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Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. 
The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic 
vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat 
from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including 
arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct 
functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; 
therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are 
a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. 
This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic 
endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead 
to vascular malformations, and therapeutic approaches that have been developed for their treatment.

Keywords Endothelial cell specification · Blood vessel development · Lymphatic vessel development · Arterial-venous 
malformations · Lymphatic malformations

Introduction

The vascular system is comprised of both the blood and 
the lymphatic circulation, which function cooperatively to 
maintain tissue survival, growth, function, and homeosta-
sis. Endothelial cells (ECs) line the innermost layer of all 
of these vessels and play an important role in sensing the 
circulating environment and responding to extrinsic sig-
nals. ECs exhibit a high degree of heterogeneity in gene/
protein expression and structure depending on the vessel 
type in which they reside (i.e., arterial, venous, capillary or 

lymphatic), and these acquired differences enable distinct 
functions, as well as tissue-specific functions.

The processes of EC specification and maturation are 
vastly different among all of these EC types—from the first 
stages of specialization to the formation of tissue-specific 
characteristics. Impairments in any of these developmental 
pathways result in vascular malformations that can be lethal. 
This review will highlight important regulatory pathways 
that promote both blood and lymphatic EC development and 
specification and describe vascular malformations that occur 
when they are dysregulated. We will also provide an over-
view of current therapies for these vascular disorders that 
have been enabled by our understanding of normal devel-
opmental pathways.

Blood endothelial cell development

The blood vasculature is a closed circulatory system that 
consists of arterial, venous and capillary networks connected 
to the heart. The contractile property of the heart propels 
nutrient- and oxygen-rich blood to all tissues via the arte-
rial system. Capillary networks between arteries and veins 
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enable their distribution into tissues, as well as removal of 
metabolic waste products. Low-oxygen and low-nutrient 
blood is then circulated back to the heart and lungs via the 
venous system. Each vessel type is lined with ECs that not 
only exhibit a high degree of heterogeneity among different 
sections of the vascular tree, but also exhibit tissue-specific 
characteristics, especially at the capillary level. Some capil-
lary ECs express a high level of tight junctions that restrict 
the passage of nutrients, soluble factors and cells in blood 
circulation into tissues, such as the brain and retina. In con-
trast, other capillary ECs have fenestrations that allow for 
extensive filtration of factors and cells in tissues such as the 
liver and kidney. Thus, each type of vessel within the blood 
circulation plays a crucial, yet distinct, role in maintaining 
tissue homeostasis.

ECs that line blood vessels are surrounded by mural cells 
[smooth muscle cells (SMCs) and pericytes] to a varying 
degree, depending on where they are in the circulatory net-
work. For example, large arteries have a thick vessel wall 
made up of multiple layers of SMCs, whereas arterioles have 
few mural cells in their vessel wall. An exception to this is 
the smallest capillaries, which are only made up of a sin-
gle layer of ECs that are, at times, surrounded by pericyte 
processes.

Due to their close proximity to circulating factors in the 
blood, vascular ECs are important for the coordination of 
vessel responses to changes in nutrients, oxygen and other 
factors, such as hormones. ECs are the first vascular cells 
to be differentiated during development and they play a key 

role in the formation of their vessel wall and a complete 
vascular network [1, 2]. All blood ECs are thought to be 
derived from mesodermal progenitors, but they acquire het-
erogeneous characteristics as they develop and mature into 
arterial, venous and capillary ECs (Fig. 1). This portion of 
the review will focus on the signaling mechanisms regulat-
ing early blood EC differentiation and their later specifica-
tion into distinct subtypes.

Vascular endothelial cell differentiation

Vascular ECs arise from multipotent progenitors in the 
embryonic and extraembryonic mesoderm [3]. Newly dif-
ferentiated ECs initially form a primitive vascular plexus in 
the extraembryonic yolk sac and later the primitive vascular 
plexi in embryonic tissues that give rise to the cardinal vein 
(CV) and dorsal aorta, as well as all forming blood ves-
sels in developing organs. This early developmental stage 
that includes de novo EC differentiation and the formation 
of primitive vascular plexi is referred to as vasculogenesis. 
Vasculogenesis is initiated in the mouse at around embry-
onic day (E)7.0–7.5 with the expression of ETV2, a member 
of the E26 transformation-specific transcription factors, in 
mesodermal progenitors that become angioblasts, the pre-
cursors to ECs [4, 5]. This early expression of ETV2 drives 
the differentiation of ECs by promoting the expression of 
genes including vascular endothelial growth factor receptor 
2 (Vegfr2), Cdh5 (encodes VE-cadherin) and Tie2 (angiopoi-
etin receptor), which are important for the formation and 

Fig. 1  Blood EC Specifica-
tion in Health and Disease. 
(Black) Primordial endothelial 
cells (ECs) are specified from 
mesoderm-derived cells and 
form primitive vascular plexi. 
Expansion and maturation of 
these plexi through vasculogen-
esis and angiogenesis forms the 
adult vascular network. Several 
developmental pathways play 
a significant role in initial 
EC specification and later in 
determination of arterial-venous 
fates. (Red) Changes to key 
signaling components in these 
specification pathways are 
associated with the development 
of human arteriovenous mal-
formations, including Cutaneo-
mucosal venous malformations 
(VMCM); capillary malforma-
tion with arteriovenous malfor-
mations (CM-AVM); cerebral 
cavernous malformations 
(CCM); and hereditary hemor-
rhagic telangiectasia (HHT)
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maintenance of ECs [3, 6]. Other important signaling factors 
in the early formation of angioblasts are fibroblast growth 
factor 2 (FGF2) and bone morphogenic protein 4 (BMP4), 
which promote the acquisition of EC identity [7]. Activation 
of these signaling pathways is followed by the induction of 
vascular endothelial growth factor A (VEGF-A)-VEGFR2 
signaling, which promotes EC survival, proliferation and 
migration, thereby expanding the primitive vascular plexus.

Some reports have suggested that arterial and venous ECs 
are not derived from the same population of angioblasts, 
but rather each develops from a distinct pool of precursors. 
Kohli et al. used the zebrafish model to demonstrate that the 
arterial and venous ECs that give rise to the major axial ves-
sels in the fish are derived from distinct progenitor popula-
tions [8]. They show that angioblasts residing in the midline 
of the body give rise to the arterial ECs which develop into 
the dorsal aorta, while a second population of angioblasts in 
the lateral axis of zebrafish gives rise to venous ECs. They 
postulated that this difference in expression pattern was due 
to higher VEGF and sonic hedgehog (SHH) signaling in 
the midline compared to the lateral axis of the fish, which 
have been found to promote arterial EC development [8, 9]. 
Whatever the source of EC progenitors may be, the initial 
steps of EC differentiation, especially in the formation of the 
primitive vascular plexi remains largely undebated, although 
further investigation is needed to more fully understand the 
regulation of this process.

After the primitive vascular plexi are formed, blood ves-
sels grow, expand and remodel into arterial-venous networks 
throughout the yolk sac and embryo proper via a process 
known as angiogenesis. It is important to note that not 
all blood vessel expansion occurs via vasculogenesis fol-
lowed by angiogenesis. In some tissues, such as the brain 
and retina, newly differentiated ECs predominantly exhibit 
sprouting angiogenesis during vascular network formation, 
highlighting the heterogeneity in growth patterns of newly 
formed ECs [10–13]. Angiogenic-driven vascular expansion 
relies on the specification of tip cells, which are followed by 
several trailing stalk cells. The tip cells exhibit a migratory 
phenotype, while stalk cells actively proliferate to form new 
vessels [10, 14]; these phenotypic differences are promoted 
by distinct signaling mechanisms.

Tip and stalk cell specification

As the developing embryo grows, tissue hypoxia promotes 
angiogenesis of new vessels to unvascularized tissues 
through the upregulation of VEGF-A, resulting in the induc-
tion of vascular EC sprouting [15]. VEGF-A binds to the 
VEGFR2 receptor on tip cells to promote cell survival and 
migration [16]. Loss of VEGF-A-VEGFR2 signaling axis 
impairs vascular development and results in early embry-
onic lethality [17, 18]. An important signaling factor in 

the maintenance of tip cell identity is the NOTCH ligand, 
delta-like protein 4 (DLL4) [19]. DLL4 is preferentially 
expressed in tip cells and is activated downstream of VEGF-
A-VEGFR2 signaling. DLL4 binding to NOTCH receptors 
on the adjoining stalk cells promotes the expression of 
VEGFR1, a decoy receptor that sequesters VEGF-A, and 
inhibits VEGFR2 expression, thereby inhibiting migration 
and maintaining stalk cell identity [16, 20]. Additional path-
ways important for tip-stalk cell specification include TGF-β 
(transforming growth factor β) and BMP9/10 signaling. 
Binding of TGF-β and BMP9/10 to the TGF-β type-1 recep-
tors ALK5 and ALK1, respectively, promote stalk cell iden-
tity through SMAD2/3- and SMAD1/5/8-dependent signal-
ing [21]. Concomitantly, VEGF-A-dependent activation of 
Neuropilin-1 (NRP-1) in the tip cells inhibits SMAD2/3 and 
SMAD1/5/8 signaling ultimately repressing the stalk cell 
phenotype and maintaining tip cell identity [21]. Mainte-
nance of tip and stalk cell identity is further complicated 
as the vascular plexus grows and matures. Induction of EC 
branching from already formed vessels is, in part, regulated 
by BMP-NOTCH signaling cross-talk, whereby BMP sign-
aling promotes EC branching and is directly inhibited by 
NOTCH [22–24]. In zebrafish, BMP6 and BMP2 signal-
ing induce EC branching through a SMAD1/5/8-dependent 
mechanism [22]. This is counteracted by NOTCH-dependent 
activation of the inhibitory SMAD6 to carefully regulate 
the extent of vessel branching, thereby maintaining proper 
vascular organization during development [22, 23].

Arterial‑venous specification

As the embryo continues to develop, the primordial ECs 
respond to a myriad of signals to specify into arterial or 
venous phenotypes. Arterial and venous ECs can be distin-
guished, in part, by the expression of the ligand-receptor 
partners E-phrinB2 and Ephrin type B receptor 4 (EPHB4) 
in arteries and veins, respectively [25]. EphrinB2-EPHB4 
binding repels arterial and venous ECs from one another 
maintaining vessel identity in the developing vasculature 
[25]. ECs start to acquire an arterial or venous phenotype 
by responding to a complex signaling network which deter-
mines EC identity depending on the pathway that is domi-
nantly activated [26]. As blood begins to flow through the 
developing circulatory network and ECs are exposed to 
mechanical shear stress, EC specification is further rein-
forced [27].

Multiple signaling pathways contribute to early arterial-
venous specification including VEGF-A, WNT and SHH. 
VEGF-dependent determination of EC fate is reliant upon 
the relative concentration of VEGF-A, whereby high and 
low VEGF-A concentrations promote arterial and venous 
specification, respectively [28]. In arterial-fated ECs, VEGF-
A-VEGFR2 drives arterial specification through activation 
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of NOTCH- and ERK1/2-dependent signaling [29–31]. 
VEGF-A-VEGFR2 signaling activates the transcription 
factors SOX7, SOX17 and SOX18 to upregulate NOTCH-1 
expression [30]. In turn, NOTCH activation and transloca-
tion into the nucleus drives the expression of arterial genes 
[32]. Studies in zebrafish revealed that BMP-dependent 
signaling potentiates NOTCH-dependent arterial specifica-
tion [33]. BMP4 activation of the BMP regulatory proteins, 
BMPER and TWSGI, enhance NOTCH-dependent upregu-
lation of EphB2 [33, 34]. In parallel to NOTCH signaling, 
VEGF-VEGFR2 activation drives ERK1/2 (MAP kinase 
signaling)-dependent upregulation of arterial genes [29].

NOTCH expression is also induced through WNT-
dependent signaling downstream of VEGFR2 activation 
[31]. Baseline WNT-β-catenin signaling induces the expres-
sion of DLL4, which promotes NOTCH activation in adja-
cent cells to enable arterial fate specification. Overactivation 
of this pathway in mice results in defects in arterial-venous 
specification and the formation of arteriovenous (AV) 
shunts [31]. SHH-dependent activation is also involved in 
upregulating NOTCH signaling in ECs. In zebrafish, arte-
rial specification has been shown to be initiated by a SHH-
VEGF-A-NOTCH signaling axis [9]. Overexpression of Shh 
in zebrafish leads to ectopic formation of arterial ECs, while 
inhibition of the SHH pathway leads to the loss of arterial 
identity in the developing vasculature [9]. The importance 
of NOTCH signaling is highlighted by the loss of arterial 
cell identity, accompanied by EC hyperproliferation and 
disrupted vascular remodeling, with the loss of NOTCH 
signaling [35, 36].

The initiation of blood flow through the developing 
vasculature further specifies arterial ECs [37]. In chick 
embryos, the start of blood flow in the vessels of the yolk 
sac upregulates arterial-specific genes including EphB2 [37]. 
Arterial specification in response to flow is regulated in part 
by NOTCH signaling [38]. Arterial flow-mediated activation 
of NOTCH leads to an upregulation of mechanosensitive gap 
junction protein Connexin 37 (Cx37) and subsequent activa-
tion of the cell cycle inhibitor p27; p27-mediated endothelial 
cell cycle arrest further enables the upregulation of arterial 
genes [38]. The exact mechanism by which Cx37 regulates 
p27 and cell cycle arrest is not yet clear, and the role of 
endothelial cell cycle control in this process is further dis-
cussed below.

Arterial specification is inhibited to promote and main-
tain venous EC fate. Expression of the venous-enriched 
transcription factor, Nuclear Receptor Subfamily 2 Group F 
Member 2 (NR2F2/COUP-TFII), inhibits arterial specifica-
tion through the downregulation of NOTCH signaling [39]. 
Similarly, ERK1/2-dependent arterial specification is antag-
onized by PI3K-AKT activation that drives venous EC speci-
fication [29]. PI3K-AKT-dependent inhibition of ERK1/2 
promotes COUP-TFII expression in developing venous ECs 

[29, 40]. PI3K is activated in response to VEGF-A which, 
as mentioned previously, can also promote arterial specifi-
cation [29, 40]. Thus, arterial-venous identity in response 
to VEGF-A signaling is determined by the strength of the 
signal and the downstream pathways activated, revealing the 
complexity of these developmental pathways [28]. To make 
matters more complex, studies in zebrafish and mice have 
shown that arterial ECs can be derived from venous tip cells 
during development [41–43]. Thus, we have much more to 
learn about the relationships among EC types, and the cross-
talk of signaling pathways, in remodeling vascular plexi.

Another pathway that can promote divergent outcomes 
depending on the receptors and ligands involved is the TGF 
superfamily-dependent signaling. The identity of the TGF 
superfamily receptor activated directs whether primitive 
blood ECs acquire a venous or arterial phenotype. For exam-
ple, in zebrafish, BMP2/4-ALK3 signaling axis activates 
SMAD1/5 to promote venous fate by upregulating venous-
enriched genes (Ephb4 and Nr2f2) [44]. Other recent studies 
further support the important role of BMP2-dependent sign-
aling in promoting venous EC identity through the activation 
of ALK2/3 and BMP receptor II [26, 44].

In contrast, TGF-β-dependent signaling enables arte-
rial cell fate through careful regulation of angiogenic and 
vascular maturation signals. The TGF superfamily type I 
receptors discovered to play a role in arterial development 
include ALK1, ALK5 and Endoglin (ENG), with ALK1 
and ALK5 signaling regulating a biphasic response in ECs 
[45]. Mutations in ALK1 or ENG result in perturbation 
in arterial-venous specification and ultimate formation of 
AV malformations [46, 47]. Alk1-, Eng- and Alk5-deficient 
mice display severe vascular malformations resulting from 
the inability of the vasculature to undergo arterial-venous 
maturation [48–51]. In Eng-deficient mice, specifically, the 
development of AV malformations is due, in part, to the 
loss of ENG-dependent inhibition of COUP-TFII expression, 
resulting in attenuated arterial specification and increased 
venous EC formation [52]. Similarly, ALK1 activation has 
been shown to promote arterial specification during devel-
opment and mice lacking Alk1 are embryonic lethal due to 
severe vascular malformations [48]. Activation of ALK1 
and ENG by TGF-β promotes endothelial cell migration 
and proliferation through SMAD1/5 signaling, enabling 
the expansion of developing arteries [53–55]. ALK1-ENG 
pro-angiogenic signaling is antagonized by ALK5 activity. 
TGF-β activation of ALK5-SMAD2/3 inhibits angiogenesis 
and promotes vessel maturation [53, 56, 57]. The interplay 
between ALK1 and ALK5 signaling is further complicated; 
that is, in vitro studies revealed that ALK5 signaling pro-
motes ALK1 expression and is required for optimal ALK1 
signaling [53]. Other studies in mice and cultured ECs argue 
that ALK1-dependent signaling may be more important in 
vessel maturation rather than angiogenesis [58–60]. The 
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complexity of the signaling pathways and their relative con-
tributions to proper arterial-venous specification continue 
to be an important area of investigation. However, it is clear 
that perturbation to any of these pathways severely impacts 
vascular development resulting in potentially lethal arterial-
venous malformations [61–63].

Cell cycle regulation of arterial‑venous specification

One of the key questions in vascular development is how 
do similar extrinsic signals cause differential responses in 
developing ECs. There is growing evidence for a role of cell 
cycle state in determining the propensity for fate decisions 
during development. For example, in embryonic stem cells, 
different cell cycle states create distinct windows of oppor-
tunities that enable cells to differentially respond to factors 
that promote their differentiation toward specific lineages 
[64, 65]. Recent studies of vascular development similarly 
suggest that endothelial cell cycle state determines their pro-
pensity for arterial-venous specification [38, 39].

Although remodeling ECs are proliferative, their growth 
is suppressed as arterial-venous specification ensues, sug-
gesting a role for cell cycle arrest in the acquisition of arte-
rial-venous EC identity [38, 43, 66]. In support of this idea, 
our lab has recently shown that arterial shear stress activates 
a NOTCH-Cx37-p27 signaling axis to promote cell cycle 
arrest in G1 phase, which enables the upregulation of arterial 
genes [38]. Conversely, in venous ECs, COUP-TFII expres-
sion promotes cell cycle progression and reduces arterial EC 
gene expression [39]. Recent work from our group, using 
FUCCI cell cycle reporter mice [67], revealed that ECs in 
remodeling veins and arteries are in different states of G1; 
early G1 vs. late G1, respectively [68]. In addition, these 
distinct cell cycle states enable BMP vs. TGF-β signaling 
to upregulate venous vs. arterial genes, respectively [68]. 
Together, these data highlight the importance of cell cycle 
regulation in EC fate decisions, although much more work 
in needed to understand the molecular underpinnings of this 
process.

Capillary Endothelial Cell Development

Connecting arterial and venous circulation is a vast net-
work of capillaries that serve as the site of gas and nutri-
ent exchange between tissues and the circulatory system. 
Developing capillaries are composed of a single layer of 
ECs connected by a thin basement membrane. As capil-
lary networks mature, ECs recruit mural cell precursors via 
PDGF-B signaling [1, 69]. Upon contact with the capillary 
ECs, TGF-β is activated and promotes the differentiation of 
pericytes, which aid in maintaining capillary vessel integrity 
[1, 70–74].

There is a growing appreciation for the high degree of 
heterogeneity among EC phenotypes, not only in arteries 
and veins, but also in capillaries. The structure of capillar-
ies is organ-specific, with morphologies that are perfectly 
suited for the needs of the tissue [10]. Although the struc-
tural heterogeneity among capillary ECs is well described, 
the transcriptional regulation required to promote these spe-
cialized characteristics remains unclear. In early embryonic 
development, capillaries form the primitive vascular network 
in the extra- and intra-embryonic tissues [75]. These primi-
tive vascular plexi later remodel and mature into circulatory 
networks containing arteries, veins and mature capillaries. 
During the maturation process, some of the primitive capil-
lary networks are pruned away, while new capillaries are 
formed through angiogenic sprouting of existing blood ves-
sels [75]. Angiogenic sprouting is driven by the migration 
of endothelial tip cells followed by the proliferative stalk 
cells to form new capillary tubes, which will migrate until 
they reach other capillaries and coalesce to form new ves-
sels [16].

As mentioned above, ECs formed from venous tip cells 
migrate through the remodeling capillary plexi to contribute 
to forming arterial vessels [41]. Due, in part, to this venous 
to artery migration, brain capillary ECs share gene expres-
sion patterns of both venous and arterial ECs [76]. An analy-
sis of the developing coronary vasculature showed that ECs 
from the developing coronary plexus are most transcription-
ally similar to adult venous and capillary ECs, suggesting 
that the developing adult coronary capillaries are derived 
from venous ECs and may only begin to express arterial 
markers once they make contact with arterial branches 
[39]. Other recent single-cell RNA sequencing analysis of 
murine brain capillary ECs also reveals a continuum of gene 
expression among capillary, arterial and venous ECs [76]. 
However, distinct capillary EC markers and the specifica-
tion events that determine capillary EC fate remain to be 
elucidated.

Arterial‑venous malformations

Dysregulation of EC specification leads to vascular mal-
formations, which can be debilitating and even fatal. There 
are different types of vascular malformations, depending on 
which process in arterial-capillary-venous development is 
disrupted (Fig. 1, Table 1). In this section, we provide an 
overview of different types of blood vascular malformations, 
what is known about their underlying genetic defects, and 
what treatments are currently available for affected patients. 
We also propose new research pathways linking endothe-
lial cell cycle state and fate in the development of vascular 
malformations.
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Hereditary Hemorrhagic Telangiectasia

Hereditary Hemorrhagic Telangiectasia (HHT, OMIM 
187300), also known as Osler-Rendu-Weber syndrome, is 
a genetic vascular disorder affecting 1 in 5,000 individuals 
worldwide [77]. This disease is characterized by multiple 
vascular defects including epistaxis, telangiectasias and 
AV shunts in various organs including brain, lungs and 
intestines, which are prone to rupture, causing life-threat-
ening hemorrhage [77].

The HHT-causing mutations affect genes encoding 
different components of the BMP9/10 pathway; namely, 
ENG encoding the membrane glycoprotein ENDOGLIN in 

HHT1, ACVRL1 encoding the membrane receptor ALK1 
in HHT2, SMAD4 encoding the intracellular signaling 
molecule SMAD4 in Juvenile polyposis (JP)-HHT, and 
GDF2 encoding BMP9 ligand in HHT5 [78–82]. To date, 
all identified mutations result in haploinsufficiency of 
these genes. In ECs, decreased activity of the BMP9/10 
signaling leads to over-activation of the pro-angiogenic 
factors VEGF-A and angiopoietin-2 (ANGPT-2), trigger-
ing EC hyperproliferation, as well as alterations in their 
permeability and migration, ultimately leading to vascular 
malformations [78, 83–85].

Mouse models of HHT have provided significant insights 
regarding the functions of the BMP9/10 signaling pathway 

Table 1  Summary of genes, signaling pathways, and endothelial cell function modified in vascular malformations and associated animal models 
and treatments

* Molecule used in clinic
† Molecule used in preclinical studies

Malformation Genes Signaling pathway Function /Pathway Animal models MOlecules

Arterio-venous anoma-
lies

Hereditary Hemorrhagic 
Telangiectasia (HHT)

Loss of function ENG, 
ALK1, SMAD4, GDF2

Inhibition of BMP9/10 
signaling (SMAD 
1/5/8)

Increased VEGF/
ANGTP2 signaling

EC hyperproliferation
Loss of vascular speci-

fication
Altered FSS
Hypoxia

EngECiKO

Alk1ECiKO

SMAD4ECiKO

BMP9/10 antibodies

Bevacizumab*
Nintedanib†
Pazopanib†
Tacrolimus*
Sirolimus*

Venous anomalies
Venous malformations 

(VM)
Gain of function TIE2/

TEK
Increased Pi3K/AKT 

signaling
Decreased FOXO1 

activity

EC hyperproliferation
Decreased PDGF-B
Decreased mural cell 

coverage

Pik3caH1047R Sirolimus†
Alpelisib†

Capillaries anomalies
Capillary malformation-

arteriovenous malfor-
mation (CM-AVM)

Loss of function RASA1, 
EPHB4

Increased Ras/MAPK 
signaling

_ _ _

Cerebral cavernous mal-
formations (CCM)

Loss of function CCM1, 
CCM2, CCM3

Increased TGFβ/BMP 
signaling

Endothelial-to-mes-
enchymal transition 
(EndomT)

Impaired EC-EC junc-
tion

Impaired EC migration

Ccm1ECiKO

Ccm2ECiKO

Ccm3ECiKO

Simvastatin†
Fasudil†
Exisulib†
Sorafenib†

Lymphatic anomalies
Type I lymphedema 

(early onset)
Loss of function FLT4 Decreased VEGFR3 

signaling
Impaired lymph-vessel 

formation / organiza-
tion

Chy Sirolimus*
Anti-VEGF-

C-based 
therapy†

Loss of function 
PTPN14

Increased VEGFR3 
signaling

_ _

Loss of function GATA2 decreased PROX1 and 
FOXC2 expression

_ _

Type II lymphedema 
(late-onset)

Loss of function FOXC2 impaired VEGF-C / 
VEGFR3 induced 
response

LEC hyperproliferation
Impaired lymphatic 

valve development
-Cx37 downregulation

Foxc2 ECiKO

Loss of function SOX18 Flt4 expression dysregu-
lation

Prox1 inhibition Ragged
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defects in the development of the vascular anomalies related 
to HHT. Heterozygous mutations of Eng or Alk1 genes give 
rise to vascular lesions forming at low frequencies and later 
in life, making them inconvenient models for further study 
[86, 87]. Constitutive inactivation of Eng, Alk1 and Smad4 
genes in mice leads to embryonic lethality due to multiple 
cardiovascular defects, again rendering the study of molecu-
lar mechanisms difficult [58, 88, 89]. However, postnatal 
tamoxifen-inducible, EC-specific homozygous deletion of 
any of these genes induces HHT-like vascular malforma-
tions, including excessive angiogenesis, enlarged veins and 
AV shunts in the neonatal retinal vascularization model [84, 
85, 90, 91].

The dysregulation of arterial-venous identity of ECs form-
ing AV shunts has been shown in these different experimental 
models. The inducible EC-specific deletion of Eng, Alk1 or 
Smad4 leads to EC hyperproliferation, which is associated 
with downregulation of several arterial-enriched genes, such 
as Efnb2, Jag1 and Unc5b, as well as upregulation of venous-
enriched genes Ephb4 and Nrp2 [84, 85, 90]. These modi-
fications are also accompanied by increased SMC coverage, 
or muscularization, of veins and AV shunts, while arteries 
undergo loss of SMC coverage or de-muscularization.

The molecular mechanism(s) leading to the dysregulation 
of endothelial identity in AV malformations (AVM) has not 
been unraveled. However, the modifications of the environ-
ment surrounding the ECs induced by AVM, such as defective 
flow shear stress or impaired nutrient and oxygen supply, could 
play an important role in this regulation. In fact, impaired-sys-
temic blood flow in mice produces defects in arterial-venous 
specification and induces AVM during embryonic develop-
ment [92]. In the context of HHT, fluid shear stress has been 
shown to potentiate BMP9 signaling through ALK1 and 
SMAD4 and, thus, enabling the repression of EC proliferation, 
as well as pro-angiogenic signals [85, 93]. Furthermore, as 
mentioned above, it has been shown that arterial shear stress, 
via the NOTCH-Cx37-p27 axis, regulates the cell cycle state 
of ECs and enables their arterial specification [38]. Neverthe-
less, the demonstration that fluid shear alterations or endothe-
lial cell cycle state modifications in AVM could be responsible 
for the loss of EC identity are lacking and represent important 
research pathways to identify new targets for HHT treatment.

To date, the therapeutic options available for HHT patients 
are intended to reduce the symptoms of the disease (epistaxis). 
However, new clinical and preclinical studies are emerging to 
counter-balance the pro-angiogenic axis over-activated in HHT 
and, ultimately, to correct telangiectasias and AV shunts into a 
normal vasculature. The humanized monoclonal anti-VEGF-A 
antibody, bevacizumab [94], currently in phase III of clinical 
trial, has significantly reduced bleedings and liver and cardiac 
anomalies in HHT1, HHT2 and JP-HHT patients [95]. Anti-
angiogenic therapies using tyrosine kinase inhibitors targeting 
VEGF-A signaling such as Nintedanib [96] or Pazopanib [97] 

have shown encouraging results in treatment of HHT-related 
bleeding and are now candidates for clinical trials [78]. In 
mouse models of HHT (Smad4ECiKO and Alk1ECiKO), anti-
ANGPT-2 antibodies and PI3K inhibitors have demonstrated 
robust effects on correcting AVM [83, 84]. Finally, instead of 
targeting the pro-angiogenic signal, recent therapeutic strate-
gies attempt to restore the BMP9-ALK1-SMAD signaling axis 
which is defective in HHT. In support of this approach, it has 
shown that the re-expression of Alk1 gene in Alk1-deficient 
mice restores BMP9 signaling in ECs and rescues vascular 
malformations linked to HHT [98]. In a preclinical model 
(BMP9/10 immunodepletion), Tacrolimus and Sirolimus have 
proven their efficiency in resolving AVM by promoting the re-
activation of the BMP9 signaling pathway [99].

Venous malformations

Venous anomalies are among the most frequent cause of 
mortality due to vascular defects with an incidence estimated 
at 1/5,000 – 1/10,000 [100]. The two major categories of 
venous anomalies are cutaneo-mucosal venous malforma-
tions (VMCM, OMIM 600195), representing 95% of cases, 
and glomuvenous malformations (GVM, OMIM 138000), 
accounting for the majority of the remaining 5%. Contrary 
to VMCM, which are linked to EC dysfunction, GVM are 
due to impaired vascular SMC differentiation and will not 
be the focus of this review [101].

VMCM are congenital lesions of distorted venous-like 
vessels. These lesions are soft, compressible, light-to-dark 
blue, mainly located in the skin and mucosa, but can infil-
trate underlying tissues, muscles and joints [102]. Histologi-
cally, VMCM are characterized by enlarged vessels, irregu-
lar lumens, monolayer of ECs and irregular SMC coverage 
[103]. Chronic activation of the EC TIE2-PI3K signaling 
pathway is considered the major cause of VMCM [104].

Genetic and molecular studies have shown that VMCM 
are caused by gain-of-function mutations in the EC-spe-
cific tyrosine kinase receptor TIE2 (TEK) gene [103] or in 
PIK3CA gene, encoding the p110α catalytic subunit of PI3K 
[105]. Even if the downstream mechanism of TIE2/PI3K 
over-activation is not completely understood, several cellular 
and molecular dysregulations have been identified in VMVC 
pathogenesis, including defective EC-SMC interactions and 
venous identity [106–108]. In a mouse model that mimics 
human VMCM, the endothelial expression of Pik3caH1047R, 
a constitutively active mutant of the p110α, results in EC 
hyperproliferation, reduction in mural cell coverage of blood 
vessels, and modification in arterial-venous identity [106]. 
The venous markers COUP-TFII and EPHB4, and the arte-
rial marker Ephrin-B2 are reduced in EC-Pik3caH1047R post-
natal retinas and lungs compared to those in Pik3caWT mice. 
However, in VMCM patient biopsies, EC proliferation is 
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not a noticeable characteristic [103, 109]. These divergences 
could be due to the different models and time points of the 
studies. As already suggested, VMCM could have an initial 
phase of EC proliferation, where they are more responsive 
to proliferative cues, followed by a more quiescent state in 
established lesions [104].

A recurrent hallmark of VMCM is defective SMC cov-
erage in venous lesions [103, 105]. As a consequence of 
TIE2/PI3K over-activation, the transcription factor FOXO1 
and its target gene encoding for PDGF-B, a SMC chemo-
attractant, have been shown to be negatively regulated in 
Pik3caH1047R mice and biopsies from TIE2 mutation-positive 
VMCM lesions [106, 107]. To date, it is not known whether 
decreased PDGF-B levels leads to defective SMC cover-
age in VMCM lesions. However, understanding the conse-
quences of impaired EC-SMC interactions on EC identity 
in venous malformations could enhance our understanding 
of how these lesions are formed. Specification of arterial 
and venous ECs occurs in conjunction with suppression of 
EC cycle progression [7, 38, 39]. FOXO1 activation plays 
a role in the regulation of cell cycle progression by promot-
ing cell cycle arrest via the cyclin-dependent kinase inhibi-
tor p27kip1 [110, 111]. Nevertheless, the dysregulation of 
endothelial cell cycle regulators, such as p27, and its impact 
on venous identity in VMCM induced by over-activation of 
PI3K-AKT-FOXO1 axis still need to be investigated.

There is currently no available treatment for VMCM 
patients. However, in a few preclinical studies, specific 
inhibitors of TIE2 or PIK3CA over-activation have been 
tested to prevent or revert VMCM. TIE2 kinase inhibitor 
or PIK3CA inhibitor (Alpelisib) have demonstrated very 
modest effects on treating VMCM [112, 113]. The most 
advanced potential pharmacotherapy for VMCM currently 
is Sirolimus (also known as Rapamycin). This compound 
inhibits TIE2- and PIK3CA-mutated venous malformations 
in vitro and in vivo and, in mouse models, it diminishes 
lesion growth, normalizes SMC coverage and decreases EC 
proliferation [106, 112].

Capillary malformations

Capillary malformations (CM, OMIM 163000), also called 
“port wine stains”, are the most common type of cutaneous 
vascular malformation, affecting 0.3% to 0.5% of the popula-
tion [114]. CM consist of dilated capillary-like vessels and 
lesions that are sporadically flat, red to purple in color, and 
found most frequently in the head and neck [115]. CM are 
divided into two categories: CM with AV malformations 
(CM-AVM, OMIM 608354); and cerebral cavernous mal-
formations (CCM, OMIM 116860) [100].

Capillary malformations with arterial‑venous 
malformations

CM-AVM is an autosomal dominant disorder caused by het-
erozygous inactivating mutations in the RASA1 (RAS p21 
protein activator 1) gene (CM-AVM1) characterized by the 
presence of capillary malformations, arteriovenous malfor-
mations and fistulas, and occasionally vascular overgrowth 
[116, 117]. RASA1 encodes the RAS-GTPase-activating 
protein, p120Ras-GAP, that negatively regulates the RAS/
MAPK signaling pathway [117, 118]. Among different func-
tions, Ras is an activator of VEGF-A-mediated angiogenesis 
by promoting the phosphorylation and stabilization of the 
hypoxia-inducible factor-1 alpha (HIF-1α) transcription fac-
tor, which upregulates VEGF-A [119, 120]. As a negative 
modulator of RAS activity, p120Ras-GAP plays a role in 
balancing EC signaling by downregulating proliferation, and 
potentially migration and polarity [121, 122].

There is no ideal vertebrate genetic model of CM-AVM 
currently available [123, 124]. Rasa1 heterozygous mutant 
mice are viable, but the homozygous deletion of Rasa1 
induces embryonic lethality at E10.5 due to defective vas-
cular development [124]. Overexpression of microRNA-132, 
a negative regulator of p120Ras-GAP protein expression, 
promotes neovascularization in a murine tumor model, 
whereas anti-microRNA-132 inhibits this effect and pre-
vents pathological retinal angiogenesis [121, 125]. CM-like 
vascular lesions have been reported in those models, but 
not CM-AVM. Nevertheless, a study using Morpholinos 
against Rasa1 in zebrafish showed that reduced Rasa1 gene 
expression leads to impaired circulation and arterial-venous 
misconnections [123]. Interestingly, this study provides a 
molecular connection between RASA1 and EPHB4, which 
is well known for its function in venous specification during 
embryonic development and is considered a venous marker 
in the adult vasculature [126, 127]. However, whether dys-
regulation of EC identity contributes to capillary malforma-
tions is still unknown. EPHB4 variants were also reported to 
cause capillary malformation–arteriovenous malformation 
2 (CM-AVM2) [128]. CM-AVM2 mimics RASA1-related 
CM-AVM1 and HHT and could therefore be considered part 
of the clinical spectrum of HHT and other vascular malfor-
mation syndromes [129].

Cerebral cavernous malformations

CCM occur in approximately 0.5% of the population and 
can be both sporadic (80%) or autosomal dominant inherited 
(20%) [130]. The lesions are mostly localized in the brain, 
but also in the spinal cord and retina [131]. Histologically, 
CCM consist of dilated vessels, known as cavernomas, that 
are often assembled into clusters (i.e., mulberry lesions) 
[130]. These abnormal vessels are formed by a defective 
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layer of ECs that lacks tight junctions and is prone to blood 
leakage and vascular rupture [131]. Patients can develop 
symptoms such as headaches, seizures, neurological prob-
lems and cerebral hemorrhages, although some are asymp-
tomatic [131, 132].

The inherited forms of CCM are caused by a loss of 
function mutation in any of the 3 autosomal genes, CCM1/
KRIT1, CCM2/OSM or CCM3/PDCD10 [130]. In sporadic 
forms of CCM, somatic mutations of CCM genes have been 
observed in cerebral cavernomas [133]. CCM1-3 muta-
tions in ECs are mainly responsible for the vascular defects 
observed in patients with CCM. Endothelial-specific dele-
tion of Ccm1, Ccm2, or Ccm3 genes in mice induces CCM-
like vascular defects in the central nervous system [134, 
135], whereas SMC- or neuro-specific mutations of Ccm 
genes do not induce cavernomas [136]. Loss of function of 
any of the Ccm genes leads to increased TGF-β/BMP sign-
aling, EC junction defects and endothelial-to-mesenchymal 
transition (EndMT), which collectively contribute to caver-
noma formation [134, 135, 137].

The CCM proteins interact with each other, with CCM2 
acting as a linker between CCM1 and CCM3 [138]. The 
complex binds to VE-cadherin at EC-EC junctions, through 
β-CATENIN [139]. In the absence of CCM1 or CCM2, the 
activation of RAP1, a small GTPase known to stabilize the 
cortical actin cytoskeleton, is impaired [140], and CDC42 
is inhibited [141]. This, in turn, promotes disorganization of 
EC junctions and increases vascular permeability, leading to 
hemorrhage [142]. Interestingly, endothelial-specific gene 
deletion of Cdc42 leads to capillary and venous malforma-
tions in postnatal mouse retina, similar to CCM defects, due 
to impaired EC polarized migration [143].

Enhanced TGF-β/BMP signaling after deletion of any of 
the CCM genes is a common dysregulation causing caver-
nomas. Two different mechanisms have been identified as 
responsible for this increased signaling: higher and sustained 
response to TGF-β by Ccm-deficient ECs; and production 
of endogenous BMP ligands, such as BMP2 and BMP6 
[134, 144, 145]. Increased TGF-β/BMP signaling, through 
an upregulation of the transcription factor KLF4, promotes 
EndMT, which contributes to the loss of EC identity in cav-
ernomas [134, 145, 146]. EndMT is characterized by disor-
ganization of EC junctions [134], loss of apical-basal polar-
ity [147], and expression of stem/mesenchymal cell markers 
[134]. Furthermore, CCM1, via the DLL4-NOTCH pathway, 
promotes mRNA expression of the cell cycle inhibitors p21 
(CIP1) and p27 (KIP1), which inhibit EC proliferation and 
migration in vitro [148]. Therefore, loss of function of any 
CCM gene could disrupt endothelial cell cycle control via 
inhibition of p21 or p27. Since endothelial cell cycle control, 
via a NOTCH-Cx37-p27 axis, is necessary for the acquisi-
tion of arterial EC cell identity, it is possible that dysregula-
tion of this axis contributes to CCM [27, 38]. Thus, further 

investigation of this pathway could provide additional under-
standing of the molecular mechanisms leading to CCM and 
reveal new targets for their treatment.

No pharmacological therapy is currently available for 
CCM. A partial surgical resection of the vascular lesions is 
the only therapeutic option at present. However, this strat-
egy is not feasible in critical regions of the brain and does 
not prevent lesion resurgence. The ideal therapy would be 
to stabilize the preexisting lesions, inhibit their progression 
and block the formation of new malformations [149]. Using 
in vivo and in vitro experimental models of CCM, several 
pharmacological agents have been tested in preclinical stud-
ies. Inhibitors of RhoA (Simvastatin) or ROCK (Fasudil) 
may be good candidates [150]. Both drugs significantly 
decrease chronic hemorrhage in vascular lesions in murine 
model of CCM1 and CCM2. However, Fasudil is more 
efficient than Simvastatin in improving survival and blunt-
ing the development of mature lesions [150]. Exisulib, a 
β-catenin signaling inhibitor, limits the formation of brain 
vascular cavernomas in mice with CCM3 ablation in ECs 
[135]. This drug is currently used clinically to treat different 
pathologies and may be repurposed for CCM therapy. Simi-
larly, other compounds such as ANGPT-2 neutralizing anti-
bodies [151], multiple kinases inhibitor (Sorafenib) [148] 
or TGF-β receptors inhibitors [134], have shown efficacy in 
reducing CCM lesions in preclinical studies, but have not 
been tested in clinical trials yet.

Lymphatic endothelial cell development

The lymphatic circulation is a specialized vascular net-
work responsible for maintaining tissue fluid homeostasis, 
immune cell transport and lipid absorption [152]. It is com-
prised of blunt-ended capillaries, collecting lymphatic ves-
sels and lymph nodes which transport fluid, or lymph, unidi-
rectionally from tissue capillaries into the venous circulation 
through the subclavian vein [152]. This unidirectional flow 
of lymph is aided by the presence of intraluminal lymphatic 
valves within the collecting lymphatic vessels [153]. These 
lymphatic valves, much like venous valves, help propel 
lymph against the force of gravity, while preventing retro-
grade transport. Pathologies which affect the development of 
the lymphatic circulation result in poor lymphatic flow and 
severe tissue edema [154–156]. Although the end patholo-
gies resulting from aberrant lymphatic development are well 
understood, there is some debate about the processes that 
regulate lymphatic development, specifically the source of 
progenitor cells that give rise to lymphatic ECs (LECs).

LECs form the inner layer of lymphatic vessels and dis-
play a high degree of structural and functional heterogeneity 
throughout the lymphatic network that is evident from the 
beginning of development. LECs are specified shortly after 
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blood ECs develop from the embryonic mesoderm. In 1902, 
Florence Sabin was the first to identify venous ECs as a 
source of LEC progenitors in developing lymphatic vessels 
in pig embryos [157]. These studies were later supported by 
lineage tracing of  PROX1+ cells (master regulator of LECs 
described below) in mice and zebrafish, which revealed that 
venous-derived LEC development was conserved throughout 
different animal species [158–160]. As animal models and 
lineage-tracing techniques improved, additional sources of 
lymphatic progenitor cells were identified. In 2015, Stanczuk 
et al. identified cKit-expressing cells as a novel, non-venous 
source of LECs in the developing mesenteric lymphatics of 
the mouse embryo. We will discuss lymphatic vessel devel-
opment from both progenitor sources [161].

Specification of LECs and their growth pattern differ 
depending on the source of LEC progenitors and the tissue in 
which they are developing. Most venous-derived lymphatic 
vessels form via a process known as lymphangiogenesis, in 
which newly specified LECs sprout from the endothelium 
of the CV in organized branches [162, 163]. Conversely, 
most non-venous-derived lymphatic vessels form via a pro-
cess known as lymphvasculogenesis [164]. In this process, 
newly specified LECs form clusters of cells that coalesce 
into lymphatic vascular plexi before being remodeling into 
a mature lymphatic network [164]. Regardless of the source 
of progenitors, all LECs share distinct genetic markers that 
are unique to the lymphatic circulation.

Cellular markers and their role in LEC development 
have been reviewed previously [165–169]. Briefly, the 
unique markers that are used to identify LECs include the 
transmembrane O-glycoprotein podoplanin (PDPN, gp38, 
or T1α), the transmembrane receptors that bind vascular 
endothelial growth factor C (VEGF-C), vascular endothe-
lial growth factor receptor 3 (VEGFR3 or FLT4) and NRP-
2, the lymphatic vessel endothelial hyaluronan receptor 1 
(LYVE1), and the transcription factors forkhead box C2 
(FOXC2) and prospero homeobox 1 (PROX1). Arguably 
the most important of these genes is the transcription factor 
PROX1, whose expression commits progenitor ECs into an 
LEC fate [170, 171]. Embryonic loss of Prox1 expression 
impairs lymphatic development [163]. Furthermore, Prox1-
deficient mice develop severe edema in utero and are embry-
onic lethal, emphasizing the importance of PROX1 in LEC 
specification and lymphatic development [163].

Although PROX1 expression is required for the fate com-
mitment of all LECs, their response to growth factors dur-
ing lymphatic vessel formation appears to be tissue-specific 
[161, 164, 172]. For example, VEGF-C, the prominent 
VEGF isoform responsible for promoting lymphatic expan-
sion, affects lymphatic development in different tissues at 
different developmental time points. That is, Vegf-C overex-
pression promotes excess lymphatic development in the res-
piratory tract only during embryogenesis, while promoting 

dermal lymphatic growth throughout development and into 
adulthood [173–175]. These data highlight the importance 
of studying lymphatic development in a tissue- and time-
specific context. The following sections will review the cur-
rently available data about lymphatic endothelial progenitor 
cell origins and tissue-specific lymphatic vessels into which 
they develop.

Venous‑derived LECs

Venous-derived LECs are specified from the venous ECs in 
the dorsolateral region of the embryonic CV in mice as early 
as E9.5 (Fig. 2). Increased expression of PROX1 in this sub-
set of venous ECs drives LEC fate specification [158–160, 
176, 177]. Increased PROX1 expression is regulated by 
the transcription factors partners COUP-TFII and SOX18 
[178, 179]. COUP-TFII is expressed by venous ECs and, 
alone, does not drive PROX1 expression. However, when 
associated with SOX18, it promotes PROX1 expression, 
and LEC specification and expansion. Loss of either Coup-
tfII or Sox18 suppresses LEC specification in the CV [179, 
180]. Unlike COUP-TFII, SOX18 expression is restricted 
to the dorsal region of the CV, which helps guide the polar-
ized specification of LECs during lymphatic development. 
SOX18 expression is required for lymphatic specification, 
as evidence by the development of edema and embryonic 
lethality in Sox18-deficient mice [179]. Concomitantly, 
increased PROX1 expression enhances SOX18 expression, 
thereby promoting LEC specification and lymphatic devel-
opment. This feedback mechanism assures the commitment 
of LECs from venous ECs, thereby promoting the formation 
of lymphatic vessels.

Work in the zebrafish model has identified that this LEC 
specification event happens through the asymmetric division 
of venous EC progenitors which results in the formation of 
one venous EC daughter cell and one LEC daughter cell 
[181]. The newly formed LECs retain expression of COUP-
TFII and SOX18, which continue to promote PROX1 expres-
sion in the new LEC population [181]. Specified LECs begin 
to migrate dorsally out of the CV via lymphangiogenesis. 
Much like angiogenesis during blood vessel formation, 
lymphangiogenesis involves the sprouting of specified ECs 
and directionally driven migration. Migrating LECs travel 
dorsally as a single unit connected by VE-cadherin junc-
tions along the embryo to form the jugular lymphatic sacs 
and the primordial thoracic ducts [177, 182]. The integrity 
of these junctions is crucial for proper lymphatic formation 
and prevention of edema during lymphatic vascular develop-
ment [182]. Once these structures are formed, LECs begin to 
migrate once again forming the longitudinal thoracic vessels 
that will ultimately develop the cervical and thoracic dermal 
lymphatics and part of the cardiac lymphatic system [158, 
176].
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Recent reports have identified retinoic acid (RA) as an 
important signaling molecule regulating the polarized speci-
fication of LECs within the CV. Bowles et al. showed that 
RALDH2 expression, the RA synthesizing enzyme, is higher 
in the ventrolateral region of the CV, thereby maintaining 
venous EC identity [183]. Conversely, increased expres-
sion of CYB26B1, the enzyme responsible for degrading 
RA, is co-expressed in the dorsal CV coinciding with LECs 
expressing PROX1 in E9.5 mouse embryos [183]. In addi-
tion, LEC specification and lymphatic vascular growth is 
impaired in Cyb26b1−/− mice [183]. Together, these data 
support the concept that carefully regulated levels of RA 
play an important role in the localized regional specification 
of LECs from venous ECs.

Spatiotemporal regulation of LEC specification from 
the CV may also be regulated by BMP signaling [169, 
184–186]. Using BMP reporter mice, Beets et al. confirmed 
active BMP signaling in LECs and ECs from the CV in 
developing embryos [184]. BMP-dependent signaling can 
have differential effects on LEC specification depending on 
the identity of the ligand-receptor activated. In zebrafish, 

BMP2-SMAD1/5/8 signaling inhibits LEC specification. 
Bmp2-overexpressing zebrafish have impaired thoracic duct 
development due to attenuated LEC specification [185]. 
Similarly, Bmp9−/− mice have dilated lymphatic vessels at 
E15.5, suggesting that BMP9-dependent signaling inhibits 
overexpansion of LECs during development [186]. In cell 
culture experiments, BMP9 signaling decreases PROX1 and 
LYVE1 expression, although this effect may be concentra-
tion-dependent [186, 187]. Taken together, BMP2/9 signal-
ing inhibits LEC specification during early development in 
order to maintain localized lymphatic specification from the 
dorsolateral region of the CV.

After LECs have been specified in the CV, they migrate 
dorsally out of the vein to form the first lymphatic vessels. 
Guided LEC migration is predominantly controlled by 
VEGF-C-VEGFR3 signaling. As LECs become specified, 
they begin to express VEGFR3 under the transcriptional reg-
ulation of PROX1 [188]. As previously mentioned, VEGFR3 
is highly enriched in LECs and its expression is used to 
distinguish between lymphatic and blood ECs. Increased 
expression of VEGFR3 at E10.5 enables LECs to respond 

Fig. 2  Lymphatic EC Specification and Lymphatic Valve Develop-
ment. (Black) Lymphatic ECs (LECs) are specified from venous and 
non-venous progenitor cells. LECs form the embryonic lymphatic cir-
culation through lymphangiogenesis and lymphvasculogenesis. Col-
lecting lymphatic vessels have intraluminal valves which are formed 

from LECs with a high expression of PROX1  (PROX1high) and 
involves an intricate network of signaling pathways and transcription 
factors. (Red) Pathways disrupted in human lymphatic development 
that contribute to lymphatic malformations and lymphedema
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to VEGF-C signaling to promote LEC migration out of the 
CV [189, 190]. In Vegf-c-deficient mice,  PROX1+ LECs fail 
to migrate out of the CV resulting in severe edema [162]. 
Conversely, overexpression of Vegf-c results in ectopic lym-
phatic growth [191].

A recent report put forth the hypothesis that LEC fate is 
predetermined at early stages of development prior to CV 
formation [192]. Stone and Stainier argue that, unlike blood 
ECs which are derived from the lateral mesoderm, LECs are 
specified from the paraxial mesoderm and migrate to form 
the dorsal CV before finally differentiating into LECs [192]. 
Another group showed a similar pattern in the developing 
zebrafish. Nicenboim et al. present evidence that LECs are 
not derived from blood ECs in the posterior CV (PCV, the 
CV analog in zebrafish), but rather arise from a subset of 
mesodermal precursor cells [193]. These cells are located 
in the ventral region of the PCV and begin to migrate dor-
sally as they specify into LECs. It is these groups of cells 
from which lymphatic sprouts begin to form [193]. These 
data highlight the continued debate on the origin of LECs 
and provide further support for the existing heterogeneity of 
LECs and plasticity in progenitor ECs.

Non‑venous‑derived LECs

In 1910, Huntington and McClure were the first to propose 
a non-venous origin of LEC progenitor cells [194]. They 
showed that mesoderm-derived endothelial precursor cells 
specify into LECs independent of the venous endothelium. 
This theory was largely dismissed for the venous-derived 
theory until recently, where advancements in lineage-trac-
ing studies provide further support for tissue-specific, non-
venous origins of LECs. Using these models, non-venous 
progenitor cells were found to be derived from multiple cell 
types including mesenchyme [195–197], the paraxial meso-
derm [192], hematopoietic cells [198], hemogenic progeni-
tor cells [161, 172], and the skin capillary plexus [199]. The 
discovery of these non-venous lymphatic progenitor cells 
revealed a complexity in the diversity of cell progenitors and 
the LECs that make up the lymphatic circulation. Further-
more, the specific source of LEC progenitor cells seems to 
ultimately determine the organ- or tissue-specific lymphatic 
vessels that are formed.

Tissue-specific dependence of lymphatic development is 
best highlighted by the development of the dermal lymphat-
ics. The dermal lymphatics are derived from both venous 
and non-venous progenitor cells, each contributing to dif-
ferent regions of the dermal lymphatic network. Deletion 
of Prox1 in cells expressing EC-enriched Tie2, disrupts 
development of only the cervical and thoracic dermal lym-
phatic vessels [164]. These mice show significant subcu-
taneous edema; however, the growth and specification of 
the lumbar lymphatic vessels are unaffected, accounting for 

approximately 30% of LECs that were derived from non-
venous origins (Tie2− derived cells) [164]. LECs derived 
from the Tie2-expressing cells sprout from the developing 
lymph sacs via lymphangiogenesis. Conversely, the LECs 
derived from the Tie2-negative population appear as clusters 
which coalesce and grow into mature lymphatics through 
lymphvasculogenesis.

Similarly, cardiac and facial lymphatics are derived from 
both venous and non-venous cell origins. In cardiac devel-
opment, venous-derived LECs form the dorsal lymphatic 
vessels. These LECs sprout from the sinus venosus to form 
the dorsal network [200]. The ventral lymphatic vessels, 
however, are derived from arterial sub-mesothelial cells that 
develop from the second heart field [200]. In zebrafish, facial 
lymphatics develops in three individual steps. The first set of 
facial lymphatic vessels develops through lymphangiogen-
esis and sprouts from the dorsal common CV. After the first 
facial lymphatics form, a subset of angioblasts that resides 
next to the ventral aorta begins to express PROX1 and pro-
liferates to form the ventral aorta lymphangioblasts that con-
nect to the already developed facial lymphatic vessels [195]. 
The formation of the ventral facial lymphatic vessels from 
angioblast progenitors may have evolved out of necessity 
for a non-venous progenitor pool. The ventral facial area of 
the developing zebrafish lacks venous circulation and likely 
necessitated a new source of LECs to be developed in order 
to have a mature lymphatic network.

Some studies have suggested that non-venous LECs may, 
in part, be derived from hematopoietic progenitor cells 
[201–203]. This theory is based on the evidence that hemat-
opoietic cell lineage (Vav+) cells also express lymphatic-
enriched genes, including PDPN, LYVE1 and VEGFR3. A 
study using the cornea lymphangiogenesis model in irradi-
ated mice, showed that bone marrow-derived LECs progeni-
tor cells can exit the blood vasculature and infiltrate sites 
of lymphavasculogenesis [201]. The authors used EGFP-
labeled bone marrow cells to trace immune cell infiltration 
into the cornea and determined that a subset of these EGFP-
expressing cells also express lymphatic-enriched genes 
such as Lyve1 and Vegfr3 [201]. However, the potential of 
hematopoietic cells as a source of lymphatic progenitor cells 
continues to be debated.

Hemogenic ECs have also been identified as a potential 
source of LEC progenitor cells in the developing mesen-
teric lymphatics. Stanczuk et al. used lineage tracing of cells 
expressing cKit, which is highly enriched in hemogenic ECs, 
to assess their contribution in mesenteric lymphatic develop-
ment [161]. Much like in the dermal lymphatics, mesenteric 
LECs are derived from both venous and non-venous cell 
populations. The venous population sprouts from the lymph 
sac at the mesenteric root and grows outward toward the 
intestine. These cells are  PROX1+ and appear as early as 
E12.5. By E13, the LECs have grown sufficiently to form 
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large collecting lymphatics. The non-venous cells, which 
express cKit, appear in clusters around the mesenteric ves-
sels, and form a primitive plexus that joins the sprouting 
LECs from the lymph sac to form the mature mesenteric 
lymphatics. These cKit-expressing cells also express PROX1 
and NRP-2, suggesting they are lymphatic progenitor cells. 
Collectively, these studies highlight the importance of 
understanding the cell and tissue heterogeneity of develop-
ing lymphatics in order to better understand the mechanisms 
that regulate lymphatic vascular development in both health 
and disease.

Regulation of lymphatic valve formation

Collecting lymphatic vessels have intraluminal bicuspid 
valves to help prevent retrograde transport of lymph. Lym-
phatic valves are formed by a layer of LECs surrounding a 
fibronectin splice isoform EIIIA (FN-EIIIA)-, collagen IV- 
and laminin α5-rich core [204, 205]. The LECs that make 
up the valves are specified through a series of genetic pro-
graming that promotes LEC migration into the lumen of 
lymphatic vessels and organization into a functional valve 
[166, 204–207]. Mutations in these genetic programs are 
associated with human lymphedemas (Fig. 2, Table 1) [156, 
166, 207].

Lymphatic valve formation occurs in four distinct stages: 
initiation, circularization, condensation and leaflet elonga-
tion [207]. Initiation occurs as a select few LECs upregulate 
lymphatic markers to specify the valve-forming region. This 
process is mainly driven by the transcription factor FOXC2 
[206]. FOXC2 interaction with other transcription factors, 
including GATA2 and NFATc1, upregulates the expression 
of the lymphatic-enriched transcription factor PROX1 [206, 
208]. High expression of PROX1  (PROX1high) specifies 
LECs into valve-forming cells. Deletion of Foxc2 expression 
in mice reveals aberrant lymphatic valve formation lead-
ing to severe edema [209]. Activation of FOXC2 is medi-
ated by shear stress in sites of disturbed flow, mainly due 
to vessel branching, and promotes valve formation [205]. 
Specifically, oscillatory shear stress upregulates FOXC2 
activating the calcineurin/NFATc1 pathway to form lym-
phatic valves. FOXC2-dependent activation of NFATc1 
is, in part, dependent on mechanosensitive gap junction 
channel proteins, Cx37 and Cx45 [205]. Loss of Cx37 or 
Cx43 in mice results in impaired lymphatic valve formation 
[210]. Further evidence for the role of shear stress in the 
developing lymphatic valve is seen in the development of 
lymphedema in Piezo1-deficient mice [211, 212]. PIEZO1 
is a mechanosensitive ion channel whose activation has been 
linked to the development of lymphatic valves. Mice lacking 
Piezo1 specifically in LECs fail to form lymphatic valves 
[211, 212]. Conversely, overexpression of Piezo1 leads to 
increased number of lymphatic valves in the developing 

mice resulting from increased lymphatic valve gene expres-
sion [211]. Together, these findings highlight the importance 
of mechanical stress on LECs due to increased lymph flow 
to direct lymphatic valve development.

Similar to early LEC specification from progenitor cells, 
VEGF-C signaling plays an important role in the upregu-
lation of PROX1 in the cells located in the valve-forming 
region [213]. VEGF-C-VEGFR3 signaling promotes the 
upregulation of PROX1 in valve-forming LECs through 
the activation of the transcriptional co-activators YAP and 
TAZ [213]. However, the mechanisms by which VEGF-C 
signaling promotes valve formation in restricted localized 
areas within the lymphatic vasculature remains unknown. 
Localized upregulation of PROX1 in valve-forming regions 
may be, in part, regulated by NOTCH signaling [214]. LEC-
specific deletion of Notch1 in mice results in the expan-
sion of  PROX1high cells within the valve-forming region 
and misalignment of valve LECs in the developing valve 
leaflets [214]. NOTCH-1-dependent valve malformation is 
caused, in part, by decreased FN-EIIIA and integrin α9 in 
the valve-forming regions, revealing NOTCH-1 signaling 
as important, not only for valve LEC specification, but also 
for migration of these cells into a functional valve structure. 
BMP9-dependent signaling may also play an important role 
in lymphatic valve development. Bmp9−/− mice have dilated 
collecting vessels and lymphatic valve malformations in the 
mesenteric lymphatics [215]. The collecting lymphatics 
from these mice maintain expression of LYVE1, which is 
downregulated during lymphatic maturation, suggesting that 
BMP9 signaling contributes to lymphatic maturation during 
late lymphatic development [215, 216].

As early valve-forming LECs are specified around the 
valve-forming regions (a.k.a. the circularization step), they 
begin to move and condense into a ring surrounding the 
lumen. At this time, cells begin to deposit the extracellular 
matrix that will form the core of the valve leaflets [204, 205]. 
This extracellular matrix is made up of FN-EIIIA, collagen 
IV and laminin α5 [204, 205]. Expression of integrin α9 by 
valve-forming LECs promotes cell migration through the 
newly deposited matrix to form the classic bicuspid valve 
[204]. Migration of these LECs is also driven by the acti-
vation of planar cell polarity pathways [217]. Specifically, 
activation of CELSR1 promotes LEC migration by destabi-
lizing VE-cadherin interactions, while enhancing adherens 
junction assembly [217]. Careful regulation of all these path-
ways helps generate functional lymphatic valves, allowing 
for proper tissue fluid homeostasis in the developing embryo 
and into adulthood.
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Lymphedema and lymphatic malformations

Dysregulation of LEC specification leads to lymphedema 
and lymphatic vascular malformations, which can be debili-
tating and even fatal (Fig. 2, Table 1). We provide an over-
view of these disorders, what is known about their under-
lying genetic defects, and what treatments are currently 
available for affected patients.

Lymphedema

The most frequent lymphatic anomaly is lymphedema (LE). 
LE is characterized by diffuse, localized or extended swell-
ing due to inefficient uptake of interstitial fluid and reduced 
lymphatic drainage, mostly in the extremities [218]. There 
are two types of LE: primary LE, which are genetic dis-
orders; and secondary LE, which develop due to extrinsic 
factors such as surgery or infection of lymphatic vessels.

Primary congenital lymphedema

Inherited primary LE is classified as early-onset congeni-
tal LE (Nonne-Milroy lymphedema or Type I lymphedema, 
OMIM 153100), peripubertal (Meige disease or Type II 
lymphedema, OMIM 153200), or late-onset congenital LE 
(after 35 years of age, also named lymphedema tarda) [100, 
219]. Around twenty gene mutations have been identified 
in different forms of LE [220]. The incidence of primary 
lymphedema is low, affecting 1 in 100,000 people worldwide 
[221]. Most of the genes involved encode for proteins in the 
VEGF-C/VEGFR3-signaling pathway [220].

The first mutations were discovered in FLT4, the gene 
encoding VEGFR3. Autosomal dominant and recessive mis-
sense mutations in the tyrosine kinase domain of this recep-
tor leads to type I lymphedema [220, 222]. These mutations 
inhibit VEGFR3 phosphorylation and prevent its down-
stream signaling [222]. The homozygous Flt4 knockout mice 
die around E9.5 due to irregular and unorganized vessels, 
edema and cardiovascular failure [223]. The Chy mice, a 
model of Type I lymphedema, have heterozygous inactivat-
ing mutations in Vegfr3 and develop dysfunctional hypoplas-
tic lymphatic vessels and swelling of the limbs [224]. Col-
lagen and calcium-binding EGF domain-containing protein 
1 (CCBE1) binds to the extracellular matrix to potentiate 
VEGF-C effects via VEGFR3 [225]. In humans, homozy-
gous and heterozygous mutations that impair CCBE1 func-
tion cause the Hennekan lymphangiectasia-lymphedema 
syndrome (OMIM 235510), which includes generalized 
lymphatic anomalies, including LE, visceral lymphangi-
ectasias and mental retardation [226]. In zebrafish, it was 
shown that CCBE1 is required for lymphangioblast budding 
and angiogenic sprouting from venous endothelium and its 

gene mutation leads to the full of fluid (fof) mutant pheno-
type [227]. PTPN14 is a tyrosine-phosphatase that regulates 
VEGFR3 activation after VEGF-C binding. A loss of func-
tion mutation of PTPN14 leads to LE (OMIM 608911) due 
to VEGFR3-signaling hyperactivation [228].

Downstream of the VEGF-C-VEGFR3-signaling path-
way, several transcription factors are activated and regulate 
numerous targets genes [220]. For example, truncated and 
missense mutations of FOXC2 are found in patients with 
hereditary type II lymphedema (late-onset LE) [229]. Foxc2 
homozygous deletion in mice results in defective lymphatic 
patterning and arrested lymphatic valve development. Foxc2 
heterozygous and endothelial-specific deletion in mice leads 
to lymphatic hyperplasia and impaired valve function in col-
lecting lymphatic vessels [209, 230]. A rare form of LE with 
variable onset, Hypotrichosis-Lymphedema-Telengiectasia 
(OMIM 607823), has been associated with recessive and 
dominant mutations in the transcription factor SOX18 [231, 
232]. SOX18 regulates PROX1, a transcription factor essen-
tial for lymphangiogenesis which, in turn, positively regu-
lates FLT4 gene expression. The observed lymphatic defects 
may be due to competitive transcription factor binding [231].

GATA2 is another transcription factor that regulates 
PROX1 and FOXC2 expression. Loss-of-function mutations 
in GATA2 have been reported in patients with primary LE and 
myelodysplasia (Emberger syndrome, OMIM 614038) [208]. 
GATA2 in expressed by ECs, hematopoietic stem and progeni-
tor cells, and lymphatic valve-forming cells. Gata2-homozy-
gous deletion in mice leads to embryonic lethally at mid-ges-
tation due to anemia and reduced myeloid-erythroid progenitor 
cells. However, no vascular defects have been detected in this 
model, which may be due to redundancy among GATA family 
members [233, 234].

Impaired lymphatic valve development/function could con-
tribute to LE, as mutations in GJC1 encoding Cx43 and GJC2 
encoding Cx47, which are expressed in lymphatic valves, have 
been identified in some patients [235, 236]. The related muta-
tions are amino acid substitutions that alter connexin func-
tions. Substitutions of highly conserved amino acids in GJC2 
(Cx47) cause LE in all four extremities [235], whereas loss-
of-function mutations cause Hypomyelinating leukodystrophy 
2 (OMIM 608804), in which LE does not occur. The amino 
acid substitutions may have gain-of function effects, since 
Gjc2 homozygous deletion in mice does not result in lym-
phatic defects [237]. Various mutations in GJA1 (Cx43) are 
known to cause oculodentodigital dysplasia (OMIM 164200), 
and at least one has been linked to primary LE [236]. FOXC2 
transcription factors also control the expression of several 
other proteins involved in lymphangiogenesis, such as Cx37, 
which is involved in lymphatic valve formation [210, 238]. 
Indeed, Cx37 expression is drastically reduced in mesenteric 
lymphatic vessels of mice lacking Foxc2, suggesting that Gja4 
(encodes Cx37) may be regulated by FOXC2 [210]. However, 
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the mechanism underlying Cx37-, Cx43- or Cx47-related LE 
is still unclear and could be related to abnormal lymphatic ves-
sel and/or valve development, or defective cell–cell communi-
cation in lymphatic vessels leading to impaired coordination of 
pulsatile lymphatic flow [239]. Interestingly, Cx37 is a potent 
inhibitor of cell cycle progression, and it is therefore possible 
that Cx37 plays a similar cell cycle arrest role via p27 to enable 
specification toward lymphatic EC fates [240].

Lymphatic malformations

Lymphatic malformations (LM) consist of masses of abnormal 
dilated lymphatic channels not connected to the lymphatic sys-
tem but filled with fluid, most commonly located in the head 
and neck [100, 220]. LMs are sporadic and their etiopathogen-
esis is unknown. LM can be part of a syndrome, such as Turner 
syndrome (due to monosomy X), or overgrowth syndrome, 
such as Klippel-Trenaunay syndrome (capillary-lymphatico-
venous malformation, OMIM 149000) that is caused by muta-
tions in the PI3K/AKT pathway [220].

Clinical treatments for lymphatic vascular 
malformations

The current therapy for lymphedema consists of decongestive 
physiotherapy to reduce edema and maintain the health of the 
skin and surrounding structures. Manual lymphatic drainage, 
as well as skin care and exercise, and the use of compres-
sion bandages are the gold standards. Occasionally surgery 
is performed [241, 242]. These treatments can only result in 
symptomatic improvements, but they do not cure the underly-
ing dysfunction. Medical treatment of complicated LM with 
Sirolimus has showed substantial clinical benefits, though fur-
ther research is needed to determine the efficacy of this medi-
cation for diverse subsets of lymphatic malformations [242, 
243]. Furthermore, preclinical studies in mice have shown that 
Sirolimus treatment combined with anti-VEGF-C therapy can 
promote the regression of LM in Pik3ca-mutant model [244].

Summary

EC specification is a critical step in vascular development. 
Perturbations in the signaling pathways that determine blood 
and lymphatic EC identity result in vascular malformations. 
A combination of factors, including growth factor signaling, 
transcriptional regulation, and mechanotransduction, deter-
mine EC fate in the developing embryo. Furthermore, there 
is a growing appreciation for the role of cell cycle regulation 
in EC fate determination. Impairment of cell cycle control 
results in aberrant EC growth and fate determination that may 
ultimately lead to vascular malformations. Further research is 
still needed to elucidate the mechanisms of EC specification, 

and how their dysregulation leads to vascular malformations. 
Gaining further insights will help to improve treatment for 
such disorders.
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