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ABSTRACT
Peroxisomes, chloroplasts, and mitochondria are essential eukaryotic organelles that host a suite of
metabolic processes crucial to energy metabolism and development. Regulatory mechanisms of the
dynamics and biogenesis of these important organelles have begun to be discovered in plants. We
recently showed that, aside from its previously reported role in targeting chloroplast protein import
proteins, the Arabidopsis ubiquitin E3 ligase SP1 (suppressor of ppi1 locus1) negatively regulates
peroxisome matrix protein import by promoting the ubiquitination and destabilization of PEX13
and possibly PEX14 and other components of the peroxisome protein import apparatus. Here, we
compared protein sequence and domain structure of SP1-like proteins in Arabidopsis and their
human homolog, Mitochondrial-Anchored Protein Ligase (MAPL). We further characterized SP1
protein in respect to its membrane topology and ubiquitin E3 ligase activity.
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Eukaryotic cells contain various membrane-delimited
organelles that host specific sets of biochemical reactions.
In plants, peroxisomes, mitochondria and chloroplasts
are critical for various aspects of plant physiology, espe-
cially energy metabolism. Mitochondria and chloroplasts
are surrounded by double membranes, while peroxi-
somes are single membrane-bounded. Plant peroxisomes
are important for many physiological processes, includ-
ing lipid mobilization, photorespiration, detoxification,
hormone biosynthesis and plant-pathogen interaction.1,2

Some of these functions, such as photorespiration, fatty
acid metabolism and jasmonic acid biosynthesis, are
accomplished coordinately by peroxisomes, mitochon-
dria and/or chloroplasts.2-4 To adapt to developmental
and environmental changes, these organelles can adjust
their abundance, distribution, morphology and biochem-
ical activities. Core protein machineries governing key
aspects of organelle assembly, division and protein
import have been identified.2,5-8 However, how the activ-
ities of these core components are regulated in response
to various stimuli remains largely unknown. Dissecting
the regulatory mechanisms of energy organelle dynamics
is essential to answering the question of how plants
adjust their energy metabolism to meet developmental
and environmental requirements.

In Arabidopsis, the abundance and morphology of
peroxisomes are affected by stress conditions such as
high light, salt, pathogen and cadmium.9-14 Transcrip-
tional events that modulate peroxisome fission in
response to light have been identified.13-15 At the post-
transcriptional level, a signature lipid of mitochondrial
membrane, cardiolipin, plays a positive role in mito-
chondrial fission by supporting the oligomerization of
dynamin-related protein 3A (DRP3A) and DRP3B,
major fission proteins shared by mitochondria and per-
oxisomes in Arabidopsis.16 In addition, the mitochon-
drial membrane-localized ubiquitin-specific protease
UBP27 ─ the first ubiquitin-related enzyme reported to
be associated with plant mitochondria ─ contributes to
mitochondrial morphogenesis possibly by promoting the
translocation of DRP3 from mitochondria to the cyto-
sol.17 More recently, we showed that the ubiquitin E3
ligase SP1 regulates peroxisome biogenesis via the ubiq-
uitin-proteasome system (UPS) by promoting the ubiq-
uitination and destabilization of PEX13 and possibly
PEX14 and other components of the matrix protein
import machinery.18 SP1 had also been shown previously
to play a similar function in chloroplast by targeting
chloroplast protein import factors such as TOC33 for
destabilization.19
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SP1 has 2 homologous proteins in Arabidopsis, SPL1
(SP1-Like 1) and SPL2, and a homologous protein in
human named Mitochondrial-Anchored Protein Ligase
(MAPL).20 SP1, SPL1 and SPL2 are all associated with
chloroplasts,19 and have stable (SP1), weak/partial
(SPL1), or no (SPL2) peroxisome localization.18 Human
MAPL localizes to both mitochondria and peroxi-
somes.21,22 These findings suggest that this family of E3

ligases may be involved in the function of multiple
organelles important for energy metabolism across
diverse species. Arabidopsis SP1, SPL1, SPL2 and
human MAPL share significant degrees of sequence
similarity and similar predicted protein structure
(Fig. 1A). Our phylogenetic analysis grouped SP1 and
SPL1 in a separate subfamily from that of SPL2
(Fig. 1B), and both subfamilies appear to be conserved
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Figure 1. Sequence analysis of Arabidopsis SP1, SPL1 and SPL2 and human MAPL proteins. (A) Amino acid sequence alignment of SP1,
SPL1, SPL2 and MAPL performed by the ClustalW2 program (http://www.ebi.ac.uk/Tools/msa/clustalw2/). Identical and similar residues
are shaded. Predicted transmembrane (TMD) and RING domains are indicated by boxes. (B) Phylogenetic analysis of plant SP1-related
proteins and human MAPL by Phylogeny.fr (http://www.phylogeny.fr/). At, Arabidopsis thaliana. Os, Oryza sativa. Hs, Homo sapiens.
Scale bar, 0.6 amino acid substitutions per site. Branch support values are shown as percentage.
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across plant species.18 Human MAPL is more closely
related to SP1 and SPL1 than to SPL2 (Fig. 1B), consis-
tent with previous discoveries that SP1, SPL1 and
MAPL, but not SPL2, are associated with the peroxi-
some to various degrees.18,23

Previous studies using the online plant membrane
protein database Aramemnon (http://aramemnon.uni-
koeln.de/) predicted that SP1, SPL1 and SPL2 each con-
tain 2 transmembrane domains (TMDs).18,19 However,
when we subjected these proteins to TMD probability
analysis using the TMHMM server (http://www.cbs.dtu.
dk/services/TMHMM/) that predicts transmembrane
helices in proteins, the probabilities for the N-terminal

TMDs in SP1 and SPL1 were much lower than the others
(Fig. 2A), indicating that SP1 and SPL1 may only contain
a C-terminal TMD. Our previous study demonstrated
SP1 to be an integral peroxisomal membrane protein,18

and SP1 was reported to localize to the chloroplast outer
envelope with the C-terminus facing the cytosol.19 How-
ever, using protease protection assays with thermolysin,
which degrades proteins unprotected by the organelle
membrane, we found a more complex topology of SP1
on the peroxisome membrane. Whereas the peroxisome
membrane protein PEX14 was totally degraded by ther-
molysin, only a portion of SP1-YFP was digested by the
protease (Fig. 2B), indicating that SP1 may have more

Figure 2. Characterization of the SP1 protein. (A) Transmembrane domain (TMD) analysis of Arabidopsis SP1, SPL1, SPL2 and human
MAPL by the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/). Columns indicate potential TMDs. Y axis represents the proba-
bility of TMDs, and x-axis indicates the length of the analyzed proteins. (B) Protease protection assay to determine membrane topology
of SP1 on the peroxisome. Peroxisomes were isolated from Arabidopsis plants co-expressing SP1-YFP and CFP-PTS1 (peroxisome target-
ing signal type 1; SKL), which had been generated in our previous study,18 treated with thermolysin, and subjected to immunoblot anal-
ysis with a-GFP and a-PEX14 antibodies, using protocols that we used previously.29 Here, 200 ml purified peroxisomes was treated
respectively with 0, 150 or 300 mg/ml of thermolysin in an incubation buffer containing 50 mM Hepes/NaOH, pH 7.5, 0.33 M sorbitol,
and 0.5 mM CaCl2. Reactions were performed at 4�C for 30 min, and stopped by 5-min incubation on ice with 5 mM EDTA, followed by
immunoblot analysis. The thermolysin bands were Coommassie Blue-stained. (C) In vitro ubiquitination assays using a previously pub-
lished protocol.25 Immunoblot analyses were performed using anti-Ubiquitin (1:10,000; Invitrogen) and anti-GST (1:150; Sigma-Aldrich)
antibodies.
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than one form of topology on the peroxisome mem-
brane. It is possible that a portion of peroxisomal SP1
have their C-terminus exposed to the cytosol whereas
other SP1 proteins are exposed only to the peroxisome
matrix side and therefore protected by the peroxisome
membrane from thermolysin. However, we cannot
exclude the possibility that the YFP tag affects SP1’s
membrane topology, or that the thermolysin resistant
SP1 proteins were resulted from incorrect protein fold-
ing/assembly. A SP1 specific antibody that detects
endogenous SP1 proteins may help to clarify this issue.

Multiple studies reported human MAPL to be an
ubiquitin E3 ligase and a SUMO E3 ligase.20,26 Here
we tested SP1’s ubiquitin ligase activity using an in
vitro ubiquitination assay. A fusion protein of GST
and the C-terminal 98 amino acids of SP1 that con-
tains the RING domain (GST-SP1250–347) was
expressed and purified, and a cellular ubiquitination
cascade was reconstituted using 6xHis-tagged ubiqui-
tin, wheat E1, human UBCH5b (E2), and GST-tagged
SP1250–347 (E3). SP1 exhibited auto-polyubiquitination
activity in vitro in the presence of E1, E2 and ubiqui-
tin, whereas no activity was detectable in the absence
of E1, E2 or E3 (Fig. 2C). This result confirmed results
from previous reports, which used different assay sys-
tems to show that Arabidopsis SP1 possesses ubiquitin
E3 ligase activity.19,24

With respect to the SUMO ligase activity of human
MAPL, human Dynamin-Related Protein 1 (hDRP1),
the core protein in mitochondrial and peroxisome fission
and the human equivalent of Arabidopsis DRP3, was
shown to be a substrate for MAPL-mediated SUMOyla-
tion.20 It is possible that MAPL contains one or both
activities when targeting different substrates, which led
to the question of whether Arabidopsis SP1, SPL1 and
SPL2 also have SUMO E3 ligase activities. Human
SUMO1 (hSUMO1) localizes to mitochondria in a pat-
tern similar to hDRP1, and interacts with hDRP1 in
yeast 2-hybrid assays.27 Arabidopsis contains 4 func-
tional SUMOs: SUMO1, 2, 3 and 5.28 Although we did
not observe obvious organelle division defects in sp1
mutants,18 it may be worthwhile to check in the future
whether Arabidopsis SUMO proteins also target the
organelle division factor DRP3.
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