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Abstract
Chronic postsurgical pain (CPSP) is a debilitating chronic pain condition that has a substantial effect on quality of life. CPSP
shows considerable clinical overlap with different chronic peripheral pain syndromes, suggesting a shared aetiology. This study
aims to assess the genetic overlap between different chronic pain syndromes and CPSP, providing relevant biological context for
potential chronic pain markers of CPSP. To analyse the genetic overlap between CPSP and chronic peripheral pain syndromes,
recent GWAS studies were combined for polygenic risk scores (PRS) analysis, using a cohort of CPSP patients as starting point.
Biological contextualisation of genetic marker, overlap between CPSP and chronic pain syndromes, was assessed through Gene
Ontology (GO), using Pathway Scoring Algorithm (PASCAL) and REVIGO. PRS analyses suggest a significant genetic overlap
between CPSP and 3 chronic pain disorders: chronic widespread pain (CWP, p value threshold = 0.003, R2 0.06, p = 0.003),
rheumatoid arthritis (RA, p value threshold = 0.0177, R2 = 0.04, p = 0.017) and possibly sciatica (p value threshold = 0.00025,
R2 = 0.03, p = 0.045). Whereas no significant genetic overlap was found with cluster headache and migraine, the outcome for
osteoarthritis (OA) was inconsistent between the cohorts. This is likely related to cohort composition, as repeated random
reallocation of patients’ nullified CPSP/OA outcome variation between the discovery and replication cohorts. GO analyses
suggested an aetiological involvement of genetic markers that control neurological signalling (specifically sodium channels)
and inflammatory response. The current study reaffirms the impact of sample size, cohort composition and open data accessibility
on the unbiased identification of genetic overlap across disorders. In conclusion, this study is the first to report genetic overlap
between regulatory processes implicated in CPSP and chronic peripheral pain syndromes. Interaction between neurological
signalling and inflammatory response may explain the genetic overlap between CPSP, CWP and RA. Enhanced understanding
of mechanisms underlying chronification of pain will aid the development of new therapeutic strategies for CPSP with sodium
channel biochemistry as a potential candidate.
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Introduction

Chronic postsurgical pain (CPSP) is a debilitating chronic
pain condition that affects patients who underwent surgery
and has a substantial effect on the quality of life (QoL) and
socioeconomic status [1–3]. CPSP is defined as “pain devel-
oped or increased after a surgical procedure, which is present
for at least three months, and affecting the QoL” [4, 5].
Depending on the type of surgery, 5–85% of the patients
may experience pain localized to the surgical field or the
projected innervation area of a nerve [4, 6]. Clinical (e.g.
type/duration of surgery), demographical (e.g. age, biological
sex) and psychological (e.g. anxiety) risk factors of CPSP can
account for 78% of the variance in the development of CPSP
[7, 8]. Although recent evidence (both GWAS and gene-
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targeted studies) defines a potential role for genetic risk factors
in CPSP, the limited CPSP sample size in comparison with
studies of other chronic pain syndromes has thus far not pro-
vided clear candidate genes for CPSP [9–12]. While increas-
ing sample size for GWAS analyses holds the potential for
unambiguous identification of genetic risk factors, genetic
mechanisms underlying CPSP may be probed indirectly by
determination of common genetic factors with other pain syn-
dromes. Polygenic risk scores (PRS) allow testing for genetic
correlation (i.e. overlap) between different phenotypes [13,
14]. Establishing the intersection and/or overlap of genetic
networks between various chronic pain syndromes may help
define common mechanisms in chronic pain and provide
starting points for functional and intervention studies.

CPSP shows considerable overlap with different chronic
peripheral pain syndromes (CPPs), among which sciatic pain,
chronic widespread pain, osteoarthritis and rheumatoid arthri-
tis with regard to demographical and psychological risk fac-
tors: chronic pain occurs most often in women, is associated
with age and with psychological syndromes [15–17].

Although such observational studies suggest a shared
aetiology between CPSP and chronic peripheral pain syn-
dromes, the identity and interplay of underlying genetic
causes and molecular processes that contribute to chronic
pain, are incompletely understood [15–17]. Therefore, this
study aims to assess whether different chronic pain syndromes
show genetic overlap with CPSP and to provide relevant bio-
logical context for potential genetic risk factors. Ultimately,
identification of novel targets is expected to pave the way for a
better understanding of cellular and molecular mechanisms in
CPSP and provide therapeutic opportunities.

Methods

To assess whether chronic pain syndrome show genetic over-
lap with CPSP, we assessed several available datasets against a
discovery and replication cohort of CPSP patients. The proto-
col for this study was reviewed and approved by the local
Medical Ethical Committees (both discovery and replication
study); all participants have provided written informed con-
sent. The discovery cohort was registered at the Dutch trial
registry under the number NTR2702 (http://www.trialregister.
nl/trialreg/index.asp). The replication cohort was registered at
the Clinical Trials registry under the number NCT02002663
and NCT01989351 (https://clinicaltrials.gov/ct2/home).

Genome-wide association analysis

An elaborate description of patient recruitment, sample and
data collection protocols for the discovery and replication co-
horts has been published elsewhere [8, 9, 18]. In brief, a
multicentre cohort study was conducted in four hospitals in

the Netherlands (discovery cohort, n = 303) and three hospi-
tals in Italy (replication cohort, n = 77). DNA-samples were
genotyped at the Department of Genomics at the Life and
Brain Center, University of Bonn using the Illumina
PsychArray (Infinium PsychArray-24 v1.2 Bead Chip,
Illumina Inc., USA). Genotypes were called using
BeadStudio (Genome Studio v2011.1, Illumina). Basic quali-
ty control was done using Plink (Plink-1.9) [19, 20]. The
quality control parameters consisted of: SNP call rate < 0.95,
subject call rate of < 0.95, deviation of Hardy-Weinberg equi-
librium (P < 1 × 10−6) and removal of rare variants with a
minor allele frequency < 0.01. Heterozygosity of the subjects
was tested, and outliers (± 3 SD from the mean heterozygosity
rate) were removed. Genotype imputation was performed
using the stepwise imputation approach implemented in
Minimac3 (https://genome.sph.umich.edu/wiki/Minimac3;
University of Michigan, Ann Arbor, USA) and Eagle2
(https://data.broadinstitute.org/alkesgroup/Eagle/; Broad
Institute, Cambridge, USA v2.3) using default parameter
settings and a European HRC reference panel (http://www.
haplotype-reference-consortium.org/; version r1.1 2016)
[21–23].

GWAS was carried out using SNPTEST (https://mathgen.
stats.ox.ac.uk/genetics_software/snptest/snptest.html; Oxford
University, Oxford, United Kingdom, v2.5.4) [24, 25]. The
primary outcome measured in the discovery cohort was the
highest surgery-related pain score measured by a numeric rat-
ing scale (NRS), recorded at rest during the last week,
3 months postsurgery [8, 9]. Based on the primary outcome
measure, patients were divided into a nonCPSP (NRS = 0) and
a CPSP (NRS > 3) group.

Cohort selection for polygenic risk score calculation

To analyse the genetic overlap between CPSP and chronic
peripheral pain syndromes, recent GWAS studies were used
to form PRS scores in order to differentiate between patients
who developed CPSP and those who did not. Using PubMed,
we identified 6 GWAS reports on chronic pain syndromes
(sciatic pain, migraine, chronic widespread pain, osteoarthri-
tis, rheumatoid arthritis, and cluster headache) meeting the
inclusion criteria [11, 12, 26–30]: The headache-related disor-
ders (migraine and cluster headache) were selected as negative
control due to a different pathophysiology [31, 32]. A total of
7208 SNPs were reported as summary statistics in migraine,
of which 214 were present after pruning in the discovery co-
hort and 207 after pruning in the replication cohort [11]. A
total of 14,167 SNPs were reported as summary statistics in
cluster headache, of which 6906 were present after pruning in
the discovery cohort and 7438 after pruning in the replication
cohort [28]. Eighty-nine SNPs were reported as summary sta-
tistics in chronic widespread pain, of which 34 were present
after pruning in the discovery cohort and 35 after pruning in
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the replication cohort [26]. One hundred twenty-nine SNPs
were reported as summary statistics in osteoarthritis, of which
74 were present after pruning in the discovery cohort and 76
after pruning in the replication cohort [27]. A total of 297,081
SNPs were reported as summary statistics in rheumatoid ar-
thritis, of which 50,294 were present after pruning in the dis-
covery cohort and 51,834 after pruning in the replication co-
hort [29]. A total of 380,066 SNPs were reported as summary
statistics in sciatica, of which 20,744 were present after prun-
ing in the discovery cohort and 19,053 after pruning in the
replication cohort [12]. All SNPs included in the analysis per
study per cohort can be found in Supplementary file 1.

Shared genetic background analysis

The polygenic risk score analysis tool PRSice was used to
determine genetic overlap between chronic pain syndromes
and CPSP [33]. Summary statistics of published studies on
chronic pain syndromes were used as ‘reference dataset’ and
the data of the discovery and replication cohorts after quality
control (described in the original publication) as ‘target phe-
notype’ sample [9, 11, 12, 26–29]. The target phenotype was
considered a dichotomous variable, defined as presence of
CPSP (yes or no), and the base phenotypes were used to dif-
ferentiate between presence and absence of CPSP.

PRS analysis settings comprised pruning based on linkage
disequilibrium (r2 > 0.1) within a 250 kb window and incre-
mentally increasing summary statistic p value threshold
starting at p < 0.0001 (increasing with increments of
0.00005) [34]. This determines optimal SNPs fit with regard
to predicting polygenic risk score. Identical parameters were
used for the discovery and replication cohorts.

Pathway analysis

Biological context for potential genetic overlap between
CPSP and chronic pain syndromes was assessed using path-
way scoring algorithm (PASCAL) [35]. The input data
consisted of all SNPs of significant PRSs for both the discov-
ery cohort and the replication cohort using p values reported in
the original publications [12, 26, 29]. Pathway scoring was
done using the biological processes (BPGO), molecular func-
tion (MFGO) and cell component (CCGO) databases of the
gene ontology resource (GO) [36, 37]. Pathway enrichment
was assessed by comparing enrichment score of the provided
gene sets with a random sampling permutation–based distri-
bution per pathway. To correct for multiple testing, the empir-
ical p values of the PASCAL enrichment were corrected using
the p.adjust function with false discovery rate (FDR) in R [38,
39]. Clustering of GO terms were visualized using REVIGO
based on GO id’s and PASCAL p values with similarity set to
small, similarity measure to SimRel and using the uniport
database as a reference [40].

Statistics

GWAS data was analysed using logistic regression and the
p values were corrected for the number of SNPs analysed
using Bonferroni correction. PRSice was used to determine
polygenic risk scores of SNPs obtained from analysis of the
base dataset weighted by their respective effect sizes [34]. The
PRS scores were calculated assuming an additive model with
the following equation:

PRS j ¼ Si� Gij
M j

where S denotes the summary statistics for the effective allele
of SNP i, G denotes the number of effective alleles observed
for individual j for SNP i and M denotes the number of alleles
included in the PRS of the individual j. Significance was set at
p ≤ 0.05.

All graphs were visualized using R [39].

Results

Analysis of genetic overlap between chronic pain
syndromes and CPSP discovery cohort

PRS was used to assess genetic overlap between the chronic
pain phenotypes and the discovery cohort of CPSP. A signif-
icant genetic overlap was found between 3 chronic pain dis-
orders and CPSP: chronic widespread pain (p value thresh-
old = 0.003, R2 0.06, p = 0.003) and rheumatoid arthritis (p
value threshold = 0.0177, R2 = 0.04, p = 0.017) and Sciatica
(p value threshold = 0.00025, R2 = 0.03, p = 0.045). No signif-
icant genetic overlap was found with osteoarthritis, cluster
headache and migraine (Fig. 1, Supplementary Table 1).
This finding suggested significant genetic overlap between
sciatica, chronic widespread pain and rheumatoid arthritis
and CPSP but no genetic overlap between cluster headache,
migraine and osteoarthritis and CPSP.

Validation of genetic overlap in CPSP replication
cohort

To validate the discovery cohort based findings on genetic
overlap between CPSP and chronic pain syndromes, the
PRS analysis was independently repeated in the replication
cohort. Although, the percentage variance explained by PRS
was a factor 3–4 higher in the replication cohort, consistent
with the outcome of the discovery cohort, a significant genetic
overlap was observed with three of the chronic pain disorders
and CPSP: Sciatica (p value threshold = 0.00385, R2 = 0.08,
p = 0.045), chronic widespread pain (p value threshold =
0.141, R2 0.21, p = 0.0003), rheumatoid arthritis (p value
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th reshold = 0.3549, R2 = 0.23 , p = 0.002; Fig . 2 ,
Supplementary Table 2); In addition, PRS analysis of the rep-
lication cohort produced significant overlap with osteoarthritis
(p value threshold = 0.0001, R2 = 0.11, p = 0.022) (Fig. 2,
Supplementary Table 2). No significant genetic overlap was
found between cluster headache and migraine and CPSP.

Pathway analysis of genes associated with significant
polygenic risk scores

To assess the biological context defined by common ge-
netic markers of chronic pain disorders and CPSP, an ex-
ploratory pathway analysis was performed cohorts using
pathway scoring algorithm (PASCAL) [35]. In agreement
with published instruction, pathway analysis was limited

to SNPs that showed significant genetic overlap in both
the discovery and replication cohorts [35]. The findings of
the PASCAL analysis were clustered using REVIGO [40].
BPGO revealed enrichment for 3 terms at FDR < 1%, 17
terms at FDR ≤ 5%, 9 terms at FDR ≤ 10% and 26 terms
at FDR ≤ 15% (Fig. 3a, Supplemental Table 3). These
terms clustered into 4 main clusters: protein phosphoryla-
tion, positive regulation of signalling, response to cyto-
kine and cation transport (Supplemental Fig. 1). CCGO
revealed enrichment for 1 term at FDR < 1%, and 1 term
at FDR < 5% (Fig. 3b, Supplemental Table 4). The terms
associated with cellular components clustered into 3 main
clusters: endoplasmic reticulum, sodium channel complex
and in t r ins i c componen t o f p l asma membrane
(Supplemental Fig. 2). MFGO revealed enrichment for 3

Fig. 2 Genetic overlap of chronic
pain syndromes and chronic
postsurgical pain in replication
cohort. Graphic representation of
the genetic overlap between three
chronic pain syndromes and
CPSP replication cohort. Y-axis
depicts variance explained by the
polygenic risk score, x-axis
depicts the different phenotypes
and the numbers indicate the
p values of the polygenic risk
scores. Mi =migraine, Sc =
sciatica, CWS = chronic
widespread pain, RA=
rheumatoid arthritis, OA =
osteoarthritis

Fig. 1 Genetic overlap of chronic
pain syndromes and chronic
postsurgical pain in discovery
cohort. Graphic representation of
the genetic overlap between
different chronic pain syndromes
and CPSP discovery cohort. Y-
axis depicts variance explained by
the polygenic risk score, x-axis
depicts the different phenotypes
and the numbers indicate the
p values of the polygenic risk
scores. Mi =migraine, Sc =
sciatica, CWP = chronic
widespread pain, RA=
rheumatoid arthritis, OA =
osteoarthritis
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terms at FDR < 10% (Fig. 3c, Supplementary Table 5).
The terms associated with molecular functions clustered
into 5 main clusters: identical protein binding, phosphoric
ester hydrolase activity, metal ion transmembrane trans-
porter activity, phosphatidylinositol binding and sodium
channel regulator activity (Supplemental Fig. 3). Taken
together, the clusters identified by the GO analyses sug-
gested an aetiological involvement of genetic markers that
control neurological signalling and inflammatory
response.

Discussion

The present report is the first to study genetic overlap between
different chronic peripheral pain syndromes (CPPs) and CPSP
based on polygenic risk score (PRS) analysis. We
hypothesised that CPSP shares biological mechanisms and
hence genetic factors with some of the known chronic pain
syndromes, among which chronic widespread pain and rheu-
matoid arthritis. Polygenic risk score analyses showed signif-
icant genetic overlap between CPSP and CPPs (chronic

Fig. 3 Graphic representation of GO analyses on genetic factors with significant PRS scores. Lollipop plots represent the top 20 associations of GO
terms with the respective GO databases. Dotted lines represent FDRs of 15% (black), 10% (yellow), 5% (orange) and 1% (red), respectively
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widespread pain, rheumatoid arthritis and possibly with sciat-
ica, but not with osteoarthritis or common headache pheno-
types (migraine or cluster headache). Functional enrichment
analysis using PASCAL and REVIGO implicate the genes
identified in the genetic overlap to be involved in regulation
of neurological signalling and inflammatory response.

The scale of variance explained by genetic overlap differed
between the discovery and replication cohort. This likely re-
lates to the difference in sample size, as small sample sizes
tend to inflate the explained variance. The size of the target
sample (the sample size of the discovery cohort was roughly
three to four times the size of the replication cohort) is corre-
lated with the reliability of the variance explained [41]. In
addition, variation in numbers of reported SNPs in studies
may affect relative prediction level. Nonetheless, we
established that (per example) the percentage variance in
CPSP explained by overlap with CWP and RA, both in the
discovery and replication cohorts in this study, was in the
same range of that reported for genetic overlap between
CWP and pelvic pain in twin studies (95% confidence interval
of 3–28%) [42]. This provided sufficient confidence in the
validity of our approach and outcome (suggestions to optimize
setting for prospective studies have been indicated below).

Shared mechanisms in CPSP and peripheral pain
syndromes

The three CPP subtypes that showed genetic overlap with
CPSP in both cohorts are known to affect peripheral nerves
directly [16, 17, 43]. Sciatica involves nerve compression
such as intervertebral disc rupture (the most common cause
of sciatica) and other nonspinal causes of sciatica (e.g.
gynaecologic causes or traumatic injury) [16]. In chronic
widespread pain, both central and peripheral sensitization play
a role, involving peripheral acid-sensing ion channels, de-
creased density of epidermal nerve fibres and proinflammato-
ry cytokines [43, 44]. Rheumatoid arthritis (RA) originates in
the immune system: pain originates from the affected joints,
where inflammatory cytokines sensitize peripheral
nociceptors or modify receptor activation thresholds [17].
All the processes underlying the abovementioned chronic pe-
ripheral pain syndromes have been associated with the
chronification of postsurgical pain as well [45].

Chronic headache disorders (migraine and cluster head-
ache) show a different pathophysiology. In these disorders,
there is a clear involvement of the vasculature, and part of
the pathophysiology seems to stem from an asynchrony in
cortical processing [31, 32]. Migraine occurs mostly in wom-
en and pain develops by an interplay between vasculature,
nerve innervation of both dura and skull and central nervous
processing [31]. Cluster headaches (CH) classifies as a severe
headache disorder occurring mostly in men, where the patho-
physiology is thought to comprise synchronised abnormal

activity in the hypothalamus, trigeminal vasculature and cen-
tral nervous processing [32]. CGRP is a key player in both
cluster headaches and migraine pathophysiology which is a
potent vasodilator but was also shown to modulate activity of
trigeminal neurons [31, 32]. Our genetic analyses suggest
CPSP is aetiologically distinct fromCH and migraine; the link
between vasculature and nervous systems may explain these
differences.

Consistent with the results in our study, comparative twin
studies report only a low phenotypic correlation between
CWP and migraine indicating them to be aetiologically dis-
tinct subgroups. However, a high correlation between CWP
and low back pain was found indicative of an overlap between
two different CPPs and more closely related aetiologically
[42, 46]. This provides further evidence for the lack of genetic
overlap between CPSP and headache-related disorders.

Comparison and genetic overlap between CPSP and oste-
oarthritis (OA) showed no consistent genetic overlap with
CPSP between the cohorts used. This difference may point
to potential involvement of additional, yet unknown genetic
or environmental (e.g. sociocultural or demographic) factors
between the discovery (the Netherlands) replication cohort
(Italy). OA is caused by a degenerative articular cartilage con-
dition and also involves the immune system, matrix proteins
and metalloproteinases [47, 48]. The pathophysiology of the
disease is diverse and complex, and frequently involves in-
creased innervation and vascularization in the diseased joint
[48]. Of note, the discovery cohort solely consisted of patients
who underwent a hysterectomy, whereas the replication co-
hort comprised a mixture of knee and abdominal surgeries
[47]. Since the knee is often affected in osteoarthritis, it is
plausible that the estimated genetic overlap is affected by the
surgery site, i.e. reflecting an indication for the surgery and
possible postsurgical pain [47]. In this context, it is important
to note that random allocation of all patients (i.e. original
discovery and replication cohorts combined) over 10 fictional
cohort-pairs (“discovery” vs “replication”), confirmed the out-
come (i.e. PRS-based genetic overlap with CPSP) for RA and
CWP, but nullified the OA findings, suggesting that the orig-
inal OA findings were indeed caused by cohort-specific fac-
tors (RRIvR, data not shown). The observed inconsistency
could be caused by a difference in sample size between the
two target cohorts, as pointed out above. Based on these con-
siderations, we suggest that genetic overlap found within the
discovery cohort (n = 303) may be a more realistic estimate.
For these reasons, subsequent pathway analyses were con-
ducted without inclusion of the SNPs that predicted genetic
overlap between OA and CPSP.

Pathway analysis

GO analysis on the genetic overlap of CPSP with CPP sub-
types (RA, CWP, sciatica) resulted in the identification of 4
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common biological processes clusters, 3 cellular components
clusters and 5 molecular functions clusters that could provide
insight in shared aetiology [35, 40]. Pathway analysis of the
SNPs underlying the genetic overlap between peripheral pain
syndromes and CPSP indicated involvement of neuronal pro-
cesses: nervous system process and neuron part sodium chan-
nel activity, and of inflammatory response: response to cyto-
kine and response to wounding, and regulation of immune
system process. These findings are consistent with published
reports on the interaction of the neuronal and inflammatory
reaction in the aetiology of chronic pain [49–53]. The involve-
ment of sodium channels in pain, as conductors of action
potentials and thus the nociceptive signal from the periphery
towards the brain, is well-documented [54]. The most well-
known example of the relation between pain and sodium
channels is congenital insensitivity to pain which is caused
by a mutation within the sodium channel 1.7 (Nav1.7) [55].
Genetic variations within sodium channels have been associ-
ated with multiple chronic pain conditions such as small fibre
neuropathy, painful diabetic polyneuropathy and peripheral
neuropathies [56–60]. Of note, genetic variations in genes
encoding for sodium channels have not been significantly
associated with CPSP before: besides the finding reported in
the current study, only one earlier report investigated a sodium
channel (gene SCN9) in relation to CPSP [61].

In CPPs, the communication between neurons and the im-
mune system has been well documented [49–53]. This is con-
sistent with what is known about the pathophysiology of CPPs
and CPSP. Both in CPSP and CPPs, neuroinflammation (via
glial cells) plays a key role in the maintenance of central sen-
sitization [49, 62–65]. The communication between nocicep-
tive afferents and glial cells is bidirectional, whereby both can
release cytokines and chemokines that modulate the response
of the other [64].When activated, nociceptive afferents release
fractalkine which binds to glial cells [62, 65]. Consequently,
the glial cells release IL1β which leads to increased sodium
channel activity and subsequent hyperalgesia and allodynia
[62, 64, 65]. Central sensitization is a fundamental process
in the chronification of pain and both neuronal signalling
and inflammatory response play a key role in this process
[66, 67]. Central sensitization occurs due to increased and
continuous action potentials coming from the nociceptive af-
ferents most often caused by a combination of local inflam-
matory processes and tissue or nerve damage [66, 67].

The genetic overlap across CPPs may ultimately be trans-
lated to clinical practice. Polygenic risk scores have been used
in migraine cohorts to not only identify patients likely to de-
velop migraine but also to identify subclusters of patients who
respond to certain classes of medication [68]. This same ap-
proach was tried in psychological disorders where they com-
bined major depression disorders and neuroticism to predict
efficacy of antidepressant drugs, and although not significant,
they showed that a greater genetic load for MDD and

neuroticism was associated with a less favourable response
to antidepressants [69]. Secondly, the PRS can be integrated
into currently available clinical prediction models. In diabetes
and prostate cancer, the predictive accuracy is higher than the
currently available clinical models [70]. A recent clinical pre-
diction model on CPSP increased the predictive power of by
including a single SNP into the prediction model [7]. This
increase in predictive power was not significant but including
a complete PRS into the prediction model would significantly
improve the clinical prediction modelling [52, 62, 69, 71].

Limitations

This is the first study that combines published GWAS
datasets to study genetic overlap across chronic pain phe-
notypes and CPSP. A limitation is the fact that the number
of SNPs reported in published GWAS analyses does vary
substantially between studies. Ideally, the input set of
SNPs for PRS analysis is the entire GWAS dataset, as in-
clusion of more SNPs can lead to a better PRS score: a PRS
has more predictive power if more causal SNPs are includ-
ed in the combined score [33, 41]. Some studies were omit-
ted from the current study as only the top hits were report-
ed [72–74]. This complicates and limits accurate PRS as-
sessment as the technique requires genome-wide input
[75]. The recommendation to include all summary statis-
tics (preferably raw data) as part of publications will en-
hance transparency and robustness of analyses and inter-
pretation. A second limitation of this study is the sample
size of the various studies included in the analyses. As for
accurate measurements, sample sizes of above 2000 people
are preferred; small sample size will lead to an inflation of
the explained variance [41]. For the current analysis, two
small studies (Table 1) were underpowered [9, 28]; the
other studies were sufficiently powered for the analyses.
To overcome the small sample size in the discovery cohort,
the analysis was repeated in an independent replication
cohort. The relatively high p value for CPSP/Sc overlap
stresses the importance of increasing sample size in future
research using to pinpoint the origin of genetic overlap in
PRS analysis.

The herein presented pathway analysis provides a
starting point for functional studies on pathways, factors
and mechanisms involved in CPSP, to substantiate the
potentially shared aetiology of CPSP and CPP syn-
dromes. An obvious candidate process involves sodium
channel biochemistry. Future research aimed at under-
standing the impact of genetic variations on the develop-
ment of CPSP should include functional aspects of genet-
ic networks and corresponding regulatory processes in
chronic pain. Functional aspects of both coding and non-
coding SNPs should be elucidated to fully understand the
impact of genetic variation on the development of
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chronic pain. Studies on the effects of genetic variation
on protein function, cell signalling and cell and organis-
mal physiology should further clarify their mechanistic
connection to chronic peripheral pain syndromes, among
which CPSP.

Conclusion

In conclusion, this study is the first to report genetic overlap
between regulatory processes implicated in CPSP and chronic
peripheral pain syndromes (CPP). The genes identified in the
genetic overlap and the factors involved in chronification of
postoperative pain are related to the regulation of neurological
signalling and inflammatory responses. Enhanced understand-
ing of mechanisms underlying chronification of pain will aid
the development of new preventative therapeutic strategies for
CPSP.
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