidics for on demand dispensing of picoliter
droplets and cells. Proc. Natl. Acad. Sci. U.S.A. 114, 8728–8733 (2018).

10. P. Y. Chiou, A. T. Ohta, M. C. Wu, Massively parallel manipulation of single cells and
microparticles using optical images.Nature 436, 370–372 (2005).

11. J. Kaplinsky, R. Arnaout, Robust estimates of overall immune-repertoire diversity
from high-throughput measurements on samples. Nat. Commun. 7, 11881
(2016).

12. V. Leko, S. A. Rosenberg, Identifying and targeting human tumor antigens for T cell-
based immunotherapy of solid tumors. Cancer Cell 38, 454–472 (2020).

13. V. A. Judkowski et al., Antigen discovery for the identification of vaccine candidates
and biomarkers using a T cell driven approach in combination with positional scan-
ning peptide libraries. Procedia Vaccinol. 9, 91–95 (2015).

14. S. S. Terekhov et al., Ultrahigh-throughput functional profiling of microbiota com-
munities. Proc. Natl. Acad. Sci. U.S.A. 115, 9551–9556 (2018).

15. T. P. Lagus, J. F. Edd, High-throughput co-encapsulation of self-ordered cell trains:
Cell pair interactions inmicrodroplets. RSCAdvances 3, 20512–20522 (2013).

16. P. Zhu, L. Wang, Passive and active droplet generation with microfluidics: A review.
Lab Chip 17, 34–75 (2016).

17. A. Sciambi, A. R. Abate, Accurate microfluidic sorting of droplets at 30 kHz. Lab Chip
15, 47–51 (2015).

18. J. C. Campbell, Recent advances in avalanche photodiodes. J. Light. Technol. 34,
278–285 (2016).

19. O. Caen et al., High-throughput multiplexed fluorescence-activated droplet sorting.
Microsyst. Nanoeng. 4, 33 (2018).

20. L. Mazutis et al., Single-cell analysis and sorting using droplet-based microfluidics.
Nat. Protoc. 8, 870–891 (2013).

21. K. Le et al., A novel mammalian cell line development platform utilizing nanofluidics
and optoelectro positioning technology. Biotechnol. Prog. 34, 1438–1446 (2018).

22. R. C. Larson, M. V. Maus, Recent advances and discoveries in the mechanisms and
functions of CAR T cells.Nat. Rev. Cancer 21, 145–161 (2021).

23. Y. Bounab et al., Dynamic single-cell phenotyping of immune cells using the micro-
fluidic platformDropMap.Nat. Protoc. 15, 2920–2955 (2020).

14 hr 14 hr14 hr

CAR-T RAJI Reagents Media

0.04 0.06 0.08 0.10 0.12

0.02

0.44

0.06

0.08

0.10

Bead Fluorescent Intensity (AU)

CA B D

A
F6

47
in

te
ns

ity
(A

U
)

W
as

te
Sor

t
Inp

ut

Con
tro

l
Bulk

co
-cu

ltu
re

Assembled co-culture

%
IF

N
+

0%

98
%

10
%

55
%

3%

20.0
40.0

60.0
80.0

01.0
0

+
-

0 1 2 3
0

2

4

6

8

10

log10 (FC)

-lo
g

10
(p

va
lu

e)

NKG7

IFNG

CCL4

CCL5

CCL3

XCL2
XCL1LGALS1

CAR-T CAR-T Reagents Media

+ + + =+ + + =

14 hr 14 hr14 hr

0.04

0.02

0.44

0.06

0.08

0.10

0.06 0.08 0.10 0.12
Bead Fluorescent Intensity (AU)

A
F6

47
 In

te
ns

ity
(A

U
)

Fig. 5. CAR-T cell–cell interactions can be assayed and enriched for activation using the droplet assembly workflow. Two sets of cell pairs, CAR-T and
CAR-T (A) or CAR-T and RAJI (B), were assembled into IFN-γ assay droplets and allowed to incubate for 14 h to allow for activation and IFN-γ secretion,
and the emulsion was sorted for drops above the scatter plot threshold (magenta). (Scale bars, 50 μm.) (C) Detection beads collected from broken emul-
sion samples, and bulk coculture samples were quantified for signal intensity by fluorescent microscopy, and beads above the control intensity (magenta)
were counted as assay positive. (D) Up-regulated genes for GZMB overexpressing cells in the sort compared to waste. (Off-axis: GZMB, log10FC = 4.71,
�log10(pvalue) = 35.80).
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