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Abstract 

Background:  Despite advancing automation, employees in many industrial and service occupations still have to 
perform physically intensive work that may have negative effects on the health of the musculoskeletal system. For 
targeted preventive measures, precise knowledge of the work postures and movements performed is necessary.

Methods:  Prototype smart work clothes equipped with 15 inertial sensors were used to record reference body pos-
tures of 20 subjects. These reference postures were used to create a software-based posture classifier according to the 
Ovako Working Posture Analysing System (OWAS) by means of an evolutionary training algorithm.

Results:  A total of 111,275 posture shots were recorded and used for training the classifier. The results show that 
smart workwear, with the help of evolutionary trained software classifiers, is in principle capable of detecting harm-
ful postures of its wearer. The detection rate of the evolutionary trained classifier ( ̄accr = 0.35 for the postures of the 
back, āccr = 0.64 for the arms, and āccr = 0.25 for the legs) outperforms that of a TensorFlow trained classifying neural 
network.

Conclusions:  In principle, smart workwear – as prototypically shown in this paper – can be a helpful tool for assess-
ing an individual’s risk for work-related musculoskeletal disorders. Numerous potential sources of error have been 
identified that can affect the detection accuracy of software classifiers required for this purpose.
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Introduction
Despite the progress of automation in the economy, many 
employees still have to perform physically intensive and 
potentially dangerous tasks in their daily work. Striking 
examples are the metal and heavy industries (see Fig. 1), 
but also service sectors such as logistics, emergency ser-
vices [1], or nursing care [2].

These physically intensive activities often involve pos-
tures that can have a negative impact on the musculo-
skeletal system. If such postures and movements are 
performed regularly or over a long period of time, they 

are a risk factor for musculoskeletal disorders (MSD). 
MSD are often the result of heavy physical work, such as 
manual handling and (heavy) lifting, or of physical mis-
conduct (such as non-neutral postures) that is repeated 
over long periods of time [3–5]. The most common MSD 
include, for example, chronic back pain or knee joint 
atrophy [6–8].

Work-related MSD are a major cause of absenteeism 
and early retirement among workers [9]. The total annual 
cost of lost productivity due to work-related MSD is esti-
mated to be 2% of the GDP in Europe alone [10]. Treat-
ment of MSD imposes significant costs on public health 
systems in various countries, e.g., Germany’s Federal Sta-
tistical Office reports a cost of 420 € per citizen per year 
(year 2015) [11, 12].

The risk of MSD can be reduced by appropriate preven-
tive measures and the effects of MSD can be reduced by 
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countermeasures. This requires a.) detailed knowledge of 
the workplace in general, b.) the individual’s health sta-
tus, and c.) the specific postures and movements. Thus 
preventive measures are a necessity, e.g., in the context of 
occupational health management in industrial companies 
with physically hard-working employees, in particular to 
minimize the costs of production losses due to workforce 
illnesses or early retirements. In order to take targeted 
and individualized preventive measures or tailored, per-
sonalized interventions such as redesigning workplace 
structures and shift schedules, it is essential to obtain 
an accurate overview of the nature and frequency of the 
non-neutral postures [13].

Today, checklists and more specific assessment meth-
ods, among others, are used to assess individual risks and 
should enable the person observing to assess activities 
and workplaces. The findings of these assessment meth-
ods can be used to derive appropriate, workplace- and 
person-specific prevention measures in the context of 
situational and behavioral prevention [13]. One of these 
assessment methods is the Ovako Working posture Ana-
lysing System (OWAS)  [14], which is later described in 
detail.

In addition to optimizing the (individual) work envi-
ronments of employees in the context of health pre-
vention, targeted physical training is also an important 
aspect in the prevention of MSD. Trained employees are 
less prone to physical misconduct or are better able to 
compensate for it, so that they also have a lower risk of 
MSD.1

Manually recording the postures in the work environ-
ment is time-consuming and error-prone. A technol-
ogy-supported measurement system could therefore 
help to improve the situation. In addition to the validity 

of the measurement, a particular challenge is the spe-
cial requirements placed on the measurement system in 
everyday working life. Ideally, even in restricted spaces 
without human observers, it should provide informa-
tion about the relevant postures unobtrusively but 
continuously.

A measuring system integrated into the workwear can 
meet these requirements. We will present the prototype 
of such a measuring system (named SIRKA [18]) in this 
paper. For the data analysis, the integration of the sensors 
in the clothing and not on the body is a particular chal-
lenge, since the drape of the clothing and the distance 
to the body of the wearer induce additional errors in the 
measurement. For this reason, the approach presented 
here uses an evolutionary training algorithm that is char-
acterized by high adaptibility and flexibility to create a 
classifying neural network.

Body-worn motion capture systems like the one pre-
sented here are particularly useful here, as they do not 
suffer from occlusion of individual body parts. Neverthe-
less, body-worn motion capture (MoCap) systems must 
not interfere with work or disturb everyday life, as this 
would reduce acceptance on the one hand and falsify the 
measurement as such on the other. MoCap systems that 
can be integrated into clothing are therefore suitable for 
long-term measurement that is as inconspicuous as pos-
sible. The SIRKA system (see Section 3.1) was therefore 
chosen for implementation in this practical application.

In the long term, our approach can be used to obtain a 
realistic and comprehensive picture of body postures and 
movements in the long term in everyday work.

To summarize the contributions of this paper: 

1	 An approach to automatically and continuously 
assess the MSD risk based on a posture classify-
ing software model that uses motion capture data. 
Qualitative observations using the OWAS method 

Fig. 1  Shipyard welders in non-neutral positions (Image source: used by courtesy of MEYER WERFT GmbH & Co. KG.)

1  One meta-study showed zero to only small effects [15], although few con-
trolled studies show effects for single body regions or specific training 
approaches [16, 17].
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by human raters are mapped into quantifiable ratings 
using this model.

2	 We show how data from a motion capture suit inte-
grated into work clothing can be used to derive a 
skeleton model from it.

3	 An evolutionary approach to train an artificial neural 
network (ANN) to classify posture using an evolu-
tionary algorithm that learns from human observa-
tions and can deal with uncertainties in data acquisi-
tion (e.g., no fixed joint angles).

The following paper is structured as follows: in the fol-
lowing Section  2 related approaches to assess the risk 
for MSD both manual (see Section 2.1) and technology-
driven (Section 2.3) are reviewed and the OWAS method, 
which is the basis for our classifier, is presented in detail 
(Section  2.2). In Section  3 the general approach, the 
motion capture system, the data analysis, and details of 
the evaluation study are described. Section 4 contains the 
results of the evaluation and is followed by the discussion 
in Section  5. In Section  6 the paper is summarized and 
concluded.

Related Work
First, manual assessment methods, i.e., those that can 
usually be done with pen and paper, are reviewed for 
assessing postures in the context of MSD (Section 2.1). In 

doing so, we motivate the choice of the OWAS method 
for our approach and present it in more detail (Sec-
tion  2.2). Finally, we present some work that already 
targets technology-assisted assessment of postures 
(Section 2.3).

Manual approaches to assess Musculoskeletal Disorders
Numerous paper-based assessment methods exist for a 
wide variety of applications. Some are intended for indi-
vidual parts of the body or for specific medical condi-
tions. Here, only general methods that consider postures 
of the entire body and determine overall risk for MSD 
will be considered further. Takala et  al. [19] provide a 
systematic review of observational methods for assessing 
biomechanical exposure at work (see Table 1).

Only a few assessment methods in Table  1 were 
reported to be associated with musculoskeletal disorders. 
The association with MSD is critical for assessing the 
validity of the method, that is, whether the assessment 
method actually measures the risk for MSD.

The second aspect is reliability, i.e., the test-retest reli-
ability of the measurement when repeated. A distinction 
is made between intra-observer reliability (one observer 
assesses at multiple time points) and inter-observer reli-
ability (multiple observers assess at a given time point). 
Thus, selection criteria for using an inter-observer 
method should be association with MSD and reliability.

Table 1  Overview of paper-based assessment method for postures (whole body), expanded from Takala et al. [19]

Method, Year of publication Metrics Observation strategy Associated 
with MSD

Intra-/Inter-observer Reliability

Ovako Working Posture Assess-
ment System (OWAS), 1977 [14]

Frequency of postures Sampling over time Yes [22] Good/Good

Arbeitswissenschaftliches Erhe-
bungsverfahren zur Tätigkeitsanalyse 
[Occupational science survey 
method for activity analysis],  
1979 [23]

Characterization of the postures - - -/-

Posture targetting, 1979 [24] Frequency of postures - - -/-

Plan för identifiering av belast-
ningsfaktorer (PLIBEL) [Method 
for the identification of ergo-
nomic stress factors], 1995 [25]

Yes-/No-Questions; Characteri-
zation of the postures

Selection according to knowl-
edge about the activity and 
observations

- -/Moderate

Posture, activity, tools and han-
dling (PATH), 1996 [26]

Time in certain postures Sampling over time - Moderate-Good/Moderate-Good

Quick exposure check (QEC), 
1999 [27]

Total weighted posture score “Worst case” of posture Yes Moderate/Moderate

Rapid entire body assessment 
(REBA), 2000 [28]

Total weighted posture score Typical postures, with load or 
over a long period of time

- -/Low-Moderate

Washington State ergonomic 
checklists, 2000 [29]

Yes-/No-Questions about typical 
work

Screening by task classes Yes -/Moderat

Chung’s postural workload 
evaluation, 2002 [30]

Evaluation of postural com-
plaints

- - -/-

The European Assembly Work-
sheet (EAWS), 2012 [31]

Total score from (repetitive) 
work, postures, and forces

Evaluation of typical activities - -/-
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One such established and often pen-and-paper assess-
ment method to which these criteria apply is the OWAS 
method [14, 20]. The OWAS method, as originally 
described by Karhu et al. [14], seems widely used2 and is 
applied to assess physical risk factors for musculoskeletal 
disorders. The validity of risk assessment using OWAS 
with respect to MSD has already been demonstrated 
for back pain: Burdorf et al. [22] confirmed a weak cor-
relation between OWAS assessments and subsequent 
prevalence for back pain as a common variant of MSD 
(approximately 40% of MSD complaints [8]). The proce-
dure within the assessment of postures using the OWAS 
method is described in more detail in the following 
section.

OWAS method
The Ovako Working Posture Analysing System (OWAS) 
was developed in the 1970s after systematic observation 
of workers in a Finnish steel mill (Ovako Oy). The aim 
was to develop an easy-to-use and practical assessment 
method for risky work postures  [14]. Based on photo-
graphs of steelworkers’ work postures, 84 typical postures 
were identified and assigned a risk class representing the 
risk for musculoskeletal disorders [32].

As part of an OWAS observation, postures are classi-
fied into three categories: Back, Arms, and Legs. Each 
category includes the postures listed in the Table 2–4. In 
each of the three categories, the observing person selects 
the partial posture that most closely matches the subject’s 
actual posture. Each partial posture is assigned a corre-
sponding numerical code. The codes of the back, arms, 
and legs (in that order) together form a three-digit code 
that describes the posture (see Fig.  2 for an example). 

There are 72 possible combinations for this OWAS code 
(if you exclude leg posture 7, since it is actually a move-
ment). There are OWAS extensions with a fourth digit for 
the applied force or the load [14, 32].

In OWAS, subjects’ postures are assessed at a fixed 
time interval (usually between 30  s  –  5  min) by an 
observing person [33].

Within the OWAS method, each posture is assigned 
an action class (from 1 to 4) indicating the urgency of 
response to the detected posture, i.e., to what extent 
countermeasures should be initiated. Action class 1 
indicates the least or no risk, while action class 4 is used 
for postures that require immediate countermeasures. 
Table  5 shows the associated risk classes as a function 
of the three limb categories and the optional load/force 
component.

The OWAS method is a comparatively simple assess-
ment method and thus predestined for use by person-
nel not explicitly trained in ergonomics. Weir et al.  [34] 
were able to show that for video-based observations the 
classification accuracy of people with and without ergo-
nomics training does not differ significantly. This has also 
been shown for live human observations, i.e., not video 
recordings [13].

Motion capture‑based classification of body postures
Various approaches exist for the analysis of body postures 
with motion capture systems or other technical support. 
Some selected approaches are briefly described below, 
with a focus on the OWAS method.

There are several approaches to using OWAS using 
technical systems: Mattila and Vilkki’s early solution 
[32] falls into the category computer-assisted. It consists 
of two terminal programs; OWASCO for data entry and 

Fig. 2  An example OWAS posture, where the three-digit OWAS code 
is composed of the ratings of the partial postures

Table 2  OWAS category Back 

Category Code Posture Description

Back 1xx Back straight

2xx Back bent

3xx Back twisted

4xx Back bent and twisted

2  The authors are not aware of any empirical study on the proportion of 
OWAS among all assessment methods used. However, there is anectdotal evi-
dence as in [21] that assumes widespread use of OWAS.
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OWASAN for analysis of the entered data. The input is 
done by the person observing with the help of the soft-
ware. The software reminds the moment of observation 
with an acoustic signal.

Gudehus [35, 36] uses OWAS in combination with a 
software-based ergonomic evaluation system. Here, the 
classification of postures based on motion capture data 
is rule-based with threshold/cut-off values of selected 
angles. Thus, no human evaluation is included, but the 
angle, e.g. for a bent back, is arbitrarily predefined.

Diego-Mas and Alcaide-Marzal demonstrate a way to 
use the Kinect sensor to evaluate postures with OWAS 
[37]. Their system uses fixed angles at each joint to then 
make rule-based decisions about OWAS posture. The 
authors then compare the classification results to the 
ratings of human observers who classified the postures 
based on photographs. The authors highlight that the 
accuracy of the Kinect’s skeletal tracking increases greatly 
as the angle between the sensor and the sagittal plane of 
the subject increases.

Li and Xu [38] use an artificial neural network to clas-
sify based on skeletal data projected onto a 2D plane 
using the RULA method. The structure of the network 
is fixed. Difficulties stated were that due to lack of suffi-
cient training data with an unbalanced3 dataset had to be 
worked with.

Nath et  al. [39] present a simple approach to observe 
work postures. They use two Android smartphones to 
classify typical work postures using the smartphones’ 
accelerometers. Mathematically, the orientations of the 
smartphones are determined using the gravity vector of 
the accelerometer. Only the bending of the back and the 
angles at the arms and elbows are considered. The risk 
assessment of the posture is then made on the basis of 
the calculated angles.

To the best of the authors’ knowledge, there is no 
known approach to date that uses data recorded by smart 
workwear to perform an assessment of postures using an 
evolutionary learned classification model.

Methods
The process illustrated on Fig.  3 is intended to create 
and optimize the smallest possible classifying multi-
layer perceptron network so that it can process motion 
data from a simplified human skeleton based on orienta-
tions provided by the SIRKA system. As a result, the net-
work should then classify and output the corresponding 
body posture according to the OWAS method. Here, the 
motion capture data is provided by the SIRKA system 

(Section  3.1), and the labels come from the study with 
human participants and observers described in Sec-
tion  3.2. The result of the process is a classifying MLP 
network.

The individual processing steps of the process are 
described in detail in Section  3.3, followed by some 
remarks concerning the model training methodology 
(Section 3.4).

Inertial measuring suit SIRKA
The SIRKA suit (see Fig. 4) was developed in the research 
project of the same name and is the prototype of an 
inertial measurement suit that resembles smart work-
wear. The suit has two distinct features, which were also 
development goals of the project: first, the sensor nodes 
of the suit are encapsulated waterproof and can be inte-
grated into work clothing, and second, the sensor fusion 
does not require a magnetometer, which makes the suit 
insensitive to magnetic interference (e.g., large amounts 
of steel as in shipyards) [18, 40, 41].

The SIRKA system consists of a total of 15 sensor nodes 
(each containing an ARM Cortex M3 core together with 
an Bosch BMI160 Sensortec 6-axis inertial sensor unit) 
divided into two logical strands – one each for upper 
body and lower limbs (see Fig. 5). The gyroscope of the 
IMU is configured with ±1000◦/s and the acceleromter 
with ±8g with both 16-bit fixed-point values  [41]. The 
sensorboards are electrically coupled via a cable harness 
and connected to a central embedded system via several 
RS485 bus systems, where the sensor fusion4 combines 
the data from the individual sensor nodes (see Fig.  5). 
The maximum orientation error of the sensor fusion was 
determined with < 5◦ [41, p. 107].

Unlike most other inertial measurement systems, in 
this system here the sensors are integrated together with 
their cables for data connection and power supply on the 
inside of the work clothing. For this purpose, suitable 
inner pockets that can be secured with hook-and-loop 
fasteners have been incorporated into the clothing.

When designing the SIRKA system, particular atten-
tion was paid to its practical suitability in everyday 
industrial work. The cabling, the sensor nodes, and the 
central unit with sensor fusion are integrated into the 
work clothing in such a way that they are (virtually) 
unnoticeable when worn and do not interfere in any 
way. In contrast to other IMU-based MoCap systems 
such as the commercial Xsens MVN, limitations in 
precision were thus accepted in order to increase the 
system’s practicality. In many cases, the sensor nodes 

3  Unbalanced in this context means that the classes to be recognized are not 
uniformly present in the training dataset. Later in this paper, the problem of 
balancing training data is discussed.

4  For details on sensor fusion without magnetometers, please refer to the 
work of F. Wenk [41].
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are not located on the limbs whose orientation is to be 
measured, but at a distance in the clothing above them. 
Work clothes are usually cut wide with stiff fabric, so 
that additional errors are induced in the measurement 
by draping and unintentional movement of the cloth.

The orientation estimates of the sensor nodes are 
saved to the computer’s memory card and can be taken 
from there after recording and processed further.

Study setup
In the study 20 participants were separately observed by 
three varying human raters while posing in each of the 72 
(excluding lower limbs posture 7 ‘walking’) OWAS pos-
tures (see Tables 2, 3, 4).

The 20 participants in the study each wore a SIRKA 
suit that was individually calibrated to each person. Dur-
ing the trial, the suit recorded the subjects’ movement 
patterns on the SIRKA central processing unit’s memory 
card.

The three raters were equipped with pens and struc-
tured sheets and viewed each participant from one view-
ing-angle. The raters sat next to each other at a distance 
of around 1m among each other, and were requested to 
remain seated, to ensure the independent evaluation of 
the raters [13]. The constellation of the rater-group was 
altered per participant.

The participants wore authentic industrial workers’ 
workwear, typically made of robust and wide cut fabric, 
which realistically complicates the recognition of pos-
tures. The participant was asked to model the postures 
independently and to align himself or herself frontally 
with the raters. The study director explicitly did not cor-
rect the postures in order not to influence the raters.

Since neither participants nor raters have been previ-
ously trained in OWAS, both participants and raters 
received a short introduction in the OWAS method.

Process of one trial

1	 A custom software generates a random OWAS code 
using a Pseudo-RNG initialized with the participant 
number. Within one trial the generated OWAS code 
can only occur once. The OWAS posture is displayed 
to the participant modeling the posture, but not to 
the raters.

2	 The participant interprets the posture and performs 
it independently. The raters can observe the partici-
pant while he or she models the posture.

3	 The three raters are given up to 30 s to rate the pos-
ture independently (no communication between the 
raters was allowed) using a paper sheet. They are not 
allowed to stand up, but they may move their upper 
body and adjust their view of the participant.

4	 Steps 1–3 are repeated for every one of the 72 pos-
ture combinations.

Data processing steps
Skeleton mapping: A kinematic tree from sensor data
The sensor nodes of the SIRKA system provide their raw 
data to a central embedded computer, which is usually 

Table 3  OWAS category Arms 

Category Code Posture Description

Arms x1x Arms below shoulders

x2x One arm at or above shoulder height

x3x Both arms at or above shoulder height

Table 4  OWAS category Legs 

Category Code Posture Description

Legs xx1 Sitting

xx2 Standing/load on both straight legs

xx3 Standing/Load on one straight leg

xx4 Standing/Load on bent legs

xx5 Standing/Load on one bent leg

xx6 Kneeling on one or both legs

xx7 Walking
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placed in the jacket pocket of the suit. The sensor fusion 
software provides an estimate of the orientations of all 
sensor nodes or the corresponding body segments in the 
predefined SIRKA skeleton with a frequency of 10Hz (see 
Fig. 5 (b)).

For the SIRKA skeleton, only the orientations of the 
individual sensor nodes are available. Once the orienta-
tions of the sensors are assigned to the individual bones, 
a kinematic tree can be calculated starting from the ori-
gin (root). The origin of the SIRKA skeleton is an imag-
ined central joint in the pelvic region (called pelvis in the 
skeleton definition). The absolute position in space is not 
known because the SIRKA suit, as an inertial measure-
ment system, does not provide it. Usually, the position of 
the origin is set to p0 = ( 0 0 0 )T . Starting from this ori-
gin, the bones of the skeleton are traversed in latitudinal 
search, i.e. first the three bones connected with pelvis are 
considered. Their origin pi,start is known with the position 
of pelvis, searched is the position pi,end of the endpoint of 
the ith bone. This position depends on the direction vec-
tor di and the length li of the bone and can therefore be 
determined as follows:

The procedure is completely described in Algorithm 1 in 
pseudocode. With this, the skeleton can now be moved 
based on the sensor data.

Algorithm 1 Kinematic Tree

The algorithm is run for each new data frame.

Feature selection
For the data model and classification, a rotation and 
translation invariant representation of the skeleton’s pos-
ture is needed, i.e. a representation that is independent 
of the position and orientation of the entire skeleton in 
space. Additionally, the representation should be inde-
pendent of the length of the limbs. These requirements 
are met if using the angles at the skeleton joints.

First, the angles at the joints of the skeleton are deter-
mined, i.e. the angles between two connected bones. 
Based on the bones of the SIRKA skeleton (see Fig.  5), 
this results in 14 angles (i.e. features) as representation of 
a pose (see Table 6). This also reduces the dimensionality 

(1)pi,End = pi,Start + di · li

of the features compared to the raw sensor data (15 ori-
entations represented as quaternions would yield 60 
input features).

An orientation in space can be represented as a rota-
tion about a certain axis of rotation. Let o, u be two con-
nected bones with rotation matrices Qo,Qu from SO3

5 in 
the global coordinate system. Then the rotation of Qu in 
the coordinate system of Qo can be written as:

The solution of the following equation system 3 is then 
the rotation axis (eigenvector v) of this rotation ( I is the 
unit matrix with eigenvalue 1). A solution exists only if a 
rotation actually exists, i.e. Q̃ �= I.

The angle of rotation ϕ is then (note: the trace tr of a 
matrix is the sum of the eigenvalues, i.e., the diagonal val-
ues [42, p. 664])6:

The motion capture data is now pre-processed, available 
in a skeleton-based representation with selected features, 
and can be transformed into a suitable data model.

Training data from the inertial sensor data
The SIRKA suit provides orientations for the individual 
limbs, which are used to build the kinematic tree of a 
skeleton. These orientations are used here, after pre-
processing described above, as inputs to a multilayer 
perceptron net whose topology and weights are cre-
ated and optimized using the NEAT algorithm [43] (see 
Appendix 1.1).

Labeling the data In the study, the training data were 
recorded together with reference classifications from 
human raters. For each recorded posture, OWAS classi-
fications are available from three raters each, which are 
assumed to be ground truth for the classification model.

With three observers, one cannot assume complete 
agreement between observers (inter-rater reliability 
[13]). Each OWAS category (back, arms, legs) is con-
sidered separately, and for each possible partial posture, 
a column containing the majority decision of the raters 
was added. The experiment was conducted with N = 3 
observing human raters.

(2)Q̃ = Q−1
o · Qu = QT

o · Qu

(3)(Q̃ − I)v = 0

(4)ϕ = arccos (
1

2
(tr(Q̃)− 1))

5  The matrices are orthogonal with determinant 1 and form the Special 
Orthogonal Group of Dimension 3, see https://​mathw​orld.​wolfr​am.​com/​Speci​
alOrt​hogon​alGro​up.​html.
6  See also https://​mo.​mathe​matik.​uni-​stutt​gart.​de/​kurse/​kurs10/​seite​111.​
html and http://​peheko.​netfa​st.​org/​m1303/​rot3d/​drehu​ngen.​htm

https://mathworld.wolfram.com/SpecialOrthogonalGroup.html
https://mathworld.wolfram.com/SpecialOrthogonalGroup.html
https://mo.mathematik.uni-stuttgart.de/kurse/kurs10/seite111.html
https://mo.mathematik.uni-stuttgart.de/kurse/kurs10/seite111.html
http://peheko.netfast.org/m1303/rot3d/drehungen.htm
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Partitioning of the training data sets Usually, the data-
set used for training an ML algorithm is divided into 
three parts: 

1	 Training data: the largest part of the data set is used 
to perform the actual training. As a rule, an error 
function is minimized here.

2	 Test data: To avoid overfitting of the ML model to 
the training data, the quality of the model is checked 
regularly (e.g. after each epoch) using the test data. 
Usually, the test data is much smaller in size than the 
training data (e.g. 10% of the total data set).

3	 Evaluation data: the evaluation data is used to per-
form the final assessment of the ML model. This data 
has not yet been seen by the ML model during train-
ing, so it can be used to realistically assess how well 
the model has been abstracted from the training data 
to unknown data.

In the neuroevolutionary NEAT algorithm used here, 
a division into three parts is not necessary. The training 
and test data can be combined here because the adjust-
ment of the connection weights in NEAT is not directly 
coupled to values of the training data, but is done meta-
heuristically. The overall fitness of the network is consid-
ered; it is not so straightforward to adjust a single weight 
based on a training dataset (as it is possible, for exam-
ple, in the backpropagation method for training ANN). 
In this work, therefore, the dataset is first split into two 
parts: 90% test data and 10% evaluation data.

Balancing the training data Training data for machine 
learning must contain each target category in the same 
relative frequency as the target category occurs in real-
ity, i.e., they must follow the same distribution. For the 
individual OWAS categories, one assumes that each pos-
ture occurs with equal frequency. Otherwise, the ML 
algorithm would also learn the (wrong) frequency dis-
tribution and not let its decision be based only on the 
input values. In addition, if the training dataset is based 
on data from multiple subjects, it must also be balanced 
with respect to individuals, i.e., data from each individual 
must be equally distributed for each category.

For balancing the training data for the OWAS clas-
sifier, the method given in Appendix  1.2 was used. The 
algorithm is tolerant of subject combinations that do not 
allow for perfect balancing because, for example, too lit-
tle data is available for specific categories. Additionally, 
the algorithm is heuristic when subsampling the data.

Classification model
The OWAS code describing a particular posture consists 
of three independent digits (categories back, arms, legs; 
see Section  2.2). One classifier could be created for the 

three-digit total code, but the complexity is reduced if a 
separate classifier is trained for each category7.

Figure  6 shows the structure of the classifier. The 
data from the IMU sensors are fed into three separately 
trained classification models, each of the models returns 
probabilities for all the partial postures of the category. 
The most likely partial (majority vote) postures can then 
be combined into an overall posture.

Structure of the nets The structure, i.e. topology of the 
ANN is learned in this use case with the NEAT algo-
rithm. Nevertheless, there are constraints for the algo-
rithm in which it searches for solutions. In particular, the 
input and output neurons are given by the problem.

Initially, all networks in a NEAT population do not 
have any hidden layers or neurons, but consist only of 
the given input and output neurons. At the beginning, all 
neurons are usually not connected either, only during the 
course of the algorithm the nets are mutated so that they 
also form connections between neurons.

The mutation operators of the NEAT algorithm ran-
domly add new neurons and connections between neu-
rons in the course.

Error function Evolutionary optimization requires an 
objective function. When training the ANN, the error is 
usually minimized, see Eq. 5:

Methodology of NEAT training
The evaluation run with the NEAT algorithm was per-
formed on the High Performance Cluster (HPC) CARL8 
of the Carl von Ossietzky University Oldenburg. The 
jobs were started with ten runs, since due to the reini-
tialization of the pseudo-random number generators the 
results differ in meta-heuristic procedures (Monte Carlo 
simulation).

The Rectified Linear Unit (ReLU) was used as the 
activation functions in both cases. The target function 
described in Eq. 5 was used.

Each job was run with a time limit of 2 days, 1 HPC 
node with 24 threads each, and 32GB RAM was started. 
The software used was YAHNI/0.99 on Java/11.0.2.

Results
To show the validity of the human observers’ assess-
ments, inter-rater reliability was determined using 
Fleiss’ kappa for each OWAS category. The kappa 

(5)min 1−
Ncorrect

Noverall

7  Consider the number of classes of classifiers to be distinguished: 
72 = 4 · 3 · 6 > 4+ 3+ 6 = 13

8  see https://​uol.​de/​fk5/​wr/​hochl​eistu​ngsre​chnen/​hpc-​facil​ities/​carl/
9  see https://​github.​com/​chrlns/​yahni

https://uol.de/fk5/wr/hochleistungsrechnen/hpc-facilities/carl/
https://github.com/chrlns/yahni
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values (a value of 1.0 indicates a perfect match) were as 
follows:

The data of 6 participants were not usable (recording 
errors in the SIRKA system and miscalibrations of indi-
vidual sensors), the data of the remaining 14 participants 
were – as described in the previous chapter – labelled 
with the observers’ labels and served as training and eval-
uation data for the NEAT algorithm.

At each start of the algorithm, data from 2 of the 14 
participating individuals were randomly selected as eval-
uation data, and the remaining as training data. After 
each generation, the ANN with the highest fitness score 
was evaluated against the data from the two individuals 
unknown to the ANN.

The OWAS classifications of the trained ANN are now 
compared with the ratings of the observers. For this pur-
pose, the classification results were compared in confu-
sion matrices.

For this purpose, the best networks of each of the ten 
runs were tested against their respective training data. 
The summarized classifications are compared to the 
summarized ratings of the three observers. The human 
observations were combined in a majority decision. In 
the tables, relative values as well as absolute observations 
are given.

Table  7 presents the confusion matrix for the com-
parison of the reference observations (human observers) 
with the classifications of the ANN for the postures of the 
back. The diagonal values show that the ANNs agree with 
the reference in just under half (44–51%) of the posture 
ratings. The ANN have difficulty distinguishing the pos-
tures with straight and twisted backs (in 26% of the cases 
a straight back was recognized as twisted and in 33% 
of the cases a twisted back was recognized as straight). 
Analogous difficulties occur with bent backs and bent/
twisted backs. In 31% of postures, a simply bent back is 
misclassified as bent/twisted. Conversely, in 29% of the 
cases, a bent/twisted back is classified as simply bent.

Table  8 presents the confusion matrix for the com-
parison of the reference observations (human observers) 
with the classifications of the ANN for the postures of the 
arms. The agreement between ANN and reference here 
is 64  –  87%. The ANN have difficulties in classification 
when an arm is raised or at shoulder height. In 19% of 
the cases the ANN does not recognize the posture (arms 
below shoulders) and in 21% both raised arms are classi-
fied as if only one arm was raised.

Table 9 presents the confusion matrix for the compari-
son of the reference observations (human observers) with 
the classifications of the ANN for the postures of the legs. 
In about one third of the cases, the classifications of the 

κback = 0.85, κarms = 0.98, κlegs = 0.85

ANN and those of the human observers matched (see 
diagonal values of 33 – 45%). The following discrepancies 
are striking: in each of 13% of the cases a sitting posture 
was classified as “standing on bent legs” or “kneeling”. 
The posture “standing on straight legs” was misclas-
sified by the ANNs as “standing on one straight leg” in 
25%, as “standing on bent legs” in 20%, and as “standing 
on one bent leg” in still 13%. The posture “standing on 
one straight leg” was confused with the posture “stand-
ing with straight legs” in 25% of the cases. The posture 
“standing on both bent legs” was confused with the pos-
ture “standing with straight legs” in 20% of cases. The 
kneeling posture (OWAS code 6) was still confused by 
the ANN with the postures “standing on one bent leg” 
and “sitting” in 11% and 12%, respectively.

Discussion
First, the results of the study are summarized and dis-
cussed. Then the possible causes of error for the non-
optimal result are discussed and finally the results of the 
study are considered in the context of this work.

General
The NEAT algorithm was used to test the generation 
of multilayer perceptron networks for the classifica-
tion of OWAS body postures. Ten runs each were made 
up to generation 2000 for the postures of the back, 
arms, and legs. For each limb category, the classifica-
tion accuracy (correct classification rate accr ) is different: 
after 2000 generations, the best ANNs (with evaluation 
data) achieve āccr = 0.35 for the postures of the back, 
āccr = 0.64 for the arms, and āccr = 0.25 for the legs.

In general, the classification errors of the nets created 
with NEAT are too high for practical use. It remains to 
discuss the possible causes for the high classification 
errors in the following so that future approaches may 
avoid this obstacles.

Error consideration
A number of possible causes of error come into question, 
which are now discussed starting from the representation 
of the reference posture by the human participants to the 
training of the classification networks.

Modelling the reference postures
In the evaluation study (see Sections  3.2), the partici-
pants were shown graphically and textually the postures 
they were supposed to adopt. The interpretation of the 
posture was entirely on the part of the participants, i.e., 
in case of a misinterpretation of the posture, the study 
director explicitly did not correct it in order to exclude 
any influence on the three independent observers. This 
is a possible cause for the deviation of the observations 
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from the software reference. This cannot be a direct cause 
for the ANN error, because the label, i.e., marking which 
posture measured with the SIRKA suit belongs to which 
OWAS posture, was determined based on the observers 
and not on a reference.

Nevertheless, this circumstance may indirectly affect 
the quality of the training data: the reference software 
ensured that each posture was displayed only once. If 
the participant misinterpreted a posture, then one of the 
possible postures is missing from the data and another 
is duplicated. This imbalance in the target classes is cor-
rected by balancing the training data (see Section 3.3.3), 
but in this process entries are removed from the data set 
if they disturb the balance. This reduces the amount of 
effective training data, which may well have a negative 
impact on the quality of the learned model.

Error of the measuring suit
Like any measuring system, the SIRKA suit also measures 
with a certain error. This measurement error is composed 
of the following components:

•	 Placement of the sensors in the suit: In the SIRKA 
system, the sensors are integrated in the work cloth-
ing and do not sit directly on the skin, as is often 
the case with comparable IMU systems. Depending 
on how close the clothing fits to the body, there is 
an offset of several centimeters between the cloth-
ing (i.e. sensor) and the moving limbs. This distance 
is not constant, but changes permanently during the 
movement. The distance is not uniform even when 
a movement is repeated, but can vary between par-
ticipant and repetitions of similar movements due to 
random effects or minimal slippage of clothing. From 
a macro perspective, the posture looks the same to 
an observing person, but from the perspective of the 
raw sensor data, it can be completely different.

•	 Calibration error: Related to the previous point of 
sensor placement is the calibration of the system. 
Calibration involved determining the static offset of 
sensor placements on the human body for a given 
individual. This calibration is determined offline, i.e. 
in advance of the actual measurement. It was also not 
possible to correct the calibration during the meas-
urement, as the SIRKA system does not currently 
provide for this. The calibration was performed days 
before the actual measurement, therefore the par-
ticipants usually wore clothes of different thickness 
under the SIRKA work suit, which can lead to mini-
mal calibration errors. More serious is when the cali-
bration is not fully valid due to some other error and, 
for example, the orientation of a sensor was not cor-

rectly recorded. Non-valid calibrations usually lead 
to a defective recording.

•	 Noise error of the sensors: Due to minimal manufac-
turing tolerances in the production of the electronic 
components and due to different resistance behavior 
of the components at different ambient temperatures, 
minimal fluctuations of the sensor values occur dur-
ing the analog-to-digital conversion. These fluctua-
tions are noticeable as noise in the measured values.

•	 Error in the sensor fusion: SIRKA sensor fusion does 
not require data from a magnetometer. Thus, the sys-
tem lacks a degree of freedom that can be compen-
sated with the data of the logically connected accel-
erometers. If the participant stands still for a longer 
period of time (as in the case of an OWAS posture), 
there is hardly any acceleration data in the acceler-
ometer beyond the noise (and gravity). This can lead 
to errors in orientation estimation [40].

Labeling the data
The human observers recorded the postures on struc-
tured paper observation sheets, which were manually 
digitized after the study. It cannot be ruled out that, 
despite great care, individual observations were not dig-
itized correctly. This does not necessarily lead to errors 
in the classification of the ANN, but it may introduce 
contradictions in the data, for example, if a bent back is 
correctly marked as “bent” several times and incorrectly 
marked as “straight” once.

The SIRKA suit records the movements of its wearer as 
a continuous stream of motion capture data. In this data 
stream, the beginning and end of each posture was man-
ually marked and assigned the corresponding data label. 
This manual process is subject to uncertainty because 
both the estimation when a posture begins and ends 
or when movement into a posture is complete is based 
on subjective human interpretation, as is the OWAS 
method, which does not specify angles or measurable 
properties. Therefore, it cannot be ruled out that minor 
inaccuracies or contradictions (cf. previous paragraph) 
may be introduced into the data due to misinterpretation.

Validity of the training data
It must be checked whether the data are valid, i.e. 
whether the data collected are fundamentally suitable for 
the problem to be solved. This can be estimated with the 
help of a probabilistic learning algorithm. In a decision 
tree, for example, the feature with the highest informa-
tion density is used to decide which subtree to descend 
into. If a suitable algorithm (such as CARTs or ID4.5) is 
used to generate decision trees on the SIRKA data used 
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here, one would expect plausible features to have the 
highest information density. For example, plausible fea-
tures for deciding on a particular OWAS posture of the 
arms would be angles on arms or shoulders.

This was tested as an example for the postures of 
the arms using the DecisionTreeRegressor imple-
mented in Python from the scikit-learn package10. 
Figure  7 shows the relative importance of each body 
angle for the postures of the arms. To generate the 
graph, 12 of 14 participants’ data sets were randomly 
selected and the importance of the features was aver-
aged over 100 runs.

The algorithms for generating the decision trees con-
sider angle 11 (between left clavicle and upper back) to 
be the most significant for assessing posture, followed 
by angles 1 and 2, which are found between clavicles 
and upper arm bones on the left and right, respectively. 
This is quite plausible, since the bones mentioned are 
all located in the region of the upper body. The fact that 
the collarbones play a greater role here than the arms is 
probably due to the drape of the stiff fabric of the SIRKA 
suit, which significantly alters the position of SIRKA sen-
sor nodes 7 and 9, especially when the arms are raised 
and lowered.

Balancing the training data
In the study discussed here – as is common practice – 
a portion of the data set was reserved as evaluation data 
with which the trained ANN was then compared. The 
selection of 2 out of 14 data sets was done randomly on 
each run of the algorithm. For an optimal classifying 
model, such random selection would be insignificant. 
Here, the scatter of results can be explained in part by 
this random selection.

In the training data, the distribution of classes should 
also correspond to the desired distribution of classes in 
reality. In the case of the OWAS postures, each posture 
should be equally likely to occur. To ensure that the ran-
domly selected data of the participating individuals cor-
respond to the equally distributed classes, balancing of 
the training data was performed (see section 3.3.3). The 
balancing algorithm involves a partial heuristic selection 
of data samples from the pool of available data and bal-
ances the classes with a certain tolerance. The tolerance 
is necessary because otherwise there would be too few 
data samples available. It is possible that the classification 
of rarely occurring classes is more often not correct if the 
training data is not balanced. Since the deviations here 
amount to a few percent, this error is considered rather 
small.

Learning algorithm
The size of the training data affects the ability of the algo-
rithm to abstract general rules from the data. The train-
ing size of 12 data sets of the participants may be too 
small, but this also depends on the learning algorithm 
and can be seen in the learning curves. Typically, ANN 
training continues as long as the error on the evalu-
ation data decreases over time. If the error stagnates 
or increases again, it can be assumed that no further 
abstraction is possible or that the ANN is overfitted. 
For abstraction and to prevent overfitting, a sufficiently 
large training data set is necessary. The learning curves 
of the NEAT algorithm for the postures of the back and 
arms show typical learning curves on the evaluation 
data, which stagnate in the course. The training data con-
tain too many contradictions or ambiguities for further 
abstraction to be possible. For the postures of the legs, 
the algorithm succeeds only to a very limited extent in 
formulating abstract regularities of the data in the ANN.

It was to be examined whether the objectively insuf-
ficient classification accuracy has its cause in the NEAT 
learning algorithm used. As a comparison, a conven-
tional MLP network was created using TensorFlow and 
trained in ten runs and randomly selected training data. 
The number of neurons as well as their activation func-
tions were chosen based on the networks generated with 
NEAT. The results in Fig.  8 clearly show that the learn-
ing algorithm fails to abstract on the data. The accuracy 
stagnates at a certain level and starts to decrease slightly 
at about 250 epochs, which is a sign of network overfit-
ting. However, the accuracy on the training data is also 
well below the optimal value 1.0 at about 0.75, so one can 
assume unrecoverable inconsistencies in the data.

Final error consideration
In summary, the inconsistent training data are consid-
ered to be crucial for the comparatively low classification 
accuracy of the ANN. The other errors discussed prob-
ably have only a minor influence on the result.

Three approaches could be considered for improving 
the classification accuracy: 

1	 More training data: if the amount of training data is 
increased, it can be assumed that the algorithms will 
succeed in finding additional patterns and combinations 
in the conflicting data. This improves the error toler-
ance and possibly the accuracy of the classification.

2	 Combining classes: it might be possible to com-
bine the training data for the ML algorithm for 
hard-to-differentiate individual postures that were 
detected by human observers only with compara-
tively low agreement (such as the leg postures 
xx3 “stand/load on extended leg” and xx5 “stand/10  see https://​scikit-​learn.​org/

https://scikit-learn.org/
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load on bent leg”). This could usefully increase 
the amount of training data and thus improve the 
overall classification accuracy of the ML model. 
However, the hard-to-distinguish postures have 
different OWAS action classes (see Table  5) and 
thus cannot be meaningfully combined in this 
case [13].

3	 Model constraints on the skeleton: since, strictly 
speaking, the SIRKA system does not measure body 
movements but clothing movements, it might be 
useful to formulate constraints on skeletal move-
ments. For example, movements of the spine (such 
as a folding of individual vertebrae) appear in the 
measured data, which are possible for the clothing, 
but would be fatal for a person if the skeleton were 

deformed in this way. If one defines the skeleton 
model with anatomically possible motion radii and 
maps the motion data to this skeleton, such actually 
impossible motions of the skeleton would not appear 
in the training data.

Appraisal of the NEAT approach
In the previous sections, the diverse possible sources of 
error have been comprehensively discussed. It remains 
to discuss the advantages and disadvantages of the evo-
lutionary NEAT approach compared to the usual meth-
ods for training.

First, it should be noted that the authors are not 
aware of any automated deterministic method to 

Table 5  OWAS Risk Action Classes (as of [32]). The numbers of the back and arms columns and the legs row refer to their respective 
OWAS codes. The risk action class depends on the application of force, hence the intervals for some combinations

Fig. 3  Overview about the approach to create the classification models
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construct the structure and topology of a ANN. The 
usual way is to construct the ANN from layers and 
units by humans with the specific domain knowledge. 
Thus, the automated meta-heuristic approach of NEAT 
has no deterministic counterpart.

When manually constructing a ANN, one chooses 
the subsequent layers starting from the dimension 
of the input values. The layers are often arranged 

in a V-shape, i.e., the layers are arranged in order of 
size so that as the network is traversed, the dimen-
sionality is gradually reduced. Choosing the num-
ber of neurons or combined processing units (e.g., 
LSTM units) requires experience and manual trial-
and-error adjustment (basically, a human meta-
heuristic process). If one chooses the network too 
large, there is a risk of overfitting; if the network 
is too small, it may not be possible to learn prop-
erly (underfitting; possibly the cause of the poor 
performance of the backpropagation-trained ANN, 
see above). These problems do not exist in NEAT, 
where the network is built incrementally. It only 
grows if it is helpful for adapting the network to the 
problem to be solved. The prerequisite here is that 
the training and evaluation data are partitioned in a 
meaningful way.

The evaluation of large ANN requires considerable 
computational effort (essentially matrix multiplica-
tions). If the ANN is used on mobile systems, the com-
putational effort required is also a factor in the energy 
consumption of the system. Small ANNs are thus more 
energy efficient and preferable for this application 
domain. The networks created with NEAT are as small 
as possible and as large as necessary. They grow incre-
mentally only as long as is beneficial to the performance 
of the network.

The advantages of NEAT do not come without draw-
backs: because of the parallel optimization of an entire 
population of ANNs, running the NEAT algorithm to 
create an optimal ANN is generally more computation-
ally expensive than backpropagation training a single 
ANN.

Conclusion
In this paper, an approach has been presented on how 
intelligent workwear can automatically classify the dif-
ferent postures of the clothing wearer into different 
categories. Such intelligent workwear could be used in 
perspective to unobtrusively detect the risk for mus-
culoskeletal disorders of employees based on body 
postures during work shifts. We demonstrated the 
complete process of creating a classifying model from 
recording sensor data, deriving body postures based on 
an abstract skeletal representation, to training a classi-
fying model.

The SIRKA motion sensing system equipped with 15 
inertial sensor nodes has been described as an integral 
part of such workwear, the data from which will be used 
for classification. As a special feature, this system is not 
directly attached to the skin or limbs as is usually the 
case, but was integrated into the actual work clothing. 

Fig. 4  SIRKA measuring suit
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The resulting inaccuracies were a challenge for the learn-
ing algorithm of the classification models. However, this 
realistic approach was necessary with regard to later use 
in practice.

Posture data from the abstract skeleton representation 
were used with the NEAT evolutionary learning algo-
rithm to build artificial neural network-based models 
for classifying postures using the OWAS method. NEAT 
generates minimal ANNs, which is beneficial for classifi-
cation using mobile devices.

The OWAS method for classifying postures, which 
is usually performed using pen and paper, does not 
specify fixed angles for the back or knees, for example, 
so reference postures were needed here as training data 
for the classification models. For this purpose, refer-
ence postures were recorded in a study with human par-
ticipants, each of which was rated by human observers 
using OWAS. These ratings served as the ground truth 
for the learning algorithm. The trained classification 

Fig. 5  SIRKA sensors and skeleton. a Placement of the sensor nodes in the SIRKA suit (according to [41]). The numbers represent the internal IDs of 
the nodes in the SIRKA system. b SIRKA skeleton with bone labels

Table 6  Angle between bones as input features. The position of 
the bones in the skeleton is shown in Fig. 5 (b)

Index Bone A Bone B

1 clavicle_left upperarm_left

2 clavicle_right upperarm_right

3 lumbar1 lumbar2

4 lumbar2 thoracic

5 pelvis_left thigh_left

6 pelvis_right thigh_right

7 sacral lumbar1

8 thigh_left leg_left

9 thigh_right leg_right

10 thoracic cervial

11 thoracic clavicle_left

12 thoracic clavicle_right

13 upperarm_left arm_left

14 upperarm_right arm_right
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Fig. 6  Structure of the OWAS classifier. The specification N = 14 refers to the input features (skeleton angles) for the classifiers, the specifications to 
the right of the models refer to the number of output features

Table 7  Confusion matrix for the comparison of the reference observations with the classification of the ANN for the postures of the 
back 

The boldface highlights the diagonal (true positive) values

Reference (human observers)

ANN 1 2 3 4

1 (Back straight) 45% (95,808) 10% (21,759) 33% (69,996) 11% (23,162)

2 (Back bent) 8% (7,141) 51% (47,095) 12% (10,773) 29% (27,042)

3 (Back twisted) 26% (23,630) 15% (13,482) 44% (39,222) 15% (13,231)

4 (bent & twisted) 9% (19,431) 31% (66,231) 13% (27,791) 46% (97,149)

Table 8  Confusion matrix for the comparison of the reference observations with the classifications of the ANN for the postures of the 
arms 

The boldface highlights the diagonal (true positive) values

Reference (human observers)

ANN 1 2 3

1 (Arms below shoulders) 73% (165,843) 19% (43,404) 8% (19,194)

2 (One arm raised) 15% (31,235) 64% (136,745) 21% (44,908)

3 (Both arms raised) 3% (3,836) 11% (16,304) 87% (133,042)

Table 9  Confusion matrix for comparison of reference observations with ANN classifications for postures of legs (1: sitting, 2: standing 
with straight legs, 3: standing on one straight leg, 4: standing on both bent legs, 5: standing on one bent leg, 6: kneeling)

The boldface highlights the diagonal (true positive) values

Reference (human observers)

ANN 1 2 3 4 5 6

1 45% (79.856) 10% (17.208) 8% (13.641) 17% (29.987) 9% (15.059) 12% (20.878)

2 4% (4.832) 38% (51.256) 25% (34.213) 20% (26.735) 13% (17.937) 1% (1.681)

3 9% (8.320) 22% (20.812) 33% (31.363) 17% (16.255) 16% (15.564) 2% (2.346)

4 13% (15.438) 16% (18.377) 19% (22.255) 35% (40.750) 13% (14.716) 5% (6.008)

5 7% (5.830) 16% (13.993) 20% (17.070) 12% (10.300) 34% (29.683) 11% (9.886)

6 13% (34.240) 10% (27.485) 10% (26.872) 11% (30.171) 17% (45.000) 40% (100.000)
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models were compared to these ratings to determine 
their accuracy.

Since the classification results still leave room for 
optimization, numerous potential sources of error were 
identified and discussed, which we consider helpful for 
further approaches in this direction. A detailed ablation 
analysis as well as an investigation of the more advanced 
NEAT variants such as HyperNEAT or CoDeepNEAT 
could help to improve the results and should be investi-
gated next.
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